SlideShare a Scribd company logo
1
Application of H-matrices for solving
multiscale problems
Litvinenko Alexander,
Dissertation work
Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften,
Leipzig, 10 August, 2006.
www.hlib.org www.mis.mpg.de
2
H-matrices
Integral
Equations,
BEM3D
Parallel Impl.
of H-matrices
Helmholz
Equation
Convection-
Diffusion
Problems
Multigrid+
H-matrices
H-Matrix Approximation of
sign(A), exp(A), etc
Aposteriory Err. Est.+
efficient H-matrix update
Lyapunov, Riccati
Equations
DD methods
Schur Complement
Methods
Hierarchical
Domain
Decomposition
for Multiscale
Problems
*
3D Skin problem*
Multidimensional
Problems
Fig. 1 – Main directions of applications H-matrices. The sym-
bol refers to the projects in which I took part.
3
Contents
1. Examples of multiscale problems
2. Multiscale methods
3. HDD method
4. Hierarchical matrices
5. Application of H-matrices to HDD
6. Complexity and storage of HDD
7. Modifications of HDD
– Two scales
– Truncation of the small scales
8. Numerical results
4
Example of multiscale problems
(a)macroscopic scale (b)microscopic scale
Different scales in a porous medium.[Bastian 99].
10 s
-6
10 s
-3
10 s
0
10 s
3
10 m
-12
10 m
-9
10 m
-6
10 m
-3
Atom Protein Cell Tissue
molecular events
(ion channel gating)
diffusion cell
signalling
mitosis
Example of time and length scales for modeling tumor growth.[Alarcon,
Byrne, Maini 05]
5
0,6
0,2
-0,6
0,4
0
x
621
-0,4
-0,2
3 4 50
Fig. 2 – Fine properties of the solution are out of interest.
6
Multiscale methods
The equation is :
− (a(x) u) = f in Ω,
u = 0 on ∂Ω.
(1)
Homegenisation [Babuska 75], [Bensoussan, Lions, Papanicolau 78],
[Jikov, Kozlov, Oleinik 94]
Solution is
uε
(x) = u0(x) + εu1(x,
x
ε
) + O(ε2
).
u0 is the solution of the homogenized equation
a∗
u0 = f in Ω, u0 = 0 on ∂Ω, (2)
Resonance effect in MsFEM [T.Hou, X. Wu 97]
u − uh
0,Ω = O(h2
+ ε/h). (3)
Heterogeneous multiscale method [Weinan E, B.Engquist 03]
7
Problem setup
The Poisson problem : find u ∈ H1
(Ω) s.t. :



1≤i,j≤2
∂
∂xi
ai,j(x)
∂
∂xj
u = f in Ω
u = g on Γ
(4)
where ai,j ∈ L∞
(Ω) such A(x) = (ai,j)i,j=1,...,d satisfies
0 < λ ≤ λmin(A(x)) ≤ λmax(A(x)) ≤ λ , ∀x ∈ Ω.
⇒ Oscillatory or jumping coefficients are allowed.
8
The idea of HDD
Find operators : Bh, Ch s.t.
uh = Bhfh + Chgh, (5)
where fh is the rhs and gh the Dirichlet-boundary values.
Composed matrix (Bh, Ch) is the ’inverse’ of the stiffness
matrix Ah.
Complete inverse (Bh, Ch) is too much of information. We
might be interested only in few functionals of the solution.
Example : we want to know uh(fh, gh) only for fh in a smaller
space VH ⊂ Vh.
9
Domain decomposition tree TTh
FE discretisation : triangulation Th, Ω = ∪t∈Th
t.
1
2
3
4
5
6
7
9
10
11
12
13
14
15
8
5
6
7
11
12
13
14
15
8
1
2
3
4
5
6
7
9
10
3
4
1
9
10
......
5
6
11
12
13
14
15
6
7
11
15
8
......
2
6
2
6
• Ω is the root of the tree,
• TTh
is a binary tree,
• if ω ∈ TTh
has two sons
ω1, ω2 ∈ TTh
: ω = ω1 ∪ ω2
and γω = ∂ω1 ∩ ∂ω2,
• ω ∈ TTh
is a leaf, if and only
if ω ∈ Th.
10
Notations
Let ω ∈ TTh
, ω = ω1 ∪ ω2.
Γω,1 := ∂ω ∩ ω1, Γω,2 := ∂ω ∩ ω2 and γω := ∂ω1∂ω = ∂ω2∂ω
ω 1 ω 2
ωPSfrag replacements
∂
γω
Γω,1 Γω,2
Γω
I = I(Ω) = set of all vertices of ¯Ω.
I(ω) = {i ∈ I ; xi ∈ ω}.
11
Discretisation
Let ω ∈ TTh
. Denote dω := (fi)i∈I(ω) , (gi)i∈I(∂ω) . Define the
following discrete problem in the variational form :



