SlideShare a Scribd company logo
Stochastic methods for simulating
uncertainties in free stream turbulence and in
the geometry
Project MUNA: Final Workshop,
Alexander Litvinenko,
Institut f¨ur Wissenschaftliches Rechnen,
TU Braunschweig
0531-391-3008,
litvinen@tu-bs.de
March 22, 2010
Outline
Overview
Modelling of free stream turbulence
Numerics
Uncertainties in geometry
Numerics
Low-rank approximation of the solution
Numerics
Outline
Overview
Modelling of free stream turbulence
Numerics
Uncertainties in geometry
Numerics
Low-rank approximation of the solution
Numerics
Overview of uncertainties
Input:
1. Parameters (α, Ma, Re, ...)
2. Geometry
3. Parameters of turbulence
Uncertain output:
1. mean value and variance
2. exceedance probabilities P(u < u∗
)
3. probability density and distribution functions.
Our Aims
1. Sparse representation of the input data (random fields)
2. The whole computation process must be sparse and done in a
reasonable time
3. Changes in the deterministic solver so small as possible (use as
a black-box)
4. A sparse format for the solution
Stochastical Methods overview
1. Monte Carlo Simulations (easy to implement, parallelisable,
expensive, dim. indepen.).
2. Stoch. collocation methods with global or local polynomials (easy
to implement, parallelisable, cheaper than MC, dim. depen.).
3. Stochastic Galerkin (difficult to implement, non-trivial
parallelisation, the cheapest from all, dim. depen.)
Outline
Overview
Modelling of free stream turbulence
Numerics
Uncertainties in geometry
Numerics
Low-rank approximation of the solution
Numerics
Modelling of uncertainties in free stream turbulence
α
v
v
u
u’
α’
v1
2
Random vectors v1 and v2 model turbulence in the atmosphere.
Truncated Polynomial Chaos Expansion
We represent CL in a Hermitian basis Hβ, β ∈ J .
CL(θ) =
β∈J
Hβ(θ)CLβ, (1)
where θ a vector of random Gaussian variables, J is a multiindex set
and β = (β1, ..., βj , ...) ∈ J a multiindex.
CLβ =
1
β! Θ
Hβ(θ)CL(θ) P(dθ). (2)
CLβ ≈
1
β!
n
i=1
Hβ(θi )CL(θi )wi , (3)
where weights wi and points θi are defined from sparse
Gauss-Hermite integration rule.
Uniform and Gaussian distributions of α and Ma
The following experiments are done for:
Profiles: RAE-2822, Wilcox-k-w turbulence model
Turbulence intensity I = 0.001
mean st. deviation σ variance σ2
α 2.790 0.1 1.0e-2
Ma 0.734 0.005 2.5e-5
Table: Mean values and standard deviations
Sparse Gauss-Hermite Quadratures
Figure: Sparse Gauss-Hermite grids for the perturbed angle of attack α
′
and
the Mach number Ma
′
, n = {13, 29, 137}.
Sparse Gauss-Hermite grid, 5 points
[min, max] mean variance st. dev. σ σ/mean
α [2.69, 2.89] 2.79 0.01 0.1 0.036
Ma [0.729, 0.739] 0.734 0.00003 0.005 0.007
CL [0.837, 0.872] 0.853 0.00032 0.018 0.021
CD [0.0178, 0.0233] 0.0206 0.00001 0.0031 0.151
Sparse Gauss-Hermite grid, 13 points.
[min, max] mean variance st. dev. σ σ/mean
α [2.62, 2.96] 2.79 0.01 0.1 0.036
Ma [0.725, 0.743] 0.734 0.00002 0.005 0.007
CL [0.823, 0.884] 0.853 0.0003 0.0174 0.02
CD [0.0161, 0.0254] 0.0206 0.00001 0.003 0.146
Sparse Gauss-Hermite grid, 29 points.
[min, max] mean variance st. dev. σ σ/mean
α [2.56, 3.024] 2.79 0.01 0.1 0.036
Ma [0.722, 0.746] 0.734 0.00002 0.005 0.007
CL [0.812, 0.893] 0.852 0.0003 0.018 0.021
CD [0.0148, 0.0271] 0.0206 0.00001 0.0031 0.151
Table: Statistic obtained from 1500 MC simulations, α and Ma have Gaussian
distributions.
[min, max] mean variance st. dev. σ σ/mean
α [2.5, 3.12] 2.789 0.0095 0.0973 0.035
Ma [0.718, 0.75] 0.734 0.00002 0.0049 0.007
CL [0.805, 0.905] 0.8525 0.00030 0.0172 0.02
CD [0.0127, 0.0301] 0.0206 0.00001 0.0030 0.146
0.75 0.8 0.85 0.9 0.95
0
5
10
15
20
25
Lift: Comparison of densities
0.005 0.01 0.015 0.02 0.025 0.03 0.035
0
50
100
150
Drag: Comparison of densities
0.75 0.8 0.85 0.9 0.95
0
0.2
0.4
0.6
0.8
1
Lift: Comparison of distributions
0.005 0.01 0.015 0.02 0.025 0.03 0.035
0
0.2
0.4
0.6
0.8
1
