SlideShare a Scribd company logo
CPqD Proprietary & Confidential – All rights reserved
V International Workshop on Trends in Optical Technologies
18/05/2015
Flexible Optical Transmission
Jacklyn D. Reis, PhD
CPqD, Division of Optical Technologies, Campinas – SP, Brazil
CPqD Proprietary & Confidential – All rights reserved
Team
- Optical Transmission -
Andrea Chiuchiarelli
Sandro Marcelo Rossi
Gabriel Suzigan
Daniel Moutinho Pataca
- Optical Subsystems -
João Januário
Heitor Carvalho
Fábio Donati Simões
- Digital Signal Processing -
Eduardo de Souza Rosa
Stenio Magalhães Ranzini
Valery Nobl Rozental
Victor Emanuel Saraiva Parahyba
Glauco César C. Pereira Simões
- Channel Coding -
André Nunes
Alexandre Felipe
José Hélio Jr.
Supporters and Partners
CPqD Proprietary & Confidential – All rights reserved
Division of Optical Technologies at CPqD
Optical Technologies
Transmission
and Networks
Product
Technologies
Microelectronics
Integrated
Photonics
Transmission
DSP
DCI
Amplification
ROADM
Networks
Hardware
Software
Firmware
Tests
Mechanics
Requirements
Front End
Back End
Design
Alignment
Packaging
Systems
S
Y
S
T
E
M
S
D
E
V
I
C
E
STransport
CPqD Proprietary & Confidential – All rights reserved
Optical Systems
 Access
 Next 5 years  1 Gb/s per user at ~60 km
 Interconnection (DCI)
 Next 2 years  100 Gb/s per lane, up to 80 km
 Next 5 years  400 Gb/s multi-lane, ~80 km
 Metropolitan
 Next 5 years  Flexible 100/200/250/400/500 Gb/s WDM (50/100 GHz / Flexi 75 GHz*), ~600 km
 Long-Haul:
 Next 5 years  Flexible 100/200/250/400/500 Gb/s WDM (100 GHz / Flexi 75 GHz*), ~2000 km
OIF
IEEE
OIF/ITU
CPqD Proprietary & Confidential – All rights reserved
Optical Subsystems
 Optical Amplification (EDFA, Raman, Hybrid)
 Optical Routing (ROADM)
 Monitoring/Control (OTDR, Power)
CPqD Proprietary & Confidential – All rights reserved
Line Interfaces
 Data Transmission
 Digital Signal Processing (DSP)
 Channel Coding (FEC)
 Photonic Devices / ASIC Design
CPqD Proprietary & Confidential – All rights reserved
Outline
• Long-Haul
• 100G/200G TOSA
• 400G Flex
• Metro
• 400G unrepeated
• DCI
• 100G-PAM4
CPqD Proprietary & Confidential – All rights reserved
Long-Haul
100G/200G
Integrated Devices for Coherent Modules (ACO/DCO)
J.D. Reis, A. Chiuchiarelli, S. Rossi, G.J. Suzigan, S.M. Ranzini, V.N. Rozental, E.S. Rosa, V.R. Cruz, L.H. Carvalho (BrP), J.C. Oliveira (BrP),
and J. Oliveira “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
CPqD Proprietary & Confidential – All rights reserved
Line Interfaces: Coherent
System application: Metro/LH/DCI
• Performance↑↑↑, Volume↑↑, Power↓↓, Price↓
CFP  CFP2  CFP4  CFP8
• Digital coherent modules to analog coherent modules
Faceplate density maximized when high power electronics are removed from optical modules
• OIF-CFP2-ACO-01.0
• New projects motivated by the OIF-Tech-Options-400G-01.0
• Flex Coherent DWDM Transmission (100/200/400G/λ), High-bandwidth PMQ/ICR (400G/λ), CFP8-ACO (new, 400G/λ)
• Integrated photonic devices are key to minimize the module size and power consumption
CPqD Proprietary & Confidential – All rights reserved
Experimental Setup
Transmitter
• 28-nm ASIC (CL20010) for 32 GBd QPSK/16QAM (100G/200G) (SD-FEC: BER=2.4x10-2)
• Test channel at 193.4 THz
• TOSA (~23 GHz) by BrPHOTONICS or a LiNbO3 DP-IQM (~30 GHz)
• Nyquist WDM (0.1 roll-off): 20x 32 GBd spaced by 37.5 GHz (Tunable ECL~100 kHz)
• Spectral Efficiency: 2.66 (100G) and 5.33 (200G) bit/s/Hz
J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
CPqD Proprietary & Confidential – All rights reserved
Experimental Setup
Channel
• Recirculating loop with 5x50-km fiber (Corning Vascade EX2000: 112 μm2, 0.16 dB/km, 20 ps/nm/km)
• EDFA (6dB-noise figure) only
Receiver
• Intradyne Coherent Receiver: 40-GHz BPD + 80-GSa/s@35 GHz
• Off-line DSP: resampling, CD comp., DD-LMS, clock/timing recovery, carrier estimation, error counting
J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
CPqD Proprietary & Confidential – All rights reserved
Experimental Results
Back-to-back: 100G
• No observable penalty
between TOSA and
LiNbO3 in 100G-QPSK
• 1 dB penalty between
single channel to WDM
J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
CPqD Proprietary & Confidential – All rights reserved
Experimental Results
Back-to-Back: 200G
• ~1 dB penalty between the
TOSA and LiNbO3
• SD-FEC
• TOSA: OSNR~19.5 dB
