SlideShare a Scribd company logo
Information Visualization
Katrien Verbert
Department of Computer Science
Faculty of Science
Vrije Universiteit Brussel
katrien.verbert@vub.ac.be
20/02/14

pag. 1
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 2
Where people run?

hJp://flowingdata.com/2014/02/05/where-­‐people-­‐run/	
  
	
  

pag. 3
20/02/14
visual explorations of urban mobility

hJp://senseable.mit.edu/visual-­‐explora7ons-­‐urban-­‐mobility/touching-­‐bus-­‐rides.html	
  

	
  

20/02/14

pag. 4
professional network

hJp://inmaps.linkedinlabs.com/network	
  
pag. 5
	
  
20/02/14
Immersion

hJps://immersion.media.mit.edu/demo#	
  
	
  
pag. 6
20/02/14
Last.fm music history

hJp://www.frederikseiffert.de/lasthistory/	
  
	
  
pag. 7
20/02/14
Twitter sentiment
hJp://www.csc.ncsu.edu/faculty/healey/
tweet_viz/tweet_app/	
  
	
  

20/02/14

pag. 8
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 9
Napoleon’s army drawn by Minard (1781-1870)

Source: http://www.napoleanic-literature.com, © John Schneider

20/02/14

pag. 10
•  Thickness of brown line is proportional to number of soldiers
(422,00 soldiers started out).
•  Black similarly encodes the retreat (10,000 returned).
•  Crossing of Berezina river.
•  Temperature plot at the bottom.
Source: Information Visualization Course, Katy Börner, Indiana University
William Playfair
… and the line/area chart based on time series

20/02/14

pag. 12
William Playfair
…and the bar chart

20/02/14

pag. 13
Florence Nightingale’s diagram showing the dramatic reduction in death
rates in the hospitals of Scutari following the changes she introduced
Source: Nightingale (1858)
Map of Cholera by John Snow in 1854

• 
• 

• 

link between cholera and
water
cholera occurred among
those near the Broad
Street water pump
removing the handle of
the pump ended the
neighborhood epidemic

Source: Information Visualization Course, Katy Börner

20/02/14

pag. 15
London Underground Map by Harry Beck in 1933

•  Harry Beck’s London
Underground’s way
finding system is an
extraordinary example
of directional signage.
•  Note the stylized
angles (90 and 45
degrees) and the
regular spacing
between station stops.

Source: Information Visualization Course, Katy Börner

20/02/14

pag. 16
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 17
information visualization
the use of computer-supported, interactive, visual
representations of abstract data to amplify cognition
[Card et al. 1999]

20/02/14

pag. 18
How many circles?

Slide	
  source:	
  Joris	
  Klerkx	
  

20/02/14

pag. 19
How many circles?

Humans have advanced perceptual abilities
Our brains makes us extremely good at recognizing visual patterns

Slide	
  source:	
  Joris	
  Klerkx	
  

20/02/14

pag. 20
Overview

Visualization
Scientific
visualization	
  

Slide	
  source:	
  John	
  Stasko	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Information
visualization	
  

20/02/14

pag. 21
Information visualization

Concerned with data that does not have a well-defined
representation in 2D or 3D space (i.e., “abstract data”)

Introduction to Information Visualization - Fall 2013

Slide	
  source:	
  Robert	
  Putman	
  

20/02/14

pag. 22
Scientific visualization

Specifically concerned with data that has a well-defined representation
in 2D or 3D space (e.g., from simulation mesh or scanner).

Introduction to Information Visualization - Fall 2013
Slide	
  source:	
  Robert	
  Putman	
  

20/02/14

pag. 23
Also: visual analytics

hJp://www.visual-­‐analy7cs.eu/faq/	
  

20/02/14

pag. 24
Focus: information visualization

20/02/14

pag. 25
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 26
some bad examples

20/02/14

pag. 27
What’s wrong with this graph?

Source: Stephen Few

20/02/14

pag. 28
Bar values should start at zero

Source: Stephen Few

20/02/14

pag. 29
Bad examples

hJp://flowingdata.com/category/sta7s7cs/mistaken-­‐data/	
  
Source: Joris Klerkx

20/02/14

pag. 30
Bad examples

hJp://flowingdata.com/category/sta7s7cs/mistaken-­‐data/	
  
Source: Joris Klerkx

20/02/14

pag. 31
What about 3D?

