SlideShare a Scribd company logo
An alternative proof for the chain
rule for multivariable functions
Raymond Jensen
Northern State University
Chain rule: let f be differentiable wrt. x, y,
and x, y differentiable wrt. t.

x = x(t)

y = y (t)

f = f ( x, y )

df ∂f dx ∂f dy
=
+
dt ∂x dt ∂y dt
Proof
g ( t ) − g ( t0 )
dg
( t0 ) = lim
t →t0
dt
t − t0

f ( x ( t ) ,y ( t ) ) = g ( t )
=g ( t )

df
( x ( t0 ) , y ( t0 ) ) = lim0
t →t
dt

=g ( t0 )

64 744 64 744
4
8
4
8
f ( x ( t ) , y ( t ) ) − f ( x ( t0 ) , y ( t0 ) )
t − t0
Proof: begin as with the product
rule
df
df
x ( t0 ) , y ( t0 ) ) =
( r0 )
(
dt
dt
f ( x ( t ) , y ( t ) ) − f ( x ( t0 ) , y ( t ) ) + f ( x ( t0 ) , y ( t ) ) − f ( x ( t0 ) , y ( t0 ) )
= lim
t →t0
t − t0
= lim
t →t0

f ( x ( t ) , y ( t ) ) − f ( x ( t0 ) , y ( t ) )
t − t0

+ lim
t →t0

f ( x ( t0 ) , y ( t ) ) − f ( x ( t0 ) , y ( t 0 ) )
t − t0
Proof: continue as with the
single-variable chain rule
f ( x ( t ) , y ( t ) ) − f ( x ( t0 ) , y ( t ) ) x ( t ) − x ( t0 )
df
( r0 ) = lim
t →t0
dt
x ( t ) − x ( t0 )
t − t0

f ( x ( t0 ) , y ( t ) ) − f ( x ( t0 ) , y ( t0 ) ) y ( t ) − y ( t0 )
+ lim
t →t0
y ( t ) − y ( t0 )
t − t0

f ( x, y ) − f ( x0 , y )
x ( t ) − x ( t0 )
= lim
lim
r →r0
t →t0
x − x0
t − t0

f ( x0 , y ) − f ( x 0 , y 0 )
y ( t ) − y ( t0 )
+ lim
lim
r →r0
t →t0
y − y0
t − t0
Proof: continue as with the
single-variable chain rule
f ( x, y ) − f ( x 0 , y )
x ( t ) − x ( t0 )
df
lim
( r0 ) = rlim
→r0
t →t0
dt
x − x0
t − t0
144424443 144
244
3
="

∂f
"
∂x

=

dx
dt

f ( x0 , y ) − f ( x0 , y 0 )
y ( t ) − y ( t0 )
+ lim
lim
r →r0
t →t0
y − y0
t − t0
1444 24444 144244
4
3
3
=

∂f
∂y

=

dy
dt
Definition: f is [new] differentiable at r0 if
f ( x, y ) − f ( x0 , y ) ∂f
lim
=
( r0 )
r →r0
x − x0
∂x
and
f ( x, y ) − f ( x, y 0 ) ∂f
lim
=
( r0 )
r →r0
y − y0
∂y
Definition: f is [old] differentiable at r0 if
∆f ( r0 ) = f ( r0 + ∆r ) − f ( r0 )
∂f
∂f
=
( r0 ) ∆x + ( r0 ) ∆y + ε1∆x + ε 2∆y
∂x
∂y

where ε1 = ε 1 ( ∆r ) , ε 2 = ε 2 ( ∆r ) → 0 as ∆r → 0
∆x = x − x0 , ∆y = y − y 0 , ∆r = r − r0
Old differentiability ⇒ chain rule