• LiNbO3: OSNR~18.5 dB
• BER floor in WDM
• TOSA: ~6x10-4
• LiNbO3: ~2x10-4
• Carrier board
• EO~11 GHz
J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
CPqD Proprietary & Confidential – All rights reserved
Experimental Results
Transmission results at the optimal launch power
• TFPS-based ≈ LiNbO3
• Single-channel: ~7500 km
• Nyquist WDM: ~7000 km
J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
CPqD Proprietary & Confidential – All rights reserved
Experimental Results
Transmission results at the optimal launch
power
• LiNbO3-based: ~1900 km
• TPFS-based TOSA: ~1600 km
J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
CPqD Proprietary & Confidential – All rights reserved
Long-Haul 400G
400G Single-Carrier using Spectrally-Sliced Receiver
S. Rossi, A. Souza, A. Chiuchiarelli, V. N. Rozental, E.S. Rosa, T. Lima, T. Piven, R. Vincentini (Keysight), J. Oliveira, and J.D. Reis,“20 x 448
Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016
CPqD Proprietary & Confidential – All rights reserved
• Several receiver optical front-ends with narrower bandwidth  balanced detectors and
TIAs
• Several ADCs with slower sampling rate, lower bandwidth, but enhanced ENOB;
• N. K. Fontaine, et al. , Nature Photon., Vol. 4, No. 4, pp.248-254, 2010.
• Efficient DSPs based on MIMO processing for signal merging and polarization
demultiplexing
• J. Diniz et al., “Digital Signal Processing for Spectrally-Sliced Coherent Optical Receivers” Proc. ECOC, Paper
P3.18, 2015.
Spectrally-Sliced Receiver
PolMux
90°
Hybrid
PolMux
90°
Hybrid
PolMux
90°
Hybrid
A
W
G
Optical
Comb
Generator
Signal
f-Δf f f+Δf
f
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
D
S
P
A
W
G
CD
Comp.
CD
Comp.
CD
Comp.
CD
Comp.
CD
Estim.
Delay
Delay
Upsam-
pling
Anti-
Aliasing
Anti-
Aliasing
Anti-
Aliasing
Anti-
Aliasing
Upsam-
pling
Upsam-
pling
Upsam-
pling
Freq.
Shift
Freq.
Shift
Freq.
Shift
Freq.
Shift
Carrier
Recov.
Carrier
Recov.
Clock
Rec.
Clock
Rec.
HY1X
HX2X
HY2X
HX1Y
HX1X
HY1Y
HX2Y
HY2Y
Σ
Σ
Optical
Front-
End +
ADC
Optical
Front-
End +
ADC
f-Δf/2
Output
Pol. X
Output
Pol. Y
f
f
f+Δf/2
0
0 0
0 0
0 -Δf/2
Δf/2
4×2
Complex
MIMO
Equalizer
0
10-1
10-2
10-3
10-4
10-5
12 14 16 18 20 22 24
Theoretical
Experimental B2B
FEC limit, BER = 2×10-2
FEC limit, BER = 4.5×10-3
2.5 dB
2.2 dB
≈17.5 dB
OSNR @ 0.1nm res. (dB)
BER
Back-to-Back BER versus OSNR
CPqD Proprietary & Confidential – All rights reserved
Experimental Setup
Transmitter
• 20x 100-kHz C-band tunable
spaced by 75 GHz
• Keysight M8195A
• 64 GSa/s with 20 GHz (8-bit
resolution)
• 0.1-roll-off RC at 56 GBd
• 1.14 Sample per symbol
• 56-GBd Nyquist DP-16QAM
• 448 Gb/s per λ
• Fiber Transmission
• 5x 50 km recirculating
loop
• Corning Vascade EX2000
• 112 μm2, 0.16
dB/km, 20.5
ps/nm/km
• EDFA only
• 6-dB NF
• Receiver
• Wideband Rx
• 100-kHz ECL Local
Oscillator
• 40 GHz BPD + 80-
GSa/s@35GHz scopes
• Spectrally-sliced Rx
• 14-GHz Clock + MZM +POF
Local Oscillator
• 2x 20-GHz ICRs + 2x 40-
GSa/s@16GHz scopes
S. Rossi et al “20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016
CPqD Proprietary & Confidential – All rights reserved
4x2 MIMO Equalization
Efficient DSP for Spectrally-Sliced Receiver: 40+40 GSa/s
• CD Estimation and Compensation
• Resampling from 40 GSa/s to 112 GSa/s (2 SpS)
• Low-pass filtering at Rs/2
• Frequency offset correction + time delays for CD slope
• Complex 4x2 MIMO (40 taps)
• Carrier recovery (frequency/phase)
• 4x2 Post MIMO at symbol rate (25 taps)
S. Rossi et al “20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016
CPqD Proprietary & Confidential – All rights reserved
Experimental Results
HD-FEC  Q2≈8.7 dB
SD-FEC  Q2≈5.9 dB
• Wideband
• 3 dB penalty
• Spectrally-sliced
• 4 dB penalty
No penalty between
single channel and
flexible 75 GHz
WDM
OSNR (dB)
20 25 30 35 40
Q2
Factor(dB)
3
4
5
6
7
8
9
10
Theoretical
Spectrally-Sliced Single Channel
Spectrally-Sliced WDM
Wideband Single Channel
Wideband WDM
BER = 3.8x10-3
BER = 2.4x10-2
OSNR (dB)
20 25 30 35 40
Q2
Factor(dB)
3
4
5
6
7
8
9
10
Theoretical
Spectrally-Sliced Single Channel
Spectrally-Sliced WDM
Wideband Single Channel
Wideband WDM
BER = 3.8x10-3
BER = 2.4x10-2
OSNR (dB)
20 25 30 35 40
Q2
Factor(dB)
3
4
5
6
7
8
9
10
Theoretical
Spectrally-Sliced Single Channel
Spectrally-Sliced WDM
Wideband Single Channel
Wideband WDM
BER = 3.8x10-3
BER = 2.4x10-2