Source: Stephen Few

20/02/14

pag. 32
But what if there is a 3rd variable

Source: Stephen Few

20/02/14

pag. 33

20/0
PAG
How to display additional variables?

Source: Stephen Few

20/02/14

pag. 34
What about pie charts?

“Save the pies for dessert” (Stephen Few)

Source: Stephen Few

20/02/14

pag. 35
What makes these graphics bad?

20/02/14

pag. 36
Summary of Tufte’s Principles

"The success of a visualization is based on deep
knowledge and care about the substance, and the
quality, relevance and integrity of the content."
(Tufte, 1983)

•  Tell the truth
–  Graphical integrity
•  Do it effectively with clarity, precision...
–  Design aesthetics

Source: Information Visualization Course, Katy Börner, Indiana University

20/02/14

pag. 37
design aesthetics

20/02/14

pag. 38
design aesthetics: five principles
1. 
2. 
3. 
4. 
5. 

Above all else show the data.
Maximize the data-ink ratio, within reason.
Erase non-data ink, within reason.
Erase redundant data-ink.
Revise and edit.

20/02/14

pag. 39
Above all else, show the data

20/02/14

pag. 40
Above all else, show the data

20/02/14

pag. 41
Data-ink ratio

“A large share of ink on a graphic should present data
information, the ink changing as the data change. Data-ink is
the non-erasable core of a graphic...” (Tufte, 1983)

20/02/14

pag. 42
Data-Ink Ratio

Data-ink ratio

=

data-ink
Total ink used to print graphic

=

Proportion of a graphic’s ink devoted to
the non-redundant display of datainformation.

=

1.0 – proportion of graphic that can be
erased without the loss of information

20/02/14

pag. 43
Data-ink ratio

20/02/14

pag. 44
What is the data-ink ratio?

20/02/14

pag. 45
What is the data-ink ratio?

< 0.05

20/02/14

pag. 46
What is the data-ink ratio of this graphic?

< 0.001

20/02/14

pag. 47
Five Principles
1.  Above all else show the data.
2.  Maximize the data-ink ratio.
–  Within reason
–  Every bit of ink on a graphic requires a reason
3.  Erase non-data ink, within reason.
4.  Erase redundant data-ink.
5.  Revise and edit.

20/02/14

pag. 48
Maximize the data-ink ratio, within reason

(Tufte)

“A pixel
is a
terrible
thing to
waste.”
(Shneiderman)
Slide	
  source:	
  Chris	
  North,	
  Virginia	
  Tech	
  

20/02/14

pag. 49
Five Principles
1. 
2. 
3. 
4. 
5. 

Above all else show the data.
Maximize the data-ink ratio, within reason.
Erase non-data ink, within reason.
Erase redundant data-ink.
Revise and edit.

20/02/14

pag. 50
Erase non-data ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 51
Erase non-data ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 52
Erase non-data ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 53
Erase redundant data-ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 54
Erase non-data ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 55
Erase redundant data-ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 56
Erase redundant data-ink

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 57
Erase redundant data-ink

20/02/14

pag. 58
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 59
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 60
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 61
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 62
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 63
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 64
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 65
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 66
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 67
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 68
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 69
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 70
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 71
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 72
Revise and edit

20/02/14

pag. 73
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 74
Revise and edit

	
  source:	
  Joey	
  Cherdarchuk	
  

20/02/14

pag. 75
“Perfection is achieved not when there is nothing more to
add, but when there is nothing left to take away”
– Antoine de Saint-Exupery

20/02/14

pag. 76
graphical integrity

20/02/14

pag. 77
Pseudo-decline

20/02/14

pag. 78
Lie factor
Size	
  of	
  effect	
  shown	
  in	
  graphic	
  
Lie Factor = --------------------------Size	
  of	
  effect	
  in	
  data	
  
	
  

Edward	
  Tu)e	
  
The	
  Visual	
  Display	
  of	
  
Quan7ta7ve	
  Informa7on	
  
page	
  57	
  

(27.5-­‐18.0)/18=53%	
  actual	
  increase	
  
(5.3-­‐0.6)/0.6=783%	
  visual	
  increase	
  
Lie	
  factor=783/53=14.8	
  
20/02/14

pag. 79
Same data, simple graphic

20/02/14

pag. 80
Lie factor
• 

Use of area to portray 1D
data can be confusing
–  Area	
  has	
  2	
  dimensions	
  	