∆f
∂f
∆x ∂f
∆y
∆x
∆y
( r0 ) = ( r0 ) + ( r0 ) + ε1 + ε 2
∆t
∂x
∆t ∂y
∆t
∆t
∆t
df
∂f
dx ∂f
dy
→ ( r0 ) =
( r0 ) + ( r0 )
dt
∂x
dt ∂y
dt
Old differentiability ⇒ continuity
• Leithold thm. 12.4.3
New differentiability ⇒ continuity
lim f ( r ) − f ( r0 ) = lim f ( x, y ) − f ( x, y 0 ) + f ( x, y 0 ) − f ( x0 , y 0 ) 



r →r0

r →r0

= lim f ( x, y ) − f ( x, y 0 )  + lim f ( x, y 0 ) − f ( x0 , y 0 ) 




r →r0

r →r0

 f ( x, y ) − f ( x , y 0 ) 
= lim 
lim
 r →r0 ( y − y 0 )
r →r0
y − y0

1444 24444 14243
4
3
=0
=

∂f
∂y

 f ( x, y 0 ) − f ( x0 , y 0 ) 
+ lim 
lim
 r →r0 ( x − x0 )
r →r0
x − x0

14444
24444  14243
3
=0
=

=0

∂f
∂x
If partials of f exist near r0 and are continuous
at r0 then f is old differentiable at r0.
• Stewart thm. 11.4.8, Leithold thm. 12.4.4
If partials of f exist near r0 and are continuous
at r0 then f is new differentiable at r0.
f ( x, y ) − f ( x0 , y ) ∂f
f ( x, y ) − f ( x 0 , y )
f ( x, y 0 ) − f ( x 0 , y 0 )
lim
−
− lim
( r0 ) = rlim
r →r0
→r0
r →r0
x − x0
∂x
x − x0
x − x0
( )
678 6 74 6 74 6 74
4( 0 )8 4 ( ) 8
4( 0 ) 8
f ( x, y ) − f ( x 0 , y ) − f ( x , y 0 ) + f ( x 0 , y 0 )
= lim
r →r0
x − x0
g x

g x

h x

g ( x ) − g ( x0 ) −  h ( x ) − h ( x 0 ) 


= lim
r →r0
x − x0

MVT

h x
If partials exist near r0 and are continuous at
r0 then f is new differentiable at r0.
f ( x, y ) − f ( x0 , y ) ∂f
g ′ ( u ) ∆x − h′ ( v ) ∆x
lim
−
( r0 ) = rlim
r →r0
→r0
x − x0
∂x
∆x
= lim g ′ ( u ) − h′ ( v ) 


r →r0

∂f
∂f
= lim ( u, y ) − lim ( v , y 0 )
r →r0 ∂x
r →r0 ∂x
∂f
∂f
=
( r0 ) − ( r0 )
∂x
∂x
=0
Old differentiability ⇒ new differentiability
f ( x, y ) − f ( x, y 0 ) ∂f
lim
−
( r0 )
r →r0
y − y0
∂y

f ( x, y ) − f ( x, y 0 ) − f ( x0 , y ) + f ( x0 , y 0 )
= lim
r →r0
y − y0

f ( x, y ) − f ( x0 , y 0 ) − f ( x, y 0 ) − f ( x0 , y ) + 2f ( x0 , y 0 )
= lim
r →r0
y − y0

f ( x, y ) − f ( x 0 , y 0 )
f ( x 0 , y 0 ) − f ( x, y 0 )
f ( x0 , y 0 ) − f ( x0 , y )
= lim
+ lim
+ lim
r →r0
r →r0
r →r0
y − y0
y − y0
y − y0
1444 24444
4
3
=−

∂f
∂y

f ( x, y ) − f ( x 0 , y 0 )
f ( x 0 , y 0 ) − f ( x, y 0 )
x − x0 ∂f
= lim
+ lim
lim
−
( r0 )
r →r0
r →r0
r →r0 y − y
y − y0
x − x0
∂y
0
1444 24444
4
3
=−

∂f
∂x
Old differentiability ⇒ new differentiability
f ( x, y ) − f ( x0 , y 0 ) ∂f
x − x0 ∂f
= lim
−
−
( r0 ) rlim
( r0 )
r →r0
→r0 y − y
y − y0
∂x
∂y
1 3
2
1 24 0
4 3
h sinθ

