SlideShare a Scribd company logo
Paths & Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Paths and Polynomials
Hamiltonian Path has an algorithm that
spends O(2n) time and
consumes O(2n) space.
Paths and Polynomials
Walks to the rescue…
Walks to the rescue…
Walks to the rescue…
Paths and Polynomials
Adjacency Matrix
A[i,j] = 1 iff (i,j) is an edge in G.
Adjacency Matrix
A[i,j] = 1 iff (i,j) is an edge in G.
Adjacency Matrix
A[i,j] = 1 iff (i,j) is an edge in G.
Adjacency Matrix
A[i,j] = 1 iff (i,j) is an edge in G.
Adjacency Matrix
A[i,j] = 1 iff (i,j) is an edge in G.

What is A2[i,j]?
Adjacency Matrix
A[i,j] = 1 iff (i,j) is an edge in G.

What is A2[i,j]?
i

j

Adjacency Matrix
A[i,j] = 1 iff (i,j) is an edge in G.

What is A2[i,j]?
i

j

Adjacency Matrix
A[i,j] = 1 iff (i,j) is an edge in G.

What is A2[i,j]?
i

j

Adjacency Matrix
A[i,j] = 1 iff (i,j) is an edge in G.

What is A2[i,j]?
i

j

Adjacency Matrix
A[i,j] = 1 iff (i,j) is an edge in G.

What is A2[i,j]?
i

j

Adjacency Matrix
A[i,j] = 1 iff (i,j) is an edge in G.

What is A2[i,j]?
i

j

Adjacency Matrix
A[i,j] = 1 iff (i,j) is an edge in G.

What is A2[i,j]?
What is A2[i,j] counts the number of common neighbors
of i and j.
What is A2[i,j] counts the number of common neighbors
of i and j.

What is Ak[i,j]?
What is A2[i,j] counts the number of common neighbors
of i and j.

What is Ak[i,j]?
What is Ak[i,j] counts the number of walks of length k
between i and j.
We know how to count walks!
We know how to count walks!
Suppose we now want to count paths.
We know how to count walks!
Suppose we now want to count paths.
Let U be the collection of all Hamiltonian Walks.
We know how to count walks!
Suppose we now want to count paths.
Let U be the collection of all Hamiltonian Walks.
Let Ai be the set of walks of length n passing through i.
Consider…
n

X=

Ai
i=1

Let U be the collection of all Hamiltonian Walks.
Let Ai be the set of walks of length n passing through i.
Consider…
n

X=U

Ai
i=1

Let U be the collection of all Hamiltonian Walks.
Let Ai be the set of walks of length n passing through i.
Consider…
n

X=U

Ai
i=1

Let U be the collection of all Hamiltonian Walks.
Let Ai be the set of walks of length n passing through i.
Consider…
n

X=U

Ai
i=1

Let U be the collection of all Hamiltonian Walks.
Let Ai be the set of walks of length n passing through i.
The set of walks that avoid i.
Consider…
n

X=U

Ai
i=1

|Z|

|X| = |U|

( 1)
Z [n]

Ai
i Z

Let U be the collection of all Hamiltonian Walks.
Let Ai be the set of walks of length n passing through i.
The set of walks that avoid i.
Consider…
n

X=U

Ai
i=1

|Z|

|X| = |U|

( 1)
Z [n]

Ai
i Z

Let U be the collection of all Hamiltonian Walks.
Let Ai be the set of walks of length n passing through i.
The set of walks that avoid i.
Consider…
n

X=U

Ai
i=1

|Z|

|X| = |U|

( 1)
Z [n]

Ai
i Z

Let U be the collection of all Hamiltonian Walks.
Let Ai be the set of walks of length n passing through i.
The set of walks that avoid i.
The set of walks that avoid X.
Consider…
n

X=U

Ai
i=1

|Z|

|X| = |U|

( 1)
Z [n]

Ai
i Z

Let U be the collection of all Hamiltonian Walks.
Let Ai be the set of walks of length n passing through i.
The set of walks that avoid i.
The set of walks that avoid X.
Polynomial Identity Testing

Input: A polynomial p(x).
Question: Is p(x) identically zero?

(x1 + 3x2

x3 )(3x1 + x4

1) · · · (x7

x2 )

0?
Polynomial Identity Testing

Input: A polynomial p(x).
Question: Is p(x) identically zero?

(x1 + 3x2

x3 )(3x1 + x4

1) · · · (x7

x2 )

0?

Captures several problems, like checking if two polynomials
are equal, finding a perfect matching, primality testing,
and so on.
Basic Idea

(x1 + 3x2

x3 )(3x1 + x4

1) · · · (x7

x2 )

Simplifying is expensive, but evaluating is cheap.