Drag: Comparison of distributions
sgh13
sgh29
MC
Table: Statistic obtained from 3800 MC simulations, α and Ma have uniform
distribution.
[min, max] mean variance st. dev. σ σ/mean
α [2.69, 2.89] 2.787 0.0034 0.058 0.021
Ma [0.729, 0.739] 0.734 0.00001 0.003 0.004
CL [0.831, 0.8728] 0.853 0.0001 0.0104 0.012
CD [0.0164, 0.0247] 0.0205 0.00000 0.0018 0.088
Figure: [min, max] intervals in each point of RAE2822 airfoil for the cp and cf.
The data are obtained from 645 solutions, computed in n = 645 nodes of
sparse Gauss-hermite grid.
Figure: Intervals [mean − σ, mean + σ], σ standard deviation, in each point of
RAE2822 airfoil for the pressure, density, cp and cf. Build for 645 points of
sparse Gauss-Hermite grid.
α(θ1, θ2), Ma(θ1, θ2), where θ1, θ2 have Gaussian distributions
Table: Statistics obtained on sparse Gauss-Hermite grid with 137 points.
[min, max] mean variance st. dev. σ σ/mean
α [2.04, 3.56] 2.8 0.041 0.2 0.071
Ma [0.72, 0.74] 0.73 0.00001 0.0026 0.0036
CL [0.7047, 0.967] 0.85 0.0014 0.0373 0.044
CD [0.0113, 0.0313] 0.01871 0.00001 0.00305 0.163
Table: Comparison of results obtained by a sparse Gauss-Hermite grid (n
grid points) with 17000 MC simulations.
n 137 381 645 MC,
17000
σCL
CL
0.044 0.042 0.042 0.0145
σCD
CD
0.163 0.159 0.16 0.1589
|CL−CL0|
CL
7.6e-4 1.3e-3 1.6e-3 4.2e-4
|CD−CD0|
CD
1.66e-2 1.46e-2 1.4e-2 2.1e-2
Outline
Overview
Modelling of free stream turbulence
Numerics
Uncertainties in geometry
Numerics
Low-rank approximation of the solution
Numerics
Uncertainties in geometry
Random boundary perturbations:
∂Dε(ω) = {x + εκ(x, ω)n(x) : x ∈ ∂D}.
where κ(x, ω) is a random field.
How to generate geometry with uncertainties ?
Algorithm:
1. Assume cov. function cov(x, y) for random field κ(x, ω) given
2. Compute Cij := cov(xi, xj ) for all grid points (in a sparse format!)
3. Solve eigenproblem Cφi = λi φi
4. Then κ(x, ω) ≈
m
i=1
√
λi φi ξi (ω), where ξi (ω) are uncorrelated
random variables.
Sparse approximation of dense matrix C is done in [Khoromskij,
Litvinenko, Matthies, 2009]
69 RAE-2822 airfoils with uncertainties
Covariance function - Gaussian.
Uncertainties in geometry
[min, max] mean variance
, σ2
st. dev.
σ
σ/mean
CL [0.828, 0.863] 0.8552 0.00002 0.0049 0.0058
CD [0.017, 0.022] 0.0183 0.00000 0.00012 0.0065
PCE of order 1 with 3 random variables and sparse Gauss-Hermite
grid wite 25 points were used.
Outline
Overview
Modelling of free stream turbulence
Numerics
Uncertainties in geometry
Numerics
Low-rank approximation of the solution
Numerics
Low-rank approximation of the solution
U VΣ
T=M
U
VΣ∼
∼ ∼ T
=M
∼
Figure: Reduced SVD, only k biggest singular values are taken.
Decay of eigenvalues
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20
−15
−10
−5
0
5
log, #eigenvalues
log,values
pressure
density
cp
cf
Figure: Decay (in log-scales) of 100 largest eigenvalues of the combined
matrix constructed from 645 solutions (pressure, density, cf, cp) on the
surface of RAE-2822 airfoil.
Low-rank approximation of the solution matrix
M = [density; pressure; cp; cf] ∈ R2048×645
(4)
M in dense matrix format requires 10.6 MB.
rank k M − ˜Mk 2/ M 2 memory, kB
1 0.82 22
2 0.21 43
5 0.4 108
10 5e-3 215
20 5e-4 431
50 1.2e-5 1080
Literature
1. A.Litvinenko, H. G. Matthies, Sparse Data Representation of
Random Fields, PAMM, 2009.
2. B.N. Khoromskij, A.Litvinenko, H. G. Matthies, Application of
hierarchical matrices for computing the Karhunen-Lo`eve
expansion, Springer, Computing, 84:49-67, 2009.
3. B.N. Khoromskij, A.Litvinenko, Data Sparse Computation of the
Karhunen-Lo`eve Expansion, AIP Conference Proceedings,
1048-1, pp. 311-314, 2008.
4. H. G. Matthies, Uncertainty Quantification with Stochastic Finite
Elements, Encyclopedia of Computational Mechanics, Wiley,
2007.
Acknowledgement
Elmar Zander
A Malab/Octave toolbox for stochastic Galerkin methods
(KLE, PCE, sparse grids, tensors, many examples etc)
http://ezander.github.com/sglib/