  

• 

The ‘incredible’ shrinking
family doctor
–  Lie	
  factor	
  of	
  2.8	
  
–  Plus	
  perspec7ve	
  distor7on	
  
–  Plus	
  incorrect	
  horizontal	
  spacing	
  

20/02/14

pag. 81
Lie factor
• 

Use of area to portray 1D data can be
confusing
–  Area	
  has	
  2	
  dimensions	
  	
  

• 

The ‘incredible’ shrinking dollar

• 

A more accurate representation of the
1978 dollar would be about twice the
size of the one in this chart

20/02/14

pag. 82
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 83
Workflow
• 
• 
• 
• 
• 
• 
• 

Acquire
Parse
Filter
Mine
Represent
Refine
Interact

Adapted	
  from	
  	
  Fry,	
  Visualizing	
  Data	
  
Available	
  at:	
  hJp://it-­‐ebooks.info/book/143/	
  
	
  
Introduction to Information Visualization - Fall 2013

20/02/14

pag. 84
Workflow
•  Acquire

[p. 7, Fry, Visualizing Data]
Introduction to Information Visualization - Fall 2013

20/02/14

pag. 85
Workflow
•  Parse

[p. Introduction to Information Visualization - Fall 2013
8, Fry, Visualizing Data]

20/02/14

pag. 86
Workflow
•  Filter/Mine

Introduction to Information Visualization - Fall 2013
[p. 10, Fry, Visualizing Data]

20/02/14

pag. 87
Workflow
•  Represent

[p. 10, Fry, Visualizing Data]
Introduction to Information Visualization - Fall 2013

20/02/14

pag. 88
Workflow
•  Refine

[p. Introduction to Information Visualization - Fall 2013
12, Fry, Visualizing Data]

20/02/14

pag. 89
Workflow
•  Interact

•  Demo

[p. 12, Fry, Visualizing Data]
Introduction to Information Visualization - Fall 2013

20/02/14

pag. 90
Not the entire story!

20/02/14

pag. 91
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 92
Visualization tools and APIs!
• 
• 
• 
• 
• 
• 
• 

Many Eyes
http://www-958.ibm.com/software/data/cognos/manyeyes/
Ggplot2
http://ggplot2.org/
Tableau public
http://www.tableausoftware.com/public/
Google Charts
http://code.google.com/apis/chart/interactive/docs/gallery.html
Simile Widgets
http://www.simile-widgets.org/
Processing.js
http://processingjs.org/
D3.js
http://d3js.org/

20/02/14

pag. 93
Many Eyes

http://www-958.ibm.com/software/
data/cognos/manyeyes/"

/ name of department

20/02/14

pag. 94
Tableau public

hJp://www.tableausocware.com/public/community	
  
	
  

20/02/14

pag. 95
Google chart: treemap example

hJps://developers.google.com/chart/
interac7ve/docs/gallery/treemap	
  
	
  

20/02/14

pag. 96

20/0
PAG
Simile Widgets
•  http://www.simile-widgets.org/

20/02/14

pag. 97

20/0
PAG
Timeplot
hJp://www.simile-­‐widgets.org/7meplot/docs/	
  
	
  

20/02/14

pag. 98

20/0
PAG
Processing.js
•  http://processingjs.org/

20/02/14

pag. 99

20/0
PAG
D3.js!
•  http://d3js.org/
•  demo: http://vimeo.com/29862153

20/02/14

pag. 100
D3 example treemap
hJp://bl.ocks.org/mbostock/4063582	
  
	
  