0?
Basic Idea

(x1 + 3x2

x3 )(3x1 + x4

1) · · · (x7

x2 )

Simplifying is expensive, but evaluating is cheap.
The probability that a random assignment
corresponds to a root is low.

0?
Given a (directed) graph G and a number k…
!
!
!

Let’s try to construct a polynomial that is zero
!

if and only if
!

G has a path of length k.
Paths and Polynomials
x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ]
x[v1,2 ]x[v · x[v· 1,k ]y[v1
1 ]y[v y[vk
Edges

Vertices
x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ]
x[v1,2 ]x[v · x[v· 1,k ]y[v1
1 ]y[v y[vk
Edges

Vertices

We want terms corresponding to walks to cancel out,
x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ]
x[v1,2 ]x[v · x[v· 1,k ]y[v1
1 ]y[v y[vk
Edges

Vertices

We want terms corresponding to walks to cancel out,
somehow.
The Trick
Paths and Polynomials
Evaluate these polynomials over finite fields
of characteristic two.
Evaluate these polynomials over finite fields
of characteristic two.
a+a=0
x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ]
x[v1,2 ]x[v · x[v· 1,k ]y[v1
1 ]y[v y[vk
Edges

Vertices
x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ]
x[v1,2 ]x[v · x[v· 1,k ]y[v1
1 ]y[v y[vk
Edges

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

Vertices
x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ]
x[v1,2 ]x[v · x[v· 1,k ]y[v1
1 ]y[v y[vk
Edges

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

Vertices
x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ]
x[v1,2 ]x[v · x[v· 1,k ]y[v1
1 ]y[v y[vk
Edges

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

Vertices
x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ]
x[v1,2 ]x[v · x[v· 1,k ]y[v1
1 ]y[v y[vk
Edges

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

Vertices
x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ]
x[v1,2 ]x[v · x[v· 1,k ]y[v1
1 ]y[v y[vk
Edges

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ]

Vertices
Paths and Polynomials
For a walk W, we will dump all these terms into the formula:
For a walk W, we will dump all these terms into the formula:

:[k]

[k]

x[v1,2 ]x[v2,3 ] · · · x[vk

1,k ]y[v1 ,

(1)]y[v2 , (2)] · · · y[vk , (k)]
For a walk W, we will dump all these terms into the formula:

:[k]

[k]

x[v1,2 ]x[v2,3 ] · · · x[vk

1,k ]y[v1 ,

(1)]y[v2 , (2)] · · · y[vk , (k)]

Sum this over all walks W:
For a walk W, we will dump all these terms into the formula:

:[k]

[k]

x[v1,2 ]x[v2,3 ] · · · x[vk

1,k ]y[v1 ,

(1)]y[v2 , (2)] · · · y[vk , (k)]

Sum this over all walks W:

(W, )
W:=v1 ,...,vk
Paths and Polynomials
This polynomial captures exactly the paths in G,
i.e, it is identically zero precisely when G has no paths of length k.
(W, )
W:=v1 ,...,vk
(W, )
W:=v1 ,...,vk

How do we evaluate this polynomial now?
(W, )
W:=v1 ,...,vk

How do we evaluate this polynomial now?
Paths and Polynomials
Inclusion Exclusion
RELOADED

More Related Content

PDF
Iterative Compression
PDF
Important Cuts and (p,q)-clustering
PDF
Treewidth and Applications
PDF
Bidimensionality
PDF
The Exponential Time Hypothesis
PDF
Kernelization Basics
PDF
Dynamic Programming Over Graphs of Bounded Treewidth
PDF
Important Cuts
Iterative Compression
Important Cuts and (p,q)-clustering
Treewidth and Applications
Bidimensionality
The Exponential Time Hypothesis
Kernelization Basics
Dynamic Programming Over Graphs of Bounded Treewidth
Important Cuts

What's hot (20)