S. Rossi et al “20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016
CPqD Proprietary & Confidential – All rights reserved
Experimental Results
Q2 versus Distance
Optimal launch power
• 1 dBm in single channel
• Spectrally-sliced
• ~1850 km
• Wideband
• ~2150 km
• 0 dBm in WDM
• Spectrally-sliced
• ~1600 km
• Wideband
• ~1800 km
Transmission Distance (km)
500 1000 1500 2000 2500 3000
Q2
Factor(dB)
4.5
5
5.5
6
6.5
7
7.5
8 Spectrally-Sliced Single Channel
Spectrally-Sliced WDM
Wideband Single Channel
Wideband WDM
BER = 2.4x10-2
Transmission Distance (km)
500 1000 1500 2000 2500 3000
Q2
Factor(dB)
4.5
5
5.5
6
6.5
7
7.5
8 Spectrally-Sliced Single Channel
Spectrally-Sliced WDM
Wideband Single Channel
Wideband WDM
BER = 2.4x10-2
Transmission Distance (km)
500 1000 1500 2000 2500 3000
Q2
Factor(dB)
4.5
5
5.5
6
6.5
7
7.5
8 Spectrally-Sliced Single Channel
Spectrally-Sliced WDM
Wideband Single Channel
Wideband WDM
BER = 2.4x10-2
Transmission Distance (km)
500 1000 1500 2000 2500 3000
Q2
Factor(dB)
4.5
5
5.5
6
6.5
7
7.5
8 Spectrally-Sliced Single Channel
Spectrally-Sliced WDM
Wideband Single Channel
Wideband WDM
BER = 2.4x10-2
S. Rossi et al “20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016
CPqD Proprietary & Confidential – All rights reserved
• Efficient DSPs based on MIMO processing for signal merging and polarization
demultiplexing  ECOC 2015
• 20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced
Receivers  OFC 2016
• Time Recovery and NL compensation schemes when using MIMO?  ECOC 2016
• Time Recovery for Spectrally-Sliced Optical Receivers
• Digital Nonlinear Compensation for Spectrally-Sliced Optical Receivers with MIMO Signal Reconstruction
Spectrally-Sliced Receiver
CPqD Proprietary & Confidential – All rights reserved
Unrepeated 400G
40x100G-PAM4 at 140 km
J.C.S.S. Januário, S.M. Rossi, S.M. Ranzini, V.E. Parahyba, V.N. Rozental, A.L.N. Souza, A.C. Bordonalli, J.R.F. Oliveira, J.D. Reis, “Unrepeatered
Transmission of 10400G over 370 km via Amplification Map Optimization”, PTL 2016.
CPqD Proprietary & Confidential – All rights reserved
Experimental Setup
• 10x 400G (2x200G-16QAM) at 75 GHz over 370 km
• Tx  32 GBd – 16QAM per lambda
• Rx  2x32 GBd – 16QAM super receiver
• Amplification optimized maps
• EDFA / Raman / ROPA
• Transmission link
• Corning Vascade EX2000/EX3000
• 110/140 um2, ~0.169 dB/km, ~21 ps/nm/km
• Corning SMF28-LL
• 80 um2, ~0.188 dB/km, ~17 ps/nm/km
J.C.S.S. Januário et al “Unrepeatered Transmission of 10400G over 370 km via Amplification Map Optimization”, PTL 2016.
CPqD Proprietary & Confidential – All rights reserved
Data Center
Interconnect
40x100G-PAM4 at 140 km
A. Chiuchiarelli, S.M. Rossi, V.N. Rozental, G.C.C.P. Simões, L.H.H. Carvalho, J.C.R.F. Oliveira, J.R.F. Oliveira, J.D. Reis, “50-GHz+ Thin-Film Polymer on
Silicon Modulator for PAM4 100G-per-wavelength Long-Reach Data Center Interconnects,” sub. ECOC 2016.
CPqD Proprietary & Confidential – All rights reserved
Line Interfaces: IMDD
System application: Metro/DCI
• Performance↑, Volume↑↑↑, Power↓↓↓, Price↓↓↓
• CFPx  CWDM4  QSFP28
• Servers  TOR/LEAF
• 10G25G50G100G, 1 m – 20 m
• TOR/LEAF  Spine
• 40G100G200G/400G, 10 m – 2 km
• Spine  Core
• 40G100G200G/400G, 2 km – metro distances
Servers
TOR/LEAF
Spine
Core
CPqD Proprietary & Confidential – All rights reserved
Experimental Setup
• 56-GBd PAM4 using Thin-Film Polymer on Silicon (by
BrP) with 50-GHz+ EO bandwidth
• WDM with 40 channels at 100 GHz
• Unrepeated transmission over 140 km with DCF
56 Gb/s
PPG
14 GHz
PRBS 6 dB
64 GSa/s
DAC
MZM
LiNbO3
MZM
1544.92 nm
Thin-Film
Polymer on Si
Delay
RF
PRBS
RF
Driver
λ1
λ2
λ39
100GHz
160 GSa/s
Scope
Off-line
DSP
DCF
SSMF
70-GHz
Photodiode
65 GHz
VOA
40-GHz
RF Combiner
Drivers
56-GBd PAM
Transmitter
WDM 40×112 Gb/s
56-GBd PAM
Receiver
TDCM
100GHz
70%30%
Frequency [GHz]
10 20 30 40 50 60
|S21
|2
[dB]
-15
-12
-9
-6
-3
0
TFPS
LiNbO3
X: 50.47
Y: -3.03
X: 28.66
Y: -3.058
TFPS-MZM
Diagram
Package
Die
A. Chiuchiarelli et al “50-GHz+ Thin-Film Polymer on Silicon Modulator for PAM4 100G-per-wavelength Long-Reach Data Center Interconnects” sub. ECOC
2016.
CPqD Proprietary & Confidential – All rights reserved
Final Remarks
• Digital Signal Processing
• Multiplexing Techniques
• Optical Transmission Technologies
• What is next?
• More Capacity?
• More Flexibility?
• Magical devices
Obrigado!
(Thank you)
jacklyn@cpqd.com.br
www.cpqd.com.br