=b / a
Old differentiability ⇒ new differentiability
f ( x, y ) − f ( x0 , y 0 ) b ∂f
∂f
= lim
−
( r0 ) − ( r0 )
r →r0
h sinθ
a ∂x
∂y
Old differentiability ⇒ new differentiability
=

f ( x0 + bh, y 0 + ah ) − f ( x0 , y 0 ) b ∂f
1
∂f
lim
−
r0 ) −
(
( r0 )
h→0
sinθ 1444444 h
∂y
2444444
3 a ∂x
Duf

u = ( b, a )
Old differentiability ⇒ new differentiability
1
b ∂f
∂f
= Duf ( r0 ) −
( r0 ) − ( r0 )
a
a ∂x
∂y

u = ( b, a )
Thm: If f is old differentiable at r0
then Duf(r0) exists and:

Duf ( r0 )

∂f
∂f
=
( r0 ) b + ( r0 ) a
∂x
∂y
= ∇f ( r0 ) ×u

• Stewart thm. 11.6.3, Leithold thm. 12.6.2
• u = (b, a)
Old differentiability ⇒ new differentiability
f ( x, y ) − f ( x, y 0 ) ∂f
lim
−
( r0 )
r →r0
y − y0
∂y
 b ∂f
1  ∂f
∂f
∂f
= b ( r0 ) + a ( r0 )  −
( r0 ) − ( r0 )
a  ∂x
∂y
∂y
 a ∂x
= 0.
Conclusion
• Old differentiability ⇒ new differentiability
⇒ chain rule.
Question:
• Old differentiability ⇔ new differentiability?
References
• Stewart, Essential Calculus (Thompson, 2007)
• Leithold, The Calculus 7th ed. (Harper, 1996)

More Related Content

PDF
Ejercicios resueltos 2011 series de fourier
PPT
10 transformada fourier
PDF
Compiladores informe final
PDF
Transformasi Fourier Waktu Kontinyu
PPT
El método de la secante y secante modificado
PPT
interpolasi
PPTX
Ecuaciones diferenciales lineales
PDF
Bloque1 numeros complejosejercicios
Ejercicios resueltos 2011 series de fourier
10 transformada fourier
Compiladores informe final
Transformasi Fourier Waktu Kontinyu
El método de la secante y secante modificado
interpolasi
Ecuaciones diferenciales lineales
Bloque1 numeros complejosejercicios

What's hot (20)

DOCX
Límite de una función Vectorial y derivada de una función Vectorial.
PPTX
interpolasi
PDF
Tema 4. ondas_de_senal
PDF
Integral indefinida
DOCX
Producto interno
PPT
Modelos.diagramabloques
PDF
Ejercicios resueltos de transformada de laplace
PDF
Tugas Metode Numerik Golden ratio Pendidikan Matematika UMT
PPT
Bab 6
PPTX
PD orde2 Tak Homogen 2
DOCX
Ejercicios propuestos unidad 2
PPTX
Funciones de Varias Variables
PDF
52983063 series-de-fourier
PPT
Transformasi Laplace
PPT
Funciones periódicas
DOC
Mapeo de memoria
PPT
Clase 1 antiderivada
PDF
Tabla derivadas
PPTX
Transformada de laplace
PDF
Ecuaciones Diferenciales de orden n
Límite de una función Vectorial y derivada de una función Vectorial.
interpolasi
Tema 4. ondas_de_senal
Integral indefinida
Producto interno
Modelos.diagramabloques
Ejercicios resueltos de transformada de laplace
Tugas Metode Numerik Golden ratio Pendidikan Matematika UMT
Bab 6
PD orde2 Tak Homogen 2
Ejercicios propuestos unidad 2
Funciones de Varias Variables
52983063 series-de-fourier
Transformasi Laplace
Funciones periódicas
Mapeo de memoria
Clase 1 antiderivada
Tabla derivadas
Transformada de laplace
Ecuaciones Diferenciales de orden n
Ad

Similar to An Alternative Proof of the chain rule and definition of differentiability for multivariable functions (20)