PDF
Kernel Lower Bounds
PDF
Fixed-Parameter Intractability
PDF
The Total Strong Split Domination Number of Graphs
PDF
Estimates for a class of non-standard bilinear multipliers
PDF
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
PDF
Strong (Weak) Triple Connected Domination Number of a Fuzzy Graph
PDF
Density theorems for Euclidean point configurations
PDF
445 colouring0
PDF
A common fixed point of integral type contraction in generalized metric spacess
PDF
On Twisted Paraproducts and some other Multilinear Singular Integrals
PPTX
Minimum spanning Tree
PDF
Bellman functions and Lp estimates for paraproducts
PDF
Boundedness of the Twisted Paraproduct
PDF
Some Examples of Scaling Sets
PDF
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
PDF
Trilinear embedding for divergence-form operators
PDF
Norm-variation of bilinear averages
PDF
A sharp nonlinear Hausdorff-Young inequality for small potentials
PDF
On maximal and variational Fourier restriction
PDF
SUPER MAGIC CORONATIONS OF GRAPHS
Kernel Lower Bounds
Fixed-Parameter Intractability
The Total Strong Split Domination Number of Graphs
Estimates for a class of non-standard bilinear multipliers
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
Strong (Weak) Triple Connected Domination Number of a Fuzzy Graph
Density theorems for Euclidean point configurations
445 colouring0
A common fixed point of integral type contraction in generalized metric spacess
On Twisted Paraproducts and some other Multilinear Singular Integrals
Minimum spanning Tree
Bellman functions and Lp estimates for paraproducts
Boundedness of the Twisted Paraproduct
Some Examples of Scaling Sets
Quantum Machine Learning and QEM for Gaussian mixture models (Alessandro Luongo)
Trilinear embedding for divergence-form operators
Norm-variation of bilinear averages
A sharp nonlinear Hausdorff-Young inequality for small potentials
On maximal and variational Fourier restriction
SUPER MAGIC CORONATIONS OF GRAPHS
Ad

Viewers also liked (12)

PPT
PPTX
Sketching
PPTX
Residential & Commercial Space Planning – summary of work
PPTX
Interior Programming and Space Planning
PPTX
Architectural Drawing
PDF
PPT
Space planing
PDF
Architectural Design Concepts Approaches - كونسيبت التصميم المعمارى و الفكرة ...
PPT
Architectural Design 1 Lectures by Dr. Yasser Mahgoub - Lecture 5 Concept
PPT
Architectural Design 1 Lectures by Dr. Yasser Mahgoub - Process
PPTX
An introduction to fundamental architecture concepts
PDF
History of islamic architecture
Sketching
Residential & Commercial Space Planning – summary of work
Interior Programming and Space Planning
Architectural Drawing
Space planing
Architectural Design Concepts Approaches - كونسيبت التصميم المعمارى و الفكرة ...
Architectural Design 1 Lectures by Dr. Yasser Mahgoub - Lecture 5 Concept
Architectural Design 1 Lectures by Dr. Yasser Mahgoub - Process
An introduction to fundamental architecture concepts
History of islamic architecture
Ad

Similar to Paths and Polynomials (20)

PDF
MinFill_Presentation
PDF
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
PDF
Elementary Linear Algebra 5th Edition Larson Solutions Manual
PDF
Introduction to Treewidth
PPTX
PPT COT 3rd Demo for tangent lines .pptx
PDF
Tomasi and Kanade - Structure from Motion
PDF
On uniformly continuous uniform space
PPTX
Ejercicios de algebra lineal
PPT
Linear equation 2 2
PPTX
Quarter 1 - Illustrating and solving quadratic equations
PDF
notes on quadratics functions with solutions.pdf
PDF
Some_Properties_for_the_Commutators_of_Special_Linear_Quantum_Groups (12).pdf
PDF
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
PDF
Higher order derivatives for N -body simulations
PPTX
PRODUCT RULES
PPT
Admissions in india 2015
PPTX
Complex differentiation contains analytic function.pptx
PDF
14 Bivariate Transformations
PPT
algorthm analysis from computer scince.ppt
PDF
Some Other Properties of Fuzzy Filters on Lattice Implication Algebras
MinFill_Presentation
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Elementary Linear Algebra 5th Edition Larson Solutions Manual
Introduction to Treewidth
PPT COT 3rd Demo for tangent lines .pptx
Tomasi and Kanade - Structure from Motion
On uniformly continuous uniform space
Ejercicios de algebra lineal
Linear equation 2 2
Quarter 1 - Illustrating and solving quadratic equations
notes on quadratics functions with solutions.pdf
Some_Properties_for_the_Commutators_of_Special_Linear_Quantum_Groups (12).pdf
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
Higher order derivatives for N -body simulations
PRODUCT RULES
Admissions in india 2015
Complex differentiation contains analytic function.pptx
14 Bivariate Transformations
algorthm analysis from computer scince.ppt
Some Other Properties of Fuzzy Filters on Lattice Implication Algebras

More from ASPAK2014 (6)

PDF
Color Coding
PDF
Steiner Tree Parameterized by Treewidth
PDF
Cut and Count
PDF
Representative Sets
PDF
The W Hierarchy
PDF
Matroid Basics
Color Coding
Steiner Tree Parameterized by Treewidth
Cut and Count
Representative Sets
The W Hierarchy
Matroid Basics