More Related Content

PDF
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
PDF
Summary Of Important Laws Of Differentiation And Integration
PPT
Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonst...
PDF
A note on variational inference for the univariate Gaussian
PDF
Section5 stochastic
PPTX
shooting method with Range kutta method
PDF
6. Vectors – Data Frames
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
Summary Of Important Laws Of Differentiation And Integration
Gracheva Inessa - Fast Global Image Denoising Algorithm on the Basis of Nonst...
A note on variational inference for the univariate Gaussian
Section5 stochastic
shooting method with Range kutta method
6. Vectors – Data Frames
 

What's hot (19)

PDF
13. Cubist
 
PDF
Vector mechanics for engineers statics 7th chapter 5
PDF
【演習】Re:ゲーム理論入門 第11回 -非協力ゲームにおける交渉ゲーム-
PDF
solucionario de purcell 2
PDF
線形回帰モデル
PDF
Gaussian quadratures
PDF
Tenser Product of Representation for the Group Cn
PPT
Lesson 12 centroid of an area
PDF
11. Linear Models
 
PDF
Response Surface in Tensor Train format for Uncertainty Quantification
PDF
TMYM - ASU seminar 03:27:2015
PDF
ゲーム理論BASIC 演習32 -時間決めゲーム:交渉ゲーム-
PPT
Management Science
PPTX
Newton Forward Difference Interpolation Method
PDF
勾配法
PDF
Low rank tensor approximation of probability density and characteristic funct...
PDF
Hermite integrators and 2-parameter subgroup of Riordan group
PPTX
Numerical integration
PPT
Interpolation functions
13. Cubist
 