/ name of department

20/02/14

pag. 101

20/0
PAG
D3 resources
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

http://vimeo.com/m/35005701 - nice overview and run-through video/talk
http://alignedleft.com/tutorials/d3/ - thorough d3 tutorials from an academic instructor
and the author of the open OReilly book, "Interactive Data Visualization for the
Web" (look for free preview link for the actual book draft
https://github.com/mbostock/d3/wiki/Tutorials - big list of resources from the author of
D3
https://github.com/mbostock/d3/wiki/API-Reference - well-done D3 documentation
http://www.d3noob.org - free ebook with lots of tips and tricks, actively update
http://www.jeromecukier.net/wp-content/uploads/2012/10/d3-cheat-sheet.pdf - cheat
sheet for D3, also see parent site for blog post
https://groups.google.com/forum/?fromgroups=#!forum/d3-js - D3 Google group
http://bost.ocks.org/mike/selection/ - Guide to understanding selections, key part of D3.
http://benclinkinbeard.com/talks/2012/NCDevCon/ - A talk, with interactive examples
and code snippets, explaining d3
http://enjalot.github.com/dot-enter/ - A live-coding set of videos to walk through a lot of
the basics
http://enjalot.github.com/dot-append/ - A live-coding set of videos to walk through a lot
of the basics (part 2)
http://tributary.io/ - A fast prototyping lounge similar to CodePen to let you test your
ideas out. Used by the enjalot fellow.

Source: John Stasko

20/02/14

pag. 102
D3 support
•  Active community online
–  hJps://github.com/mbostock/d3/wiki	
  
–  Including	
  Mike	
  Bostock	
  ocen	
  answering	
  ques7ons	
  
•  In active development
–  Though	
  the	
  cri7cal	
  features	
  are	
  unlikely	
  to	
  change	
  

20/02/14

pag. 103
hJp://blog.profitbricks.com/39-­‐data-­‐visualiza7on-­‐tools-­‐for-­‐big-­‐data/	
  

20/02/14

pag. 104
overview

1.	
  Examples	
  

2.	
  History	
  

3.	
  Defini7on	
  

4.	
  Principles	
  

5.	
  Workflow	
  

6.	
  Tools	
  and	
  
APIs	
  

7.	
  Course	
  overview	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

20/02/14

pag. 105
About me

20/02/14

pag. 106
About me

20/02/14

pag. 107
Teaching assistant
•  Sandra Trullemans
http://wise.vub.ac.be/sandra-trullemans

20/02/14

pag. 108
Required text book

20/02/14

pag. 109
Course goals

	
  

know	
  the	
  	
  
founda1ons	
  

learn	
  the	
  principles	
  of	
  
informa7on	
  visualiza7on	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Learn	
  about	
  exis1ng	
  
techniques	
  and	
  systems	
  

	
  
learn	
  about	
  exis7ng	
  
techniques	
  and	
  systems,	
  
and	
  their	
  effec7veness	
  	
  
	
  
develop	
  the	
  knowledge	
  
to	
  select	
  appropriate	
  
visualiza7on	
  techniques	
  
for	
  par7cular	
  tasks	
  	
  
	
  

	
  

build	
  
	
  

	
  
build	
  your	
  own	
  	
  
visualiza7ons	
  
	
  
apply	
  theore7cal	
  	
  
founda7ons	
  
	
  
	
  
	
  
	
  

20/02/14

pag. 110
Grading

	
  

Team	
  project	
  

build	
  an	
  interac7ve	
  visualiza7on	
  
in	
  teams	
  
	
  
	
  

	
  

	
  
	
  
	
  
	
  
	
  

Research	
  paper	
  

	
  
present	
  research	
  paper	
  during	
  
WPO	
  hours	
  
	
  
+	
  	
  
	
  
prepare	
  3	
  ques7ons	
  about	
  a	
  
second	
  paper	
  
	
  

	
  
	
  
	
  

40%	
  

20%	
  

Exam	
  

	
  
Oral	
  exam	
  
Closed	
  book	
  

	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  

40%	
  
20/02/14

pag. 111
Grading

	
  

Team	
  project	
  

build	
  an	
  interac7ve	
  visualiza7on	
  
in	
  teams	
  
	
  
	
  

	
  

	
  
	
  
	
  
	
  
	
  

Research	
  paper	
  

	
  
present	
  research	
  paper	
  during	
  
WPO	
  hours	
  
	
  
+	
  	
  
	
  
prepare	
  3	
  ques7ons	
  about	
  a	
  
second	
  paper	
  
	
  

	
  
	
  
	
  

40%	
  

20%	
  

Exam	
  

	
  
Oral	
  exam	
  
Closed	
  book	
  

	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  

40%	
  
20/02/14

pag. 112
Team project:
an interactive visualization
•  Teams of 3-4
•  Limited number of restrictions
•  Be creative!