PPTX
Application of partial derivatives
PPTX
Maxima & Minima of Calculus
PPTX
APPLICATION OF PARTIAL DIFFERENTIATION
PDF
13.Partial_derivative_total_differential.pdf
PDF
Tcu12 crc multi
PPT
Numerical differentiation integration
PDF
Capitulo 2 corripio
PDF
corripio
PDF
501 lecture8
PDF
Laplace1
PPTX
presentation on differentiaton 1.pptm.pptx
PDF
Introduccio al calculo vectorial
PDF
脳の計算論 第3章「リズム活動と位相応答」
PPTX
Partial differentiation B tech
PDF
Sheet with useful_formulas
PDF
03 convexfunctions
PPT
Differential calculus
PDF
Analysis Solutions CV
PPT
Calculas
PDF
160511 hasegawa lab_seminar
Application of partial derivatives
Maxima & Minima of Calculus
APPLICATION OF PARTIAL DIFFERENTIATION
13.Partial_derivative_total_differential.pdf
Tcu12 crc multi
Numerical differentiation integration
Capitulo 2 corripio
corripio
501 lecture8
Laplace1
presentation on differentiaton 1.pptm.pptx
Introduccio al calculo vectorial
脳の計算論 第3章「リズム活動と位相応答」
Partial differentiation B tech
Sheet with useful_formulas
03 convexfunctions
Differential calculus
Analysis Solutions CV
Calculas
160511 hasegawa lab_seminar
Ad

Recently uploaded (20)

PDF
DP Operators-handbook-extract for the Mautical Institute
PPTX
TLE Review Electricity (Electricity).pptx
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
Approach and Philosophy of On baking technology
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
August Patch Tuesday
PPTX
A Presentation on Touch Screen Technology
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
A novel scalable deep ensemble learning framework for big data classification...
PDF
Zenith AI: Advanced Artificial Intelligence
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
DP Operators-handbook-extract for the Mautical Institute
TLE Review Electricity (Electricity).pptx
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
WOOl fibre morphology and structure.pdf for textiles
Approach and Philosophy of On baking technology
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
August Patch Tuesday
A Presentation on Touch Screen Technology
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
1 - Historical Antecedents, Social Consideration.pdf
Hindi spoken digit analysis for native and non-native speakers
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
NewMind AI Weekly Chronicles - August'25-Week II
A novel scalable deep ensemble learning framework for big data classification...
Zenith AI: Advanced Artificial Intelligence
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
gpt5_lecture_notes_comprehensive_20250812015547.pdf

An Alternative Proof of the chain rule and definition of differentiability for multivariable functions