More Related Content

PDF
Cognitive Technique for Software Defined Optical Network (SDON)
PDF
Integrated Photonics Advances in Optical Transmission: An Industry View
PDF
High Capacity Optical Access Networks
PDF
OPTICAL COMMUNICATIONS APPLICATIONS
PDF
Troubleshooting Coherent Optical Communication Systems
PDF
Embedded Electronics for Telecom DSP
PDF
Towards Terabit per Second Optical Networking
PDF
Photonics21 – Next-Generation Optical Internet Access: Roadmap for Broadband ...
Cognitive Technique for Software Defined Optical Network (SDON)
Integrated Photonics Advances in Optical Transmission: An Industry View
High Capacity Optical Access Networks
OPTICAL COMMUNICATIONS APPLICATIONS
Troubleshooting Coherent Optical Communication Systems
Embedded Electronics for Telecom DSP
Towards Terabit per Second Optical Networking
Photonics21 – Next-Generation Optical Internet Access: Roadmap for Broadband ...

What's hot (20)

PDF
High Performance Network Infrastructure for Future Internet - Julio Oliveira
PPTX
Terabit/s Superchannels: needs, challenges and beyond
PPT
IV WTON 2015 - Strategies for Future Flexible Optical Transceivers
PDF
OIF on 400G for Next Gen Optical Networks Conference
PDF
2015 10 07 - efficient optical transport layer for high-capacity optical netw...
PDF
High-Capacity Optical Access Networks
PDF
Next-Generation Optical Access Architecture
PDF
Next-Generation High-Capacity Submarine Transmission
PDF
Cloud RAN fronthaul
PDF
Trends and evolution of optical networks and technologies
PDF
NGFI (Next Generation Fronthaul Interface) native RoE (Radio over Ethernet)
 
PDF
100G and Beyond DC Interconnect: Present and Future
PDF
Fujitsu 100G Overview
PDF
Plasma Antennas Smart Antenna Technology Overview
PDF
Technologies for future mobile transport networks
 
PDF
Next Wave of Data Centers & Interconnects
PDF
Setting off the 5G Advanced evolution with 3GPP Release 18
PPT
Fujitsu Iccad Presentation--Enable 100G
PDF
PLNOG 8: Jason Kleeh - 100 Gbe and Beyond
PDF
2015 02 04 international optical transport developments wdm africa 2015
High Performance Network Infrastructure for Future Internet - Julio Oliveira
Terabit/s Superchannels: needs, challenges and beyond
IV WTON 2015 - Strategies for Future Flexible Optical Transceivers
OIF on 400G for Next Gen Optical Networks Conference
2015 10 07 - efficient optical transport layer for high-capacity optical netw...
High-Capacity Optical Access Networks
Next-Generation Optical Access Architecture
Next-Generation High-Capacity Submarine Transmission
Cloud RAN fronthaul
Trends and evolution of optical networks and technologies
NGFI (Next Generation Fronthaul Interface) native RoE (Radio over Ethernet)
 
100G and Beyond DC Interconnect: Present and Future
Fujitsu 100G Overview
Plasma Antennas Smart Antenna Technology Overview
Technologies for future mobile transport networks
 
Next Wave of Data Centers & Interconnects
Setting off the 5G Advanced evolution with 3GPP Release 18
Fujitsu Iccad Presentation--Enable 100G
PLNOG 8: Jason Kleeh - 100 Gbe and Beyond
2015 02 04 international optical transport developments wdm africa 2015
Ad

Viewers also liked (10)

PPTX
Presentación Jaime Solorzano
PPT
Optical transmission technique
PDF
2014 11 13-raman-amplification-for-wdm-transmission-acp-2014-a_th4_e-6-invite...
PDF
The Dawn of Industry 4.0
PDF
Brazilian Semiconductor Scenario and Opportuni3es
PPT
ECOC Panel on OIF CEI 56G
PDF
Control Plane for High Capacity Networks Public
PDF
Introducing the ADVA MicroMux™
PPTX
application of fibre optics in communication
PPTX
Optical fiber communiction system
Presentación Jaime Solorzano
Optical transmission technique
2014 11 13-raman-amplification-for-wdm-transmission-acp-2014-a_th4_e-6-invite...
The Dawn of Industry 4.0
Brazilian Semiconductor Scenario and Opportuni3es
ECOC Panel on OIF CEI 56G
Control Plane for High Capacity Networks Public
Introducing the ADVA MicroMux™
application of fibre optics in communication
Optical fiber communiction system
Ad

Similar to Flexible Optical Transmission (20)