20/02/14

pag. 113
Team project

•  hands-on experience of building interactive visualizations
•  using D3

20/02/14

pag. 114
Inspiration
• 

• 

Related courses
KU Leuven: http://ariadne.cs.kuleuven.be/wiki/index.php/MM-Course1314
Berkeley: http://blogs.ischool.berkeley.edu/i247s13/
Columbia university: http://columbiadataviz.wordpress.com/student-work/	
  
Other examples
Information is beatiful:
http://www.informationisbeautiful.net/2013/over-300-of-the-best-datavisualization/?utm_source=feedly
Gap Minder World: http://www.gapminder.org/world
Netflix Map
http://www.nytimes.com/interactive/2010/01/10/nyregion/20100110netflix-map.html
NYC Parking Map
http://www.nytimes.com/interactive/2008/11/26/nyregion/
20081128_PARKING.html
How people spend their day
http://www.nytimes.com/interactive/2009/07/31/business/20080801metrics-graphic.html
20/02/14

pag. 115
hJp://nycusefuldata.com/	
  
	
  
20/02/14 pag. 116
hJp://bit.ly/1fqy8yy	
  
	
  
	
  	
  
20/02/14

pag. 117
Datasets

hJp://websci14.org/#info	
  

20/02/14

pag. 118

20/0
PAG
Team project milestones
1. 
2. 
3. 
4. 
5. 

due	
  27	
  Feb.	
  
Form teams
due	
  13	
  March	
  
Project proposal
due	
  3	
  April	
  
Intermediate presentation
Final presentation
Short report

22	
  May	
  

due	
  29	
  May	
  

20/02/14

pag. 119
Project proposal
1 page description of your intended project:

–  mo7va7on	
  
–  which	
  datasets	
  you	
  will	
  use	
  
–  current	
  status.	
  If	
  available,	
  first	
  designs.	
  
–  problems/ques7ons	
  
due

13 March

If you want earlier feedback, send us your proposal earlier ;-)

20/02/14

pag. 120
Intermediate and final presentation
• 
• 
• 
• 

20 mins (15 mins presentations + 5 mins questions)
What is your project about?
Most important part final presentation: demo
What have you learned when implementing the project?

20/02/14

pag. 121
Short report (max. 3 pages)
Motivation
Dataset
Visualization design and implementation
Reflection
–  How	
  is	
  your	
  work	
  related	
  to	
  the	
  topics	
  taught	
  in	
  the	
  course?	
  
–  If	
  you	
  would	
  start	
  over,	
  what	
  would	
  you	
  do	
  differently?	
  
•  Effort
–  How	
  much	
  effort	
  did	
  it	
  take	
  to	
  implement	
  the	
  project?	
  	
  
–  how	
  did	
  you	
  distribute	
  it	
  in	
  your	
  group?	
  
• 
• 
• 
• 

20/02/14

pag. 122
Grading

	
  

Team	
  project	
  

build	
  an	
  interac7ve	
  visualiza7on	
  
in	
  teams	
  
	
  
	
  

	
  

	
  
	
  
	
  
	
  
	
  

Research	
  paper	
  

	
  
present	
  research	
  paper	
  during	
  
WPO	
  hours	
  
	
  
+	
  	
  
	
  
prepare	
  3	
  ques7ons	
  about	
  a	
  
second	
  paper	
  
	
  

	
  
	
  
	
  

40%	
  

20%	
  

Exam	
  

	
  
Oral	
  exam	
  
Closed	
  book	
  

	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  

40%	
  
20/02/14

pag. 123
Research paper
•  Select papers from list available on pointcarré
–  Present	
  a	
  paper	
  of	
  your	
  choice	
  in	
  class	
  
–  Prepare	
  3	
  ques7on	
  about	
  a	
  second	
  paper	
  

•  Topics:
– 
– 
– 
– 
– 
– 
– 
– 
– 

Trees	
  
Hierarchies	
  
Focus	
  +	
  context	
  
Graphs	
  
Time	
  series	
  
Interac7on	
  
Documents	
  
Social	
  media	
  
…	
  

•  Individual assignment
20/02/14

pag. 124
Research presentation
•  Selected papers available on PointCarré
•  Select paper at: http://doodle.com/3ubzmy6fid4baqgk
•  When all presentations are scheduled: select a second paper
for questions.