Recently uploaded (20)

PPTX
TLE Review Electricity (Electricity).pptx
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PPTX
A Presentation on Artificial Intelligence
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Heart disease approach using modified random forest and particle swarm optimi...
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
A comparative analysis of optical character recognition models for extracting...
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
A novel scalable deep ensemble learning framework for big data classification...
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Approach and Philosophy of On baking technology
PDF
Hybrid model detection and classification of lung cancer
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
1. Introduction to Computer Programming.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Encapsulation theory and applications.pdf
PDF
NewMind AI Weekly Chronicles - August'25-Week II
TLE Review Electricity (Electricity).pptx
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
A Presentation on Artificial Intelligence
Building Integrated photovoltaic BIPV_UPV.pdf
Heart disease approach using modified random forest and particle swarm optimi...
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
A comparative analysis of optical character recognition models for extracting...
Group 1 Presentation -Planning and Decision Making .pptx
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Enhancing emotion recognition model for a student engagement use case through...
A novel scalable deep ensemble learning framework for big data classification...
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Approach and Philosophy of On baking technology
Hybrid model detection and classification of lung cancer
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
gpt5_lecture_notes_comprehensive_20250812015547.pdf
1. Introduction to Computer Programming.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
Encapsulation theory and applications.pdf
NewMind AI Weekly Chronicles - August'25-Week II