PDF
OFC 2019 - 100G DWDM DCI/Metro Network Solutions - Debating alternatives to ...
PDF
CPqD at Optical Communication Ecosystem - Last/Next 10 years and R&D&I opport...
PDF
Scte 2018 coherent acc app for ms os
PPT
A System's View of Metro and Regional Optical Networks
PDF
Metro High-Speed Product Line Manager
DOC
Resume201411
PDF
The coherent optical edge
PPTX
Cpqd's SDN activities in optical dwdm terabit networks
PPTX
Cisco DWDM Chromatic Dispertion Calculation in CTP\XLS
PDF
Real-Time 200Gbit/s PAM4 Transmission Over 80km SSMF Using Quantum-Dot Laser ...
PPTX
Design and implementation of sdr based qpsk transceiver using fpga
PDF
簡報 2018 (STM) Silicon Photonics - Industrial Reality and Future Evolutions.pdf
PPT
Candidate experience overview (2013)
PDF
PLNOG 8: Norbert Gulczyński - 100G w sieciach szkieletowych i miejskich
PDF
100G QSFP28 Optical Transceiver Data Sheet By JTOPTICS
PPTX
Optical Networking Trends & Evolution
PPTX
N-degree ROADM Architecture Comparison: Broadcast-and-Select vs Route-and-Select
PDF
Link Adapatation in Mobile Satellite Links: Field Trial Results using SDR and...
PPTX
MCube_slides_20min.pptx
PDF
OFC 2018 - ON2020: future trends in optical networking: a cloud service provi...
OFC 2019 - 100G DWDM DCI/Metro Network Solutions - Debating alternatives to ...
CPqD at Optical Communication Ecosystem - Last/Next 10 years and R&D&I opport...
Scte 2018 coherent acc app for ms os
A System's View of Metro and Regional Optical Networks
Metro High-Speed Product Line Manager
Resume201411
The coherent optical edge
Cpqd's SDN activities in optical dwdm terabit networks
Cisco DWDM Chromatic Dispertion Calculation in CTP\XLS
Real-Time 200Gbit/s PAM4 Transmission Over 80km SSMF Using Quantum-Dot Laser ...
Design and implementation of sdr based qpsk transceiver using fpga
簡報 2018 (STM) Silicon Photonics - Industrial Reality and Future Evolutions.pdf
Candidate experience overview (2013)
PLNOG 8: Norbert Gulczyński - 100G w sieciach szkieletowych i miejskich
100G QSFP28 Optical Transceiver Data Sheet By JTOPTICS
Optical Networking Trends & Evolution
N-degree ROADM Architecture Comparison: Broadcast-and-Select vs Route-and-Select
Link Adapatation in Mobile Satellite Links: Field Trial Results using SDR and...
MCube_slides_20min.pptx
OFC 2018 - ON2020: future trends in optical networking: a cloud service provi...

More from CPqD (18)

PDF
Novo modelo de apoio à inovação
PDF
BNDES: Instrumentos de Apoio à Inovação
PDF
Câmara de Gestão M2M/IoT
PDF
Mesa Redonda: Fomento Governamental para o Setor
PDF
Creating Business Value By Enabling the Internet of Things
PDF
RFID and NFC Providing the last yards for IoT
PDF
Apresentação Paulo Curado (CPqD) - RFID Journal Live! Brasil 2015
PDF
Fiber Technology Trends for Next Generation Networks
PPTX
Emerging Trends and Applications for Cost Effective ROADMs
PPTX
Optics for 100G and beyond
PPTX
Optical Signal Property Synthesis at Runtime – An new approach for coherent t...
PPTX
The ACTION Project: Applications Coordinate with Transport, IP and Optical Ne...
PPT
Development through Innovation
PPTX
Ministry of Communication - Research & Development in Telecommunications
PPTX
Welcome - Alberto Paradisi
PDF
Semiconductor Optical Amplifiers: Linear Amplification, Space Switches, and ...
PPTX
Accelerating the Design of Optical Networks using Surrogate Models
PPTX
Amplification, ROADM and Optical Networking activities at CPqD
Novo modelo de apoio à inovação
BNDES: Instrumentos de Apoio à Inovação
Câmara de Gestão M2M/IoT
Mesa Redonda: Fomento Governamental para o Setor
Creating Business Value By Enabling the Internet of Things
RFID and NFC Providing the last yards for IoT
Apresentação Paulo Curado (CPqD) - RFID Journal Live! Brasil 2015
Fiber Technology Trends for Next Generation Networks
Emerging Trends and Applications for Cost Effective ROADMs
Optics for 100G and beyond
Optical Signal Property Synthesis at Runtime – An new approach for coherent t...
The ACTION Project: Applications Coordinate with Transport, IP and Optical Ne...
Development through Innovation
Ministry of Communication - Research & Development in Telecommunications
Welcome - Alberto Paradisi
Semiconductor Optical Amplifiers: Linear Amplification, Space Switches, and ...
Accelerating the Design of Optical Networks using Surrogate Models
Amplification, ROADM and Optical Networking activities at CPqD

Recently uploaded (20)

PDF
Empathic Computing: Creating Shared Understanding
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
KodekX | Application Modernization Development
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
cuic standard and advanced reporting.pdf
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PPTX
Big Data Technologies - Introduction.pptx
PDF
Encapsulation theory and applications.pdf
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPT
Teaching material agriculture food technology
Empathic Computing: Creating Shared Understanding
20250228 LYD VKU AI Blended-Learning.pptx
KodekX | Application Modernization Development
Encapsulation_ Review paper, used for researhc scholars
The Rise and Fall of 3GPP – Time for a Sabbatical?
Dropbox Q2 2025 Financial Results & Investor Presentation
MYSQL Presentation for SQL database connectivity
Diabetes mellitus diagnosis method based random forest with bat algorithm
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
cuic standard and advanced reporting.pdf
Building Integrated photovoltaic BIPV_UPV.pdf
CIFDAQ's Market Insight: SEC Turns Pro Crypto
Big Data Technologies - Introduction.pptx
Encapsulation theory and applications.pdf
Review of recent advances in non-invasive hemoglobin estimation
Unlocking AI with Model Context Protocol (MCP)
Mobile App Security Testing_ A Comprehensive Guide.pdf
Teaching material agriculture food technology