20/02/14

pag. 125
Grading

	
  

Team	
  project	
  

build	
  an	
  interac7ve	
  visualiza7on	
  
in	
  teams	
  
	
  
	
  

	
  

	
  
	
  
	
  
	
  
	
  

Research	
  paper	
  

	
  
present	
  research	
  paper	
  during	
  
WPO	
  hours	
  
	
  
+	
  	
  
	
  
prepare	
  3	
  ques7ons	
  about	
  a	
  
second	
  paper	
  
	
  

	
  
	
  
	
  

40%	
  

20%	
  

Exam	
  

	
  
Oral	
  exam	
  
Closed	
  book	
  

	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  

40%	
  
20/02/14

pag. 126
Oral exam
•  40% of the grade
•  Closed book
•  Material:

–  Robert	
  Spence.	
  Informa7on	
  visualiza7on:	
  design	
  for	
  interac7on	
  
–  Lecture	
  slides	
  
–  Two	
  research	
  papers	
  
•  Paper	
  from	
  presenta7on	
  
•  Paper	
  you	
  asked	
  ques7ons	
  about	
  
•  Example questions will be posted

20/02/14

pag. 127
Tentative schedule
week	
   date	
  

Lecture	
  	
  
14:00-­‐16:00	
  

WPO	
  
16:00-­‐18:00	
  

23	
  

20	
  Feb.	
  

Introduc7on:	
  defini7on,	
  examples,	
  
toolkits,	
  overview	
  assignments	
  

24	
  

27	
  Feb.	
  

Percep7on	
  and	
  principles	
  

25	
  

6	
  March	
  

Representa7on:	
  values	
  and	
  rela7ons	
  

26	
  

13	
  March	
  

Presenta7on	
  

presenta7ons	
  

27	
  

20	
  March	
  

Interac7on	
  

presenta7ons	
  

28	
  

27	
  March	
  

Case	
  studies	
  

presenta7ons	
  

29	
  

3	
  April	
  

32	
  

24	
  April	
  

Informa7on	
  dashboards	
  

presenta7ons	
  

34	
  

8	
  May	
  

Visual	
  analy7cs	
  

presenta7ons	
  

35	
  

15	
  May	
  

No	
  lecture:	
  work	
  on	
  team	
  projects	
  

36	
  

22	
  May	
  

Final	
  team	
  project	
  presenta7ons	
  

Intermediate	
  team	
  project	
  presenta7ons	
  

20/02/14

pag. 128
Contact

Office	
  

	
  
Katrien:	
  10F721	
  
Sandra:	
  10G731e	
  

	
  
	
  

Email	
  

	
  
Katrien:	
  katrien.verbert@vub.ac.be	
  
Sandra:	
  sandra.trullemans@vub.ac.be	
  

	
  
	
  

20/02/14

pag. 129
Questions?

20/02/14

pag. 130
5 minute paper
What do YOU expect from this course?

20/02/14

pag. 131
Additional examples
• 
• 
• 
• 
• 
• 

http://infosthetics.com/
http://visualizing.org
http://www.visualcomplexity.com/vc/
http://visual.ly/
http://flowingdata.com
http://www.infovis-wiki.net

Introduction to Information Visualization - Fall 2013

20/02/14

pag. 132
Readings
•  Chapter 1 – 2

20/02/14

pag. 133
The beauty of data visualization - David
McCandless

hJp://www.youtube.com/watch?v=5Zg-­‐C8AAIGg	
  

	
  

20/02/14

pag. 134
Don’t forget
Form teams by 27 February

20/02/14

pag. 135
Next lecture:
perception and principles

20/02/14

pag. 136
References

•  Stuart K. Card, Jock D. Mackinlay, and Ben Scheiderman,
Academic Press, San Diego CA, 1999, p. 7

20/02/14

pag. 137

More Related Content

PPTX
Big data visualization
PPTX
Data Visualization - A Brief Overview
PDF
Information visualization: interaction
PPTX
ChatGPT, Foundation Models and Web3.pptx
PPTX
Data mining
PPTX
Big Data Analytics with Hadoop
PPTX
Big data and Hadoop
PPTX
Lec1,2
Big data visualization
Data Visualization - A Brief Overview
Information visualization: interaction
ChatGPT, Foundation Models and Web3.pptx
Data mining
Big Data Analytics with Hadoop
Big data and Hadoop
Lec1,2

What's hot (20)