Vector mechanics for engineers statics 7th chapter 5
【演習】Re:ゲーム理論入門 第11回 -非協力ゲームにおける交渉ゲーム-
solucionario de purcell 2
線形回帰モデル
Gaussian quadratures
Tenser Product of Representation for the Group Cn
Lesson 12 centroid of an area
11. Linear Models
 
Response Surface in Tensor Train format for Uncertainty Quantification
TMYM - ASU seminar 03:27:2015
ゲーム理論BASIC 演習32 -時間決めゲーム:交渉ゲーム-
Management Science
Newton Forward Difference Interpolation Method
勾配法
Low rank tensor approximation of probability density and characteristic funct...
Hermite integrators and 2-parameter subgroup of Riordan group
Numerical integration
Interpolation functions
Ad

Similar to Stochastic methods for uncertainty quantification in numerical aerodynamics (20)

PDF
Sparse data formats and efficient numerical methods for uncertainties in nume...
PDF
Mimization of uncertainties in numerical aerodynamics
PDF
Modeling and quantification of uncertainties in numerical aerodynamics
PDF
Low-rank response surface in numerical aerodynamics
PPT
modeling of turbulent flows : prandtl mixing length theory
PPTX
reynolds average navier stoke equation for turbulent flow modelling.pptx
PDF
Natalini nse slide_giu2013
PPTX
Study of different flows over typical bodies by Fluent
PDF
An Algebraic Multigrid Solver For Transonic Flow Problems
PDF
11.on the solution of incompressible fluid flow equations
PDF
On the solution of incompressible fluid flow equations
PDF
Part 3 Residuals.pdf
PDF
ilovepdf_merged
PDF
Uncertainty quantifiction in numerical aerodynamics
PPTX
Sampling_WCSMO_2013_Jun
PDF
thesis_sillero
PDF
Management of uncertainties in numerical aerodynamics
PPTX
Turbulence numerical modelling
Sparse data formats and efficient numerical methods for uncertainties in nume...
Mimization of uncertainties in numerical aerodynamics
Modeling and quantification of uncertainties in numerical aerodynamics
Low-rank response surface in numerical aerodynamics
modeling of turbulent flows : prandtl mixing length theory
reynolds average navier stoke equation for turbulent flow modelling.pptx
Natalini nse slide_giu2013
Study of different flows over typical bodies by Fluent
An Algebraic Multigrid Solver For Transonic Flow Problems
11.on the solution of incompressible fluid flow equations
On the solution of incompressible fluid flow equations
Part 3 Residuals.pdf
ilovepdf_merged
Uncertainty quantifiction in numerical aerodynamics
Sampling_WCSMO_2013_Jun
thesis_sillero
Management of uncertainties in numerical aerodynamics
Turbulence numerical modelling
Ad

More from Alexander Litvinenko (20)

PDF
Poster_density_driven_with_fracture_MLMC.pdf
PDF
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
PDF
litvinenko_Intrusion_Bari_2023.pdf
PDF
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
PDF
litvinenko_Gamm2023.pdf
PDF
Litvinenko_Poster_Henry_22May.pdf
PDF
Uncertain_Henry_problem-poster.pdf
PDF
Litvinenko_RWTH_UQ_Seminar_talk.pdf
PDF
Litv_Denmark_Weak_Supervised_Learning.pdf
PDF
Computing f-Divergences and Distances of High-Dimensional Probability Density...
PDF
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
PDF
Identification of unknown parameters and prediction of missing values. Compar...
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Identification of unknown parameters and prediction with hierarchical matrice...
PDF
Low-rank tensor approximation (Introduction)
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Application of parallel hierarchical matrices for parameter inference and pre...
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Propagation of Uncertainties in Density Driven Groundwater Flow
PDF
Simulation of propagation of uncertainties in density-driven groundwater flow
Poster_density_driven_with_fracture_MLMC.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Intrusion_Bari_2023.pdf
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
litvinenko_Gamm2023.pdf
Litvinenko_Poster_Henry_22May.pdf
Uncertain_Henry_problem-poster.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Identification of unknown parameters and prediction of missing values. Compar...
Computation of electromagnetic fields scattered from dielectric objects of un...
Identification of unknown parameters and prediction with hierarchical matrice...
Low-rank tensor approximation (Introduction)
Computation of electromagnetic fields scattered from dielectric objects of un...
Application of parallel hierarchical matrices for parameter inference and pre...
Computation of electromagnetic fields scattered from dielectric objects of un...
Propagation of Uncertainties in Density Driven Groundwater Flow
Simulation of propagation of uncertainties in density-driven groundwater flow