Flexible Optical Transmission

  • 1. CPqD Proprietary & Confidential – All rights reserved V International Workshop on Trends in Optical Technologies 18/05/2015 Flexible Optical Transmission Jacklyn D. Reis, PhD CPqD, Division of Optical Technologies, Campinas – SP, Brazil
  • 2. CPqD Proprietary & Confidential – All rights reserved Team - Optical Transmission - Andrea Chiuchiarelli Sandro Marcelo Rossi Gabriel Suzigan Daniel Moutinho Pataca - Optical Subsystems - João Januário Heitor Carvalho Fábio Donati Simões - Digital Signal Processing - Eduardo de Souza Rosa Stenio Magalhães Ranzini Valery Nobl Rozental Victor Emanuel Saraiva Parahyba Glauco César C. Pereira Simões - Channel Coding - André Nunes Alexandre Felipe José Hélio Jr. Supporters and Partners
  • 3. CPqD Proprietary & Confidential – All rights reserved Division of Optical Technologies at CPqD Optical Technologies Transmission and Networks Product Technologies Microelectronics Integrated Photonics Transmission DSP DCI Amplification ROADM Networks Hardware Software Firmware Tests Mechanics Requirements Front End Back End Design Alignment Packaging Systems S Y S T E M S D E V I C E STransport
  • 4. CPqD Proprietary & Confidential – All rights reserved Optical Systems  Access  Next 5 years  1 Gb/s per user at ~60 km  Interconnection (DCI)  Next 2 years  100 Gb/s per lane, up to 80 km  Next 5 years  400 Gb/s multi-lane, ~80 km  Metropolitan  Next 5 years  Flexible 100/200/250/400/500 Gb/s WDM (50/100 GHz / Flexi 75 GHz*), ~600 km  Long-Haul:  Next 5 years  Flexible 100/200/250/400/500 Gb/s WDM (100 GHz / Flexi 75 GHz*), ~2000 km OIF IEEE OIF/ITU
  • 5. CPqD Proprietary & Confidential – All rights reserved Optical Subsystems  Optical Amplification (EDFA, Raman, Hybrid)  Optical Routing (ROADM)  Monitoring/Control (OTDR, Power)
  • 6. CPqD Proprietary & Confidential – All rights reserved Line Interfaces  Data Transmission  Digital Signal Processing (DSP)  Channel Coding (FEC)  Photonic Devices / ASIC Design
  • 7. CPqD Proprietary & Confidential – All rights reserved Outline • Long-Haul • 100G/200G TOSA • 400G Flex • Metro • 400G unrepeated • DCI • 100G-PAM4
  • 8. CPqD Proprietary & Confidential – All rights reserved Long-Haul 100G/200G Integrated Devices for Coherent Modules (ACO/DCO) J.D. Reis, A. Chiuchiarelli, S. Rossi, G.J. Suzigan, S.M. Ranzini, V.N. Rozental, E.S. Rosa, V.R. Cruz, L.H. Carvalho (BrP), J.C. Oliveira (BrP), and J. Oliveira “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
  • 9. CPqD Proprietary & Confidential – All rights reserved Line Interfaces: Coherent System application: Metro/LH/DCI • Performance↑↑↑, Volume↑↑, Power↓↓, Price↓ CFP  CFP2  CFP4  CFP8 • Digital coherent modules to analog coherent modules Faceplate density maximized when high power electronics are removed from optical modules • OIF-CFP2-ACO-01.0 • New projects motivated by the OIF-Tech-Options-400G-01.0 • Flex Coherent DWDM Transmission (100/200/400G/λ), High-bandwidth PMQ/ICR (400G/λ), CFP8-ACO (new, 400G/λ) • Integrated photonic devices are key to minimize the module size and power consumption
  • 10. CPqD Proprietary & Confidential – All rights reserved Experimental Setup Transmitter • 28-nm ASIC (CL20010) for 32 GBd QPSK/16QAM (100G/200G) (SD-FEC: BER=2.4x10-2) • Test channel at 193.4 THz • TOSA (~23 GHz) by BrPHOTONICS or a LiNbO3 DP-IQM (~30 GHz) • Nyquist WDM (0.1 roll-off): 20x 32 GBd spaced by 37.5 GHz (Tunable ECL~100 kHz) • Spectral Efficiency: 2.66 (100G) and 5.33 (200G) bit/s/Hz J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
  • 11. CPqD Proprietary & Confidential – All rights reserved Experimental Setup Channel • Recirculating loop with 5x50-km fiber (Corning Vascade EX2000: 112 μm2, 0.16 dB/km, 20 ps/nm/km) • EDFA (6dB-noise figure) only Receiver • Intradyne Coherent Receiver: 40-GHz BPD + 80-GSa/s@35 GHz • Off-line DSP: resampling, CD comp., DD-LMS, clock/timing recovery, carrier estimation, error counting J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
  • 12. CPqD Proprietary & Confidential – All rights reserved Experimental Results Back-to-back: 100G • No observable penalty between TOSA and LiNbO3 in 100G-QPSK • 1 dB penalty between single channel to WDM J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