PPTX
Approaches of AI.pptx
PPTX
web mining
PPTX
Introduction to Data Visualization
PPTX
Data Visualization Design Best Practices Workshop
PDF
Best Practices for Killer Data Visualization
PDF
Brief introduction to data visualization
PPTX
Deep Learning Explained
PPTX
Web mining
PPTX
Data mining presentation.ppt
PPTX
Web content mining
PDF
Storytelling with Data - See | Show | Tell | Engage
PPTX
Knowledge Discovery and Data Mining
PDF
Big Data Ecosystem
PPTX
AI: AI & Problem Solving
PPTX
Data visualization
PDF
Business Intelligence Architecture
PDF
Web mining and social media mining
PDF
Big data Analytics
PDF
Data science
PDF
Unlocking the Power of Generative AI An Executive's Guide.pdf
Approaches of AI.pptx
web mining
Introduction to Data Visualization
Data Visualization Design Best Practices Workshop
Best Practices for Killer Data Visualization
Brief introduction to data visualization
Deep Learning Explained
Web mining
Data mining presentation.ppt
Web content mining
Storytelling with Data - See | Show | Tell | Engage
Knowledge Discovery and Data Mining
Big Data Ecosystem
AI: AI & Problem Solving
Data visualization
Business Intelligence Architecture
Web mining and social media mining
Big data Analytics
Data science
Unlocking the Power of Generative AI An Executive's Guide.pdf
Ad

Viewers also liked (20)

ODP
information visualisation and its application in scientometrics
PDF
Information visualization: representation
PDF
Information visualization: perception and principles
PDF
Information visualization: presentation
PDF
Data Visualization & Information Design: One Learner's Perspective
PDF
Information Visualization: Analyzing and Presenting Data
PDF
Data Visualization in Data Science
PDF
Yolcu haklari brosur
PPTX
DIGH 5000: Data visualization & analysis Presentation
PPTX
Project 2MattWeik
PPTX
Geostatistics Portal - the multitool for statistics on maps
PDF
Data and Information Visualization: the Principles of Infographics - English ...
KEY
Geography et Visualisations
PPTX
GeoVisualization of My Home Neighborhood
PPS
Geovisualization and Geostatistics: A Concept for the Numerical and Visual An...
PDF
Information Visualization - Invited Lecture - Webdesign II - FBAUL
PPTX
Geo visualization_why maps
PDF
Open seminar series 3: Mapping, Geovisualization and OpenStreetMap
PDF
Data Visualization: advances by Brazilian researchers
information visualisation and its application in scientometrics
Information visualization: representation
Information visualization: perception and principles
Information visualization: presentation
Data Visualization & Information Design: One Learner's Perspective
Information Visualization: Analyzing and Presenting Data
Data Visualization in Data Science
Yolcu haklari brosur
DIGH 5000: Data visualization & analysis Presentation
Project 2MattWeik
Geostatistics Portal - the multitool for statistics on maps
Data and Information Visualization: the Principles of Infographics - English ...
Geography et Visualisations
GeoVisualization of My Home Neighborhood
Geovisualization and Geostatistics: A Concept for the Numerical and Visual An...
Information Visualization - Invited Lecture - Webdesign II - FBAUL
Geo visualization_why maps
Open seminar series 3: Mapping, Geovisualization and OpenStreetMap
Data Visualization: advances by Brazilian researchers
Ad

Similar to Information visualization - introduction (20)