Recently uploaded (20)

PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
UNIT 4 Total Quality Management .pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPT
Project quality management in manufacturing
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPT
introduction to datamining and warehousing
PDF
Digital Logic Computer Design lecture notes
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
Internet of Things (IOT) - A guide to understanding
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Model Code of Practice - Construction Work - 21102022 .pdf
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
UNIT 4 Total Quality Management .pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Project quality management in manufacturing
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
introduction to datamining and warehousing
Digital Logic Computer Design lecture notes
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Internet of Things (IOT) - A guide to understanding
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...

Stochastic methods for uncertainty quantification in numerical aerodynamics

  • 1. Stochastic methods for simulating uncertainties in free stream turbulence and in the geometry Project MUNA: Final Workshop, Alexander Litvinenko, Institut f¨ur Wissenschaftliches Rechnen, TU Braunschweig 0531-391-3008, litvinen@tu-bs.de March 22, 2010
  • 2. Outline Overview Modelling of free stream turbulence Numerics Uncertainties in geometry Numerics Low-rank approximation of the solution Numerics
  • 3. Outline Overview Modelling of free stream turbulence Numerics Uncertainties in geometry Numerics Low-rank approximation of the solution Numerics
  • 4. Overview of uncertainties Input: 1. Parameters (α, Ma, Re, ...) 2. Geometry 3. Parameters of turbulence Uncertain output: 1. mean value and variance 2. exceedance probabilities P(u < u∗ ) 3. probability density and distribution functions.
  • 5. Our Aims 1. Sparse representation of the input data (random fields) 2. The whole computation process must be sparse and done in a reasonable time 3. Changes in the deterministic solver so small as possible (use as a black-box) 4. A sparse format for the solution
  • 6. Stochastical Methods overview 1. Monte Carlo Simulations (easy to implement, parallelisable, expensive, dim. indepen.). 2. Stoch. collocation methods with global or local polynomials (easy to implement, parallelisable, cheaper than MC, dim. depen.). 3. Stochastic Galerkin (difficult to implement, non-trivial parallelisation, the cheapest from all, dim. depen.)
  • 7. Outline Overview Modelling of free stream turbulence Numerics Uncertainties in geometry Numerics Low-rank approximation of the solution Numerics
  • 8. Modelling of uncertainties in free stream turbulence α v v u u’ α’ v1 2 Random vectors v1 and v2 model turbulence in the atmosphere.