  • 13. CPqD Proprietary & Confidential – All rights reserved Experimental Results Back-to-Back: 200G • ~1 dB penalty between the TOSA and LiNbO3 • SD-FEC • TOSA: OSNR~19.5 dB • LiNbO3: OSNR~18.5 dB • BER floor in WDM • TOSA: ~6x10-4 • LiNbO3: ~2x10-4 • Carrier board • EO~11 GHz J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
  • 14. CPqD Proprietary & Confidential – All rights reserved Experimental Results Transmission results at the optimal launch power • TFPS-based ≈ LiNbO3 • Single-channel: ~7500 km • Nyquist WDM: ~7000 km J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
  • 15. CPqD Proprietary & Confidential – All rights reserved Experimental Results Transmission results at the optimal launch power • LiNbO3-based: ~1900 km • TPFS-based TOSA: ~1600 km J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016
  • 16. CPqD Proprietary & Confidential – All rights reserved Long-Haul 400G 400G Single-Carrier using Spectrally-Sliced Receiver S. Rossi, A. Souza, A. Chiuchiarelli, V. N. Rozental, E.S. Rosa, T. Lima, T. Piven, R. Vincentini (Keysight), J. Oliveira, and J.D. Reis,“20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016
  • 17. CPqD Proprietary & Confidential – All rights reserved • Several receiver optical front-ends with narrower bandwidth  balanced detectors and TIAs • Several ADCs with slower sampling rate, lower bandwidth, but enhanced ENOB; • N. K. Fontaine, et al. , Nature Photon., Vol. 4, No. 4, pp.248-254, 2010. • Efficient DSPs based on MIMO processing for signal merging and polarization demultiplexing • J. Diniz et al., “Digital Signal Processing for Spectrally-Sliced Coherent Optical Receivers” Proc. ECOC, Paper P3.18, 2015. Spectrally-Sliced Receiver PolMux 90° Hybrid PolMux 90° Hybrid PolMux 90° Hybrid A W G Optical Comb Generator Signal f-Δf f f+Δf f ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC D S P A W G CD Comp. CD Comp. CD Comp. CD Comp. CD Estim. Delay Delay Upsam- pling Anti- Aliasing Anti- Aliasing Anti- Aliasing Anti- Aliasing Upsam- pling Upsam- pling Upsam- pling Freq. Shift Freq. Shift Freq. Shift Freq. Shift Carrier Recov. Carrier Recov. Clock Rec. Clock Rec. HY1X HX2X HY2X HX1Y HX1X HY1Y HX2Y HY2Y Σ Σ Optical Front- End + ADC Optical Front- End + ADC f-Δf/2 Output Pol. X Output Pol. Y f f f+Δf/2 0 0 0 0 0 0 -Δf/2 Δf/2 4×2 Complex MIMO Equalizer 0 10-1 10-2 10-3 10-4 10-5 12 14 16 18 20 22 24 Theoretical Experimental B2B FEC limit, BER = 2×10-2 FEC limit, BER = 4.5×10-3 2.5 dB 2.2 dB ≈17.5 dB OSNR @ 0.1nm res. (dB) BER Back-to-Back BER versus OSNR
  • 18. CPqD Proprietary & Confidential – All rights reserved Experimental Setup Transmitter • 20x 100-kHz C-band tunable spaced by 75 GHz • Keysight M8195A • 64 GSa/s with 20 GHz (8-bit resolution) • 0.1-roll-off RC at 56 GBd • 1.14 Sample per symbol • 56-GBd Nyquist DP-16QAM • 448 Gb/s per λ • Fiber Transmission • 5x 50 km recirculating loop • Corning Vascade EX2000 • 112 μm2, 0.16 dB/km, 20.5 ps/nm/km • EDFA only • 6-dB NF • Receiver • Wideband Rx • 100-kHz ECL Local Oscillator • 40 GHz BPD + 80- GSa/s@35GHz scopes • Spectrally-sliced Rx • 14-GHz Clock + MZM +POF Local Oscillator • 2x 20-GHz ICRs + 2x 40- GSa/s@16GHz scopes S. Rossi et al “20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016
  • 19. CPqD Proprietary & Confidential – All rights reserved 4x2 MIMO Equalization Efficient DSP for Spectrally-Sliced Receiver: 40+40 GSa/s • CD Estimation and Compensation • Resampling from 40 GSa/s to 112 GSa/s (2 SpS) • Low-pass filtering at Rs/2 • Frequency offset correction + time delays for CD slope • Complex 4x2 MIMO (40 taps) • Carrier recovery (frequency/phase) • 4x2 Post MIMO at symbol rate (25 taps) S. Rossi et al “20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016
  • 20. CPqD Proprietary & Confidential – All rights reserved Experimental Results HD-FEC  Q2≈8.7 dB SD-FEC  Q2≈5.9 dB • Wideband • 3 dB penalty • Spectrally-sliced • 4 dB penalty No penalty between single channel and flexible 75 GHz WDM OSNR (dB) 20 25 30 35 40 Q2 Factor(dB) 3 4 5 6 7 8 9 10 Theoretical Spectrally-Sliced Single Channel Spectrally-Sliced WDM Wideband Single Channel Wideband WDM BER = 3.8x10-3 BER = 2.4x10-2 OSNR (dB) 20 25 30 35 40 Q2 Factor(dB) 3 4 5 6 7 8 9 10 Theoretical Spectrally-Sliced Single Channel Spectrally-Sliced WDM Wideband Single Channel Wideband WDM BER = 3.8x10-3 BER = 2.4x10-2 OSNR (dB) 20 25 30 35 40 Q2 Factor(dB) 3 4 5 6 7 8 9 10 Theoretical Spectrally-Sliced Single Channel Spectrally-Sliced WDM Wideband Single Channel Wideband WDM BER = 3.8x10-3 BER = 2.4x10-2 S. Rossi et al “20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016