Paths and Polynomials

  • 22. Hamiltonian Path has an algorithm that spends O(2n) time and consumes O(2n) space.
  • 24. Walks to the rescue…
  • 25. Walks to the rescue…
  • 26. Walks to the rescue…
  • 28. Adjacency Matrix A[i,j] = 1 iff (i,j) is an edge in G.
  • 29. Adjacency Matrix A[i,j] = 1 iff (i,j) is an edge in G.
  • 30. Adjacency Matrix A[i,j] = 1 iff (i,j) is an edge in G.
  • 31. Adjacency Matrix A[i,j] = 1 iff (i,j) is an edge in G.
  • 32. Adjacency Matrix A[i,j] = 1 iff (i,j) is an edge in G. What is A2[i,j]?
  • 33. Adjacency Matrix A[i,j] = 1 iff (i,j) is an edge in G. What is A2[i,j]?
  • 34. i j Adjacency Matrix A[i,j] = 1 iff (i,j) is an edge in G. What is A2[i,j]?
  • 35. i j Adjacency Matrix A[i,j] = 1 iff (i,j) is an edge in G. What is A2[i,j]?
  • 36. i j Adjacency Matrix A[i,j] = 1 iff (i,j) is an edge in G. What is A2[i,j]?
  • 37. i j Adjacency Matrix A[i,j] = 1 iff (i,j) is an edge in G. What is A2[i,j]?
  • 38. i j Adjacency Matrix A[i,j] = 1 iff (i,j) is an edge in G. What is A2[i,j]?
  • 39. i j Adjacency Matrix A[i,j] = 1 iff (i,j) is an edge in G. What is A2[i,j]?
  • 40. What is A2[i,j] counts the number of common neighbors of i and j.
  • 41. What is A2[i,j] counts the number of common neighbors of i and j. What is Ak[i,j]?
  • 42. What is A2[i,j] counts the number of common neighbors of i and j. What is Ak[i,j]? What is Ak[i,j] counts the number of walks of length k between i and j.
  • 43. We know how to count walks!
  • 44. We know how to count walks! Suppose we now want to count paths.
  • 45. We know how to count walks! Suppose we now want to count paths. Let U be the collection of all Hamiltonian Walks.
  • 46. We know how to count walks! Suppose we now want to count paths. Let U be the collection of all Hamiltonian Walks. Let Ai be the set of walks of length n passing through i.
  • 47. Consider… n X= Ai i=1 Let U be the collection of all Hamiltonian Walks. Let Ai be the set of walks of length n passing through i.
  • 48. Consider… n X=U Ai i=1 Let U be the collection of all Hamiltonian Walks. Let Ai be the set of walks of length n passing through i.
  • 49. Consider… n X=U Ai i=1 Let U be the collection of all Hamiltonian Walks. Let Ai be the set of walks of length n passing through i.
  • 50. Consider… n X=U Ai i=1 Let U be the collection of all Hamiltonian Walks. Let Ai be the set of walks of length n passing through i. The set of walks that avoid i.
  • 51. Consider… n X=U Ai i=1 |Z| |X| = |U| ( 1) Z [n] Ai i Z Let U be the collection of all Hamiltonian Walks. Let Ai be the set of walks of length n passing through i. The set of walks that avoid i.
  • 52. Consider… n X=U Ai i=1 |Z| |X| = |U| ( 1) Z [n] Ai i Z Let U be the collection of all Hamiltonian Walks. Let Ai be the set of walks of length n passing through i. The set of walks that avoid i.
  • 53. Consider… n X=U Ai i=1 |Z| |X| = |U| ( 1) Z [n] Ai i Z Let U be the collection of all Hamiltonian Walks. Let Ai be the set of walks of length n passing through i. The set of walks that avoid i. The set of walks that avoid X.
  • 54. Consider… n X=U Ai i=1 |Z| |X| = |U| ( 1) Z [n] Ai i Z Let U be the collection of all Hamiltonian Walks. Let Ai be the set of walks of length n passing through i. The set of walks that avoid i. The set of walks that avoid X.
  • 55. Polynomial Identity Testing Input: A polynomial p(x). Question: Is p(x) identically zero? (x1 + 3x2 x3 )(3x1 + x4 1) · · · (x7 x2 ) 0?
  • 56. Polynomial Identity Testing Input: A polynomial p(x). Question: Is p(x) identically zero? (x1 + 3x2 x3 )(3x1 + x4 1) · · · (x7 x2 ) 0? Captures several problems, like checking if two polynomials are equal, finding a perfect matching, primality testing, and so on.
  • 57. Basic Idea (x1 + 3x2 x3 )(3x1 + x4 1) · · · (x7 x2 ) Simplifying is expensive, but evaluating is cheap. 0?
  • 58. Basic Idea (x1 + 3x2 x3 )(3x1 + x4 1) · · · (x7 x2 ) Simplifying is expensive, but evaluating is cheap. The probability that a random assignment corresponds to a root is low. 0?
  • 59. Given a (directed) graph G and a number k… ! ! ! Let’s try to construct a polynomial that is zero ! if and only if ! G has a path of length k.
  • 61. x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ] x[v1,2 ]x[v · x[v· 1,k ]y[v1 1 ]y[v y[vk Edges Vertices
  • 62. x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ] x[v1,2 ]x[v · x[v· 1,k ]y[v1 1 ]y[v y[vk Edges Vertices We want terms corresponding to walks to cancel out,
  • 63. x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ] x[v1,2 ]x[v · x[v· 1,k ]y[v1 1 ]y[v y[vk Edges Vertices We want terms corresponding to walks to cancel out, somehow.
  • 66. Evaluate these polynomials over finite fields of characteristic two.
  • 67. Evaluate these polynomials over finite fields of characteristic two. a+a=0
  • 68. x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ] x[v1,2 ]x[v · x[v· 1,k ]y[v1 1 ]y[v y[vk Edges Vertices
  • 69. x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ] x[v1,2 ]x[v · x[v· 1,k ]y[v1 1 ]y[v y[vk Edges 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] Vertices
  • 70. x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ] x[v1,2 ]x[v · x[v· 1,k ]y[v1 1 ]y[v y[vk Edges 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] Vertices
  • 71. x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ] x[v1,2 ]x[v · x[v· 1,k ]y[v1 1 ]y[v y[vk Edges 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] Vertices
  • 72. x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ] x[v1,2 ]x[v · x[v· 1,k ]y[v1 1 ]y[v y[vk Edges 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] Vertices
  • 73. x[v1,2 ]x[v2,3 ] · ·2,3 ] · k· x[vk 1,k]y[v2 ] · · · 2 ] · · ·]y[vk ] x[v1,2 ]x[v · x[v· 1,k ]y[v1 1 ]y[v y[vk Edges 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] 1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 ]y[v2 ] · · · y[vk ] Vertices
  • 75. For a walk W, we will dump all these terms into the formula:
  • 76. For a walk W, we will dump all these terms into the formula: :[k] [k] x[v1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 , (1)]y[v2 , (2)] · · · y[vk , (k)]
  • 77. For a walk W, we will dump all these terms into the formula: :[k] [k] x[v1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 , (1)]y[v2 , (2)] · · · y[vk , (k)] Sum this over all walks W:
  • 78. For a walk W, we will dump all these terms into the formula: :[k] [k] x[v1,2 ]x[v2,3 ] · · · x[vk 1,k ]y[v1 , (1)]y[v2 , (2)] · · · y[vk , (k)] Sum this over all walks W: (W, ) W:=v1 ,...,vk
  • 80. This polynomial captures exactly the paths in G, i.e, it is identically zero precisely when G has no paths of length k.
  • 82. (W, ) W:=v1 ,...,vk How do we evaluate this polynomial now?
  • 83. (W, ) W:=v1 ,...,vk How do we evaluate this polynomial now?