  • 9. Truncated Polynomial Chaos Expansion We represent CL in a Hermitian basis Hβ, β ∈ J . CL(θ) = β∈J Hβ(θ)CLβ, (1) where θ a vector of random Gaussian variables, J is a multiindex set and β = (β1, ..., βj , ...) ∈ J a multiindex. CLβ = 1 β! Θ Hβ(θ)CL(θ) P(dθ). (2) CLβ ≈ 1 β! n i=1 Hβ(θi )CL(θi )wi , (3) where weights wi and points θi are defined from sparse Gauss-Hermite integration rule.
  • 10. Uniform and Gaussian distributions of α and Ma The following experiments are done for: Profiles: RAE-2822, Wilcox-k-w turbulence model Turbulence intensity I = 0.001 mean st. deviation σ variance σ2 α 2.790 0.1 1.0e-2 Ma 0.734 0.005 2.5e-5 Table: Mean values and standard deviations
  • 11. Sparse Gauss-Hermite Quadratures Figure: Sparse Gauss-Hermite grids for the perturbed angle of attack α ′ and the Mach number Ma ′ , n = {13, 29, 137}.
  • 12. Sparse Gauss-Hermite grid, 5 points [min, max] mean variance st. dev. σ σ/mean α [2.69, 2.89] 2.79 0.01 0.1 0.036 Ma [0.729, 0.739] 0.734 0.00003 0.005 0.007 CL [0.837, 0.872] 0.853 0.00032 0.018 0.021 CD [0.0178, 0.0233] 0.0206 0.00001 0.0031 0.151
  • 13. Sparse Gauss-Hermite grid, 13 points. [min, max] mean variance st. dev. σ σ/mean α [2.62, 2.96] 2.79 0.01 0.1 0.036 Ma [0.725, 0.743] 0.734 0.00002 0.005 0.007 CL [0.823, 0.884] 0.853 0.0003 0.0174 0.02 CD [0.0161, 0.0254] 0.0206 0.00001 0.003 0.146
  • 14. Sparse Gauss-Hermite grid, 29 points. [min, max] mean variance st. dev. σ σ/mean α [2.56, 3.024] 2.79 0.01 0.1 0.036 Ma [0.722, 0.746] 0.734 0.00002 0.005 0.007 CL [0.812, 0.893] 0.852 0.0003 0.018 0.021 CD [0.0148, 0.0271] 0.0206 0.00001 0.0031 0.151
  • 15. Table: Statistic obtained from 1500 MC simulations, α and Ma have Gaussian distributions. [min, max] mean variance st. dev. σ σ/mean α [2.5, 3.12] 2.789 0.0095 0.0973 0.035 Ma [0.718, 0.75] 0.734 0.00002 0.0049 0.007 CL [0.805, 0.905] 0.8525 0.00030 0.0172 0.02 CD [0.0127, 0.0301] 0.0206 0.00001 0.0030 0.146
  • 16. 0.75 0.8 0.85 0.9 0.95 0 5 10 15 20 25 Lift: Comparison of densities 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0 50 100 150 Drag: Comparison of densities 0.75 0.8 0.85 0.9 0.95 0 0.2 0.4 0.6 0.8 1 Lift: Comparison of distributions 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0 0.2 0.4 0.6 0.8 1 Drag: Comparison of distributions sgh13 sgh29 MC
  • 17. Table: Statistic obtained from 3800 MC simulations, α and Ma have uniform distribution. [min, max] mean variance st. dev. σ σ/mean α [2.69, 2.89] 2.787 0.0034 0.058 0.021 Ma [0.729, 0.739] 0.734 0.00001 0.003 0.004 CL [0.831, 0.8728] 0.853 0.0001 0.0104 0.012 CD [0.0164, 0.0247] 0.0205 0.00000 0.0018 0.088
  • 18. Figure: [min, max] intervals in each point of RAE2822 airfoil for the cp and cf. The data are obtained from 645 solutions, computed in n = 645 nodes of sparse Gauss-hermite grid.
  • 19. Figure: Intervals [mean − σ, mean + σ], σ standard deviation, in each point of RAE2822 airfoil for the pressure, density, cp and cf. Build for 645 points of sparse Gauss-Hermite grid.
  • 20. α(θ1, θ2), Ma(θ1, θ2), where θ1, θ2 have Gaussian distributions Table: Statistics obtained on sparse Gauss-Hermite grid with 137 points. [min, max] mean variance st. dev. σ σ/mean α [2.04, 3.56] 2.8 0.041 0.2 0.071 Ma [0.72, 0.74] 0.73 0.00001 0.0026 0.0036 CL [0.7047, 0.967] 0.85 0.0014 0.0373 0.044 CD [0.0113, 0.0313] 0.01871 0.00001 0.00305 0.163