PDF
Information Visualisation: Introduction
PDF
Info Viz by Liz
PDF
Lessons From Edward Tufte
PPTX
Introduction to Data Visualisation - Andrew Errity
PPT
chi03-tutorial.ppt
PPTX
#DataVizInSixWeeks, Week 4 - Design issues
PPTX
Data visualisation in data analytics with python
PDF
Dataviz 101: Data is beautiful, please don't ruin it by Anne-Marie Tousch, Se...
PDF
Data Visualization for Non-Programmers
PPT
Innovative Interfaces: Transforming Data Into Insight
PDF
Introduction to Data Visualization
PPTX
Data is beautiful​, please don't ruin it
PPTX
Information Visualisation – an introduction
PDF
Introduction to Information Visualization (Part 2)
PPTX
Infographics overview e&e 20120608_final
PDF
Data-visualization presentation data visualization data
PDF
Visualisatie - Module 3 - Big Data
PPT
Information visualisation
PDF
Visualization Lecture - Clariah Summer School 2018
PDF
Mazza introduction-to-information-visualization-2004
Information Visualisation: Introduction
Info Viz by Liz
Lessons From Edward Tufte
Introduction to Data Visualisation - Andrew Errity
chi03-tutorial.ppt
#DataVizInSixWeeks, Week 4 - Design issues
Data visualisation in data analytics with python
Dataviz 101: Data is beautiful, please don't ruin it by Anne-Marie Tousch, Se...
Data Visualization for Non-Programmers
Innovative Interfaces: Transforming Data Into Insight
Introduction to Data Visualization
Data is beautiful​, please don't ruin it
Information Visualisation – an introduction
Introduction to Information Visualization (Part 2)
Infographics overview e&e 20120608_final
Data-visualization presentation data visualization data
Visualisatie - Module 3 - Big Data
Information visualisation
Visualization Lecture - Clariah Summer School 2018
Mazza introduction-to-information-visualization-2004

More from Katrien Verbert (20)

PDF
Explainability methods
PDF
Human-centered AI: how can we support end-users to interact with AI?
PPTX
Human-centered AI: how can we support end-users to interact with AI?
PDF
Human-centered AI: how can we support lay users to understand AI?
PDF
Explaining job recommendations: a human-centred perspective
POTX
Explaining recommendations: design implications and lessons learned
PDF
Designing Learning Analytics Dashboards: Lessons Learned
PDF
Human-centered AI: towards the next generation of interactive and adaptive ex...
PPTX
Explainable AI for non-expert users
PPTX
Towards the next generation of interactive and adaptive explanation methods
PDF
Personalized food recommendations: combining recommendation, visualization an...
PDF
Explaining and Exploring Job Recommendations: a User-driven Approach for Inte...
PDF
Learning analytics for feedback at scale
PDF
Interactive recommender systems and dashboards for learning
PPTX
Interactive recommender systems: opening up the “black box”
PDF
Interactive Recommender Systems
PDF
Web Information Systems Lecture 2: HTML
PDF
Information Visualisation: perception and principles
PDF
Web Information Systems Lecture 1: Introduction
PDF
Interactive Recommender Systems
Explainability methods
Human-centered AI: how can we support end-users to interact with AI?
Human-centered AI: how can we support end-users to interact with AI?
Human-centered AI: how can we support lay users to understand AI?
Explaining job recommendations: a human-centred perspective
Explaining recommendations: design implications and lessons learned
Designing Learning Analytics Dashboards: Lessons Learned
Human-centered AI: towards the next generation of interactive and adaptive ex...
Explainable AI for non-expert users
Towards the next generation of interactive and adaptive explanation methods
Personalized food recommendations: combining recommendation, visualization an...
Explaining and Exploring Job Recommendations: a User-driven Approach for Inte...
Learning analytics for feedback at scale
Interactive recommender systems and dashboards for learning
Interactive recommender systems: opening up the “black box”
Interactive Recommender Systems
Web Information Systems Lecture 2: HTML
Information Visualisation: perception and principles
Web Information Systems Lecture 1: Introduction
Interactive Recommender Systems

Recently uploaded (20)

PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
Insiders guide to clinical Medicine.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Complications of Minimal Access Surgery at WLH
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Sports Quiz easy sports quiz sports quiz
PPTX
Cell Types and Its function , kingdom of life
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
master seminar digital applications in india
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
TR - Agricultural Crops Production NC III.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
Insiders guide to clinical Medicine.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPH.pptx obstetrics and gynecology in nursing
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Computing-Curriculum for Schools in Ghana
Renaissance Architecture: A Journey from Faith to Humanism
VCE English Exam - Section C Student Revision Booklet
Complications of Minimal Access Surgery at WLH
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Sports Quiz easy sports quiz sports quiz
Cell Types and Its function , kingdom of life
Microbial diseases, their pathogenesis and prophylaxis
2.FourierTransform-ShortQuestionswithAnswers.pdf
Final Presentation General Medicine 03-08-2024.pptx
master seminar digital applications in india
Anesthesia in Laparoscopic Surgery in India
Module 4: Burden of Disease Tutorial Slides S2 2025
TR - Agricultural Crops Production NC III.pdf

Information visualization - introduction