  • 1. An alternative proof for the chain rule for multivariable functions Raymond Jensen Northern State University
  • 2. Chain rule: let f be differentiable wrt. x, y, and x, y differentiable wrt. t. x = x(t) y = y (t) f = f ( x, y ) df ∂f dx ∂f dy = + dt ∂x dt ∂y dt
  • 3. Proof g ( t ) − g ( t0 ) dg ( t0 ) = lim t →t0 dt t − t0 f ( x ( t ) ,y ( t ) ) = g ( t ) =g ( t ) df ( x ( t0 ) , y ( t0 ) ) = lim0 t →t dt =g ( t0 ) 64 744 64 744 4 8 4 8 f ( x ( t ) , y ( t ) ) − f ( x ( t0 ) , y ( t0 ) ) t − t0
  • 4. Proof: begin as with the product rule df df x ( t0 ) , y ( t0 ) ) = ( r0 ) ( dt dt f ( x ( t ) , y ( t ) ) − f ( x ( t0 ) , y ( t ) ) + f ( x ( t0 ) , y ( t ) ) − f ( x ( t0 ) , y ( t0 ) ) = lim t →t0 t − t0 = lim t →t0 f ( x ( t ) , y ( t ) ) − f ( x ( t0 ) , y ( t ) ) t − t0 + lim t →t0 f ( x ( t0 ) , y ( t ) ) − f ( x ( t0 ) , y ( t 0 ) ) t − t0
  • 5. Proof: continue as with the single-variable chain rule f ( x ( t ) , y ( t ) ) − f ( x ( t0 ) , y ( t ) ) x ( t ) − x ( t0 ) df ( r0 ) = lim t →t0 dt x ( t ) − x ( t0 ) t − t0 f ( x ( t0 ) , y ( t ) ) − f ( x ( t0 ) , y ( t0 ) ) y ( t ) − y ( t0 ) + lim t →t0 y ( t ) − y ( t0 ) t − t0 f ( x, y ) − f ( x0 , y ) x ( t ) − x ( t0 ) = lim lim r →r0 t →t0 x − x0 t − t0 f ( x0 , y ) − f ( x 0 , y 0 ) y ( t ) − y ( t0 ) + lim lim r →r0 t →t0 y − y0 t − t0
  • 6. Proof: continue as with the single-variable chain rule f ( x, y ) − f ( x 0 , y ) x ( t ) − x ( t0 ) df lim ( r0 ) = rlim →r0 t →t0 dt x − x0 t − t0 144424443 144 244 3 =" ∂f " ∂x = dx dt f ( x0 , y ) − f ( x0 , y 0 ) y ( t ) − y ( t0 ) + lim lim r →r0 t →t0 y − y0 t − t0 1444 24444 144244 4 3 3 = ∂f ∂y = dy dt
  • 7. Definition: f is [new] differentiable at r0 if f ( x, y ) − f ( x0 , y ) ∂f lim = ( r0 ) r →r0 x − x0 ∂x and f ( x, y ) − f ( x, y 0 ) ∂f lim = ( r0 ) r →r0 y − y0 ∂y
  • 8. Definition: f is [old] differentiable at r0 if ∆f ( r0 ) = f ( r0 + ∆r ) − f ( r0 ) ∂f ∂f = ( r0 ) ∆x + ( r0 ) ∆y + ε1∆x + ε 2∆y ∂x ∂y where ε1 = ε 1 ( ∆r ) , ε 2 = ε 2 ( ∆r ) → 0 as ∆r → 0 ∆x = x − x0 , ∆y = y − y 0 , ∆r = r − r0
  • 9. Old differentiability ⇒ chain rule ∆f ∂f ∆x ∂f ∆y ∆x ∆y ( r0 ) = ( r0 ) + ( r0 ) + ε1 + ε 2 ∆t ∂x ∆t ∂y ∆t ∆t ∆t df ∂f dx ∂f dy → ( r0 ) = ( r0 ) + ( r0 ) dt ∂x dt ∂y dt
  • 10. Old differentiability ⇒ continuity • Leithold thm. 12.4.3
  • 11. New differentiability ⇒ continuity lim f ( r ) − f ( r0 ) = lim f ( x, y ) − f ( x, y 0 ) + f ( x, y 0 ) − f ( x0 , y 0 )    r →r0 r →r0 = lim f ( x, y ) − f ( x, y 0 )  + lim f ( x, y 0 ) − f ( x0 , y 0 )      r →r0 r →r0  f ( x, y ) − f ( x , y 0 )  = lim  lim  r →r0 ( y − y 0 ) r →r0 y − y0  1444 24444 14243 4 3 =0 = ∂f ∂y  f ( x, y 0 ) − f ( x0 , y 0 )  + lim  lim  r →r0 ( x − x0 ) r →r0 x − x0  14444 24444  14243 3 =0 = =0 ∂f ∂x