  • 21. Table: Comparison of results obtained by a sparse Gauss-Hermite grid (n grid points) with 17000 MC simulations. n 137 381 645 MC, 17000 σCL CL 0.044 0.042 0.042 0.0145 σCD CD 0.163 0.159 0.16 0.1589 |CL−CL0| CL 7.6e-4 1.3e-3 1.6e-3 4.2e-4 |CD−CD0| CD 1.66e-2 1.46e-2 1.4e-2 2.1e-2
  • 22. Outline Overview Modelling of free stream turbulence Numerics Uncertainties in geometry Numerics Low-rank approximation of the solution Numerics
  • 23. Uncertainties in geometry Random boundary perturbations: ∂Dε(ω) = {x + εκ(x, ω)n(x) : x ∈ ∂D}. where κ(x, ω) is a random field. How to generate geometry with uncertainties ? Algorithm: 1. Assume cov. function cov(x, y) for random field κ(x, ω) given 2. Compute Cij := cov(xi, xj ) for all grid points (in a sparse format!) 3. Solve eigenproblem Cφi = λi φi 4. Then κ(x, ω) ≈ m i=1 √ λi φi ξi (ω), where ξi (ω) are uncorrelated random variables. Sparse approximation of dense matrix C is done in [Khoromskij, Litvinenko, Matthies, 2009]
  • 24. 69 RAE-2822 airfoils with uncertainties Covariance function - Gaussian.
  • 25. Uncertainties in geometry [min, max] mean variance , σ2 st. dev. σ σ/mean CL [0.828, 0.863] 0.8552 0.00002 0.0049 0.0058 CD [0.017, 0.022] 0.0183 0.00000 0.00012 0.0065 PCE of order 1 with 3 random variables and sparse Gauss-Hermite grid wite 25 points were used.
  • 26. Outline Overview Modelling of free stream turbulence Numerics Uncertainties in geometry Numerics Low-rank approximation of the solution Numerics
  • 27. Low-rank approximation of the solution U VΣ T=M U VΣ∼ ∼ ∼ T =M ∼ Figure: Reduced SVD, only k biggest singular values are taken.
  • 28. Decay of eigenvalues 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 −20 −15 −10 −5 0 5 log, #eigenvalues log,values pressure density cp cf Figure: Decay (in log-scales) of 100 largest eigenvalues of the combined matrix constructed from 645 solutions (pressure, density, cf, cp) on the surface of RAE-2822 airfoil.
  • 29. Low-rank approximation of the solution matrix M = [density; pressure; cp; cf] ∈ R2048×645 (4) M in dense matrix format requires 10.6 MB. rank k M − ˜Mk 2/ M 2 memory, kB 1 0.82 22 2 0.21 43 5 0.4 108 10 5e-3 215 20 5e-4 431 50 1.2e-5 1080
  • 30. Literature 1. A.Litvinenko, H. G. Matthies, Sparse Data Representation of Random Fields, PAMM, 2009. 2. B.N. Khoromskij, A.Litvinenko, H. G. Matthies, Application of hierarchical matrices for computing the Karhunen-Lo`eve expansion, Springer, Computing, 84:49-67, 2009. 3. B.N. Khoromskij, A.Litvinenko, Data Sparse Computation of the Karhunen-Lo`eve Expansion, AIP Conference Proceedings, 1048-1, pp. 311-314, 2008. 4. H. G. Matthies, Uncertainty Quantification with Stochastic Finite Elements, Encyclopedia of Computational Mechanics, Wiley, 2007.
  • 31. Acknowledgement Elmar Zander A Malab/Octave toolbox for stochastic Galerkin methods (KLE, PCE, sparse grids, tensors, many examples etc) http://ezander.github.com/sglib/