  • 21. CPqD Proprietary & Confidential – All rights reserved Experimental Results Q2 versus Distance Optimal launch power • 1 dBm in single channel • Spectrally-sliced • ~1850 km • Wideband • ~2150 km • 0 dBm in WDM • Spectrally-sliced • ~1600 km • Wideband • ~1800 km Transmission Distance (km) 500 1000 1500 2000 2500 3000 Q2 Factor(dB) 4.5 5 5.5 6 6.5 7 7.5 8 Spectrally-Sliced Single Channel Spectrally-Sliced WDM Wideband Single Channel Wideband WDM BER = 2.4x10-2 Transmission Distance (km) 500 1000 1500 2000 2500 3000 Q2 Factor(dB) 4.5 5 5.5 6 6.5 7 7.5 8 Spectrally-Sliced Single Channel Spectrally-Sliced WDM Wideband Single Channel Wideband WDM BER = 2.4x10-2 Transmission Distance (km) 500 1000 1500 2000 2500 3000 Q2 Factor(dB) 4.5 5 5.5 6 6.5 7 7.5 8 Spectrally-Sliced Single Channel Spectrally-Sliced WDM Wideband Single Channel Wideband WDM BER = 2.4x10-2 Transmission Distance (km) 500 1000 1500 2000 2500 3000 Q2 Factor(dB) 4.5 5 5.5 6 6.5 7 7.5 8 Spectrally-Sliced Single Channel Spectrally-Sliced WDM Wideband Single Channel Wideband WDM BER = 2.4x10-2 S. Rossi et al “20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016
  • 22. CPqD Proprietary & Confidential – All rights reserved • Efficient DSPs based on MIMO processing for signal merging and polarization demultiplexing  ECOC 2015 • 20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers  OFC 2016 • Time Recovery and NL compensation schemes when using MIMO?  ECOC 2016 • Time Recovery for Spectrally-Sliced Optical Receivers • Digital Nonlinear Compensation for Spectrally-Sliced Optical Receivers with MIMO Signal Reconstruction Spectrally-Sliced Receiver
  • 23. CPqD Proprietary & Confidential – All rights reserved Unrepeated 400G 40x100G-PAM4 at 140 km J.C.S.S. Januário, S.M. Rossi, S.M. Ranzini, V.E. Parahyba, V.N. Rozental, A.L.N. Souza, A.C. Bordonalli, J.R.F. Oliveira, J.D. Reis, “Unrepeatered Transmission of 10400G over 370 km via Amplification Map Optimization”, PTL 2016.
  • 24. CPqD Proprietary & Confidential – All rights reserved Experimental Setup • 10x 400G (2x200G-16QAM) at 75 GHz over 370 km • Tx  32 GBd – 16QAM per lambda • Rx  2x32 GBd – 16QAM super receiver • Amplification optimized maps • EDFA / Raman / ROPA • Transmission link • Corning Vascade EX2000/EX3000 • 110/140 um2, ~0.169 dB/km, ~21 ps/nm/km • Corning SMF28-LL • 80 um2, ~0.188 dB/km, ~17 ps/nm/km J.C.S.S. Januário et al “Unrepeatered Transmission of 10400G over 370 km via Amplification Map Optimization”, PTL 2016.
  • 25. CPqD Proprietary & Confidential – All rights reserved Data Center Interconnect 40x100G-PAM4 at 140 km A. Chiuchiarelli, S.M. Rossi, V.N. Rozental, G.C.C.P. Simões, L.H.H. Carvalho, J.C.R.F. Oliveira, J.R.F. Oliveira, J.D. Reis, “50-GHz+ Thin-Film Polymer on Silicon Modulator for PAM4 100G-per-wavelength Long-Reach Data Center Interconnects,” sub. ECOC 2016.
  • 26. CPqD Proprietary & Confidential – All rights reserved Line Interfaces: IMDD System application: Metro/DCI • Performance↑, Volume↑↑↑, Power↓↓↓, Price↓↓↓ • CFPx  CWDM4  QSFP28 • Servers  TOR/LEAF • 10G25G50G100G, 1 m – 20 m • TOR/LEAF  Spine • 40G100G200G/400G, 10 m – 2 km • Spine  Core • 40G100G200G/400G, 2 km – metro distances Servers TOR/LEAF Spine Core
  • 27. CPqD Proprietary & Confidential – All rights reserved Experimental Setup • 56-GBd PAM4 using Thin-Film Polymer on Silicon (by BrP) with 50-GHz+ EO bandwidth • WDM with 40 channels at 100 GHz • Unrepeated transmission over 140 km with DCF 56 Gb/s PPG 14 GHz PRBS 6 dB 64 GSa/s DAC MZM LiNbO3 MZM 1544.92 nm Thin-Film Polymer on Si Delay RF PRBS RF Driver λ1 λ2 λ39 100GHz 160 GSa/s Scope Off-line DSP DCF SSMF 70-GHz Photodiode 65 GHz VOA 40-GHz RF Combiner Drivers 56-GBd PAM Transmitter WDM 40×112 Gb/s 56-GBd PAM Receiver TDCM 100GHz 70%30% Frequency [GHz] 10 20 30 40 50 60 |S21 |2 [dB] -15 -12 -9 -6 -3 0 TFPS LiNbO3 X: 50.47 Y: -3.03 X: 28.66 Y: -3.058 TFPS-MZM Diagram Package Die A. Chiuchiarelli et al “50-GHz+ Thin-Film Polymer on Silicon Modulator for PAM4 100G-per-wavelength Long-Reach Data Center Interconnects” sub. ECOC 2016.
  • 28. CPqD Proprietary & Confidential – All rights reserved Final Remarks • Digital Signal Processing • Multiplexing Techniques • Optical Transmission Technologies • What is next? • More Capacity? • More Flexibility? • Magical devices