  • 12. If partials of f exist near r0 and are continuous at r0 then f is old differentiable at r0. • Stewart thm. 11.4.8, Leithold thm. 12.4.4
  • 13. If partials of f exist near r0 and are continuous at r0 then f is new differentiable at r0. f ( x, y ) − f ( x0 , y ) ∂f f ( x, y ) − f ( x 0 , y ) f ( x, y 0 ) − f ( x 0 , y 0 ) lim − − lim ( r0 ) = rlim r →r0 →r0 r →r0 x − x0 ∂x x − x0 x − x0 ( ) 678 6 74 6 74 6 74 4( 0 )8 4 ( ) 8 4( 0 ) 8 f ( x, y ) − f ( x 0 , y ) − f ( x , y 0 ) + f ( x 0 , y 0 ) = lim r →r0 x − x0 g x g x h x g ( x ) − g ( x0 ) −  h ( x ) − h ( x 0 )    = lim r →r0 x − x0 MVT h x
  • 14. If partials exist near r0 and are continuous at r0 then f is new differentiable at r0. f ( x, y ) − f ( x0 , y ) ∂f g ′ ( u ) ∆x − h′ ( v ) ∆x lim − ( r0 ) = rlim r →r0 →r0 x − x0 ∂x ∆x = lim g ′ ( u ) − h′ ( v )    r →r0 ∂f ∂f = lim ( u, y ) − lim ( v , y 0 ) r →r0 ∂x r →r0 ∂x ∂f ∂f = ( r0 ) − ( r0 ) ∂x ∂x =0
  • 15. Old differentiability ⇒ new differentiability f ( x, y ) − f ( x, y 0 ) ∂f lim − ( r0 ) r →r0 y − y0 ∂y f ( x, y ) − f ( x, y 0 ) − f ( x0 , y ) + f ( x0 , y 0 ) = lim r →r0 y − y0 f ( x, y ) − f ( x0 , y 0 ) − f ( x, y 0 ) − f ( x0 , y ) + 2f ( x0 , y 0 ) = lim r →r0 y − y0 f ( x, y ) − f ( x 0 , y 0 ) f ( x 0 , y 0 ) − f ( x, y 0 ) f ( x0 , y 0 ) − f ( x0 , y ) = lim + lim + lim r →r0 r →r0 r →r0 y − y0 y − y0 y − y0 1444 24444 4 3 =− ∂f ∂y f ( x, y ) − f ( x 0 , y 0 ) f ( x 0 , y 0 ) − f ( x, y 0 ) x − x0 ∂f = lim + lim lim − ( r0 ) r →r0 r →r0 r →r0 y − y y − y0 x − x0 ∂y 0 1444 24444 4 3 =− ∂f ∂x
  • 16. Old differentiability ⇒ new differentiability f ( x, y ) − f ( x0 , y 0 ) ∂f x − x0 ∂f = lim − − ( r0 ) rlim ( r0 ) r →r0 →r0 y − y y − y0 ∂x ∂y 1 3 2 1 24 0 4 3 h sinθ =b / a
  • 17. Old differentiability ⇒ new differentiability f ( x, y ) − f ( x0 , y 0 ) b ∂f ∂f = lim − ( r0 ) − ( r0 ) r →r0 h sinθ a ∂x ∂y
  • 18. Old differentiability ⇒ new differentiability = f ( x0 + bh, y 0 + ah ) − f ( x0 , y 0 ) b ∂f 1 ∂f lim − r0 ) − ( ( r0 ) h→0 sinθ 1444444 h ∂y 2444444 3 a ∂x Duf u = ( b, a )
  • 19. Old differentiability ⇒ new differentiability 1 b ∂f ∂f = Duf ( r0 ) − ( r0 ) − ( r0 ) a a ∂x ∂y u = ( b, a )
  • 20. Thm: If f is old differentiable at r0 then Duf(r0) exists and: Duf ( r0 ) ∂f ∂f = ( r0 ) b + ( r0 ) a ∂x ∂y = ∇f ( r0 ) ×u • Stewart thm. 11.6.3, Leithold thm. 12.6.2 • u = (b, a)
  • 21. Old differentiability ⇒ new differentiability f ( x, y ) − f ( x, y 0 ) ∂f lim − ( r0 ) r →r0 y − y0 ∂y  b ∂f 1  ∂f ∂f ∂f = b ( r0 ) + a ( r0 )  − ( r0 ) − ( r0 ) a  ∂x ∂y ∂y  a ∂x = 0.
  • 22. Conclusion • Old differentiability ⇒ new differentiability ⇒ chain rule.
  • 23. Question: • Old differentiability ⇔ new differentiability?
  • 24. References • Stewart, Essential Calculus (Thompson, 2007) • Leithold, The Calculus 7th ed. (Harper, 1996)