aω(uh, bj) = (fω, bj)L2(ω) ∀ j ∈ I(
◦
ω),
uh(xj) = gj ∀ j ∈ I(∂ω).
(6)
a(bi, bj) =
Ω
α(x)( bi, bj)dx, (f, bj) =
suppbj
fbjdx.
12
1. Mapping Ψω
Ψω(d) = (Ψω(dω))i∈I(∂ω) with (Ψω(dω))i = aω(uh, bi) − (fω, bi)L2(ω) ,
Ψωdω = Ψf
ωfω + Ψg
ωgω.
2. Mapping Φω
(Φω(dω))i := uh(xi) , ∀i ∈ I(γω).
Hence, Φω(dω) is the trace of uh on γω.
Goal of HDD is to build the set
of mappings : {Φ0, Φ1, Φ2, ..., Φn} which
than produce sequentially the solution on
{γω0 , γω1 , γω2 ..., γωn }.
ω
ω
ω
1
2
xj
γ ω
xj
13
Construction of the mappings Ψω and Φω
Let ω1 and ω2 be two sons of ω ∈ TTh
. Let dω1 and dω2 the
data associated to ω1 and ω2 s.t. :
• (consistency conditions for the Dirichlet data)
g1,i = g2,i , ∀i ∈ I(ω1) ∩ I(ω2), (7)
• (consistency conditions for the right-hand side)
f1,i = f2,i , ∀i ∈ I(ω1) ∩ I(ω2). (8)
Let uω1 and uω2 be the local FE solutions of the problem (6)
for the data dω1
, dω2
.
14
ω
ω
ω
1
2
xj
γ ω
xj
If uω1 , uω2 satisfy to the Neu-
mann condition
γ
Ψω1 (dω1 ) + γ
Ψω2 (dω2 ) = 0,
Then, uω defined by
uω(xi) :=



uω1 (xi) for i ∈ I(ω1)
uω2 (xi) for i ∈ I(ω2)
(9)
is solution of (6) for the data dω := (fω, gω) given by
fω :=



f1,i for i ∈ I(ω1)
f2,i for i ∈ I(ω2)
gω :=



g1,i for i ∈ I(∂ω1)
g2,i for i ∈ I(∂ω2)
15
γ
Ψγ
ω1
+ γ
Ψγ
ω2
gγ = −Ψf
ω1
f1 − ΨΓ
ω1
g1,Γ − Ψf
ω2
f2 − ΨΓ
ω2
g2,Γ.
We set
M := −( γ
Ψγ
ω1
+ γ
Ψγ
ω2
),
compute M−1
and solve for gγ :
gγ = M−1
(Ψf
ω1
f1 + ΨΓ
ω1
g1,Γ + Ψf
ω2
f2 + ΨΓ
ω2
g2,Γ).
For given mappings Ψω1 , Ψω2 , defined on the sons ω1, ω2, we
can compute Φω and Ψω for the father ω. This recursion
process ends as soon as ω = Ω.
16
Hierarchical Process
1. Leaves to Root
1. Compute Ψω on all leaves (3 × 3 matrices).
2. Recursion from the leaves to the root :
(a) Compute and store Φω and Ψω from Ψω1 , Ψω2 .
(b) Delete Ψω1 , Ψω2 .
2. Root to Leaves
1. Given dω = (fω, gω), compute the solution uh on the
interior boundary γω by Φω (dω).
2. Build the data dω1 = (fω1 , gω1 ), dω2 = (fω2 , gω2 ) from
dω = (fω, gω) and gγ := Φω (dω).
17
Rank-k matrices
1. R ∈ Rn×m
, R = ABT
, where
A ∈ Rn×k
, B ∈ Rm×k
, k min(n, m).
The storage A and B is k(n + m)
instead of n · m.
=
A
B
T
*
R
k
k
n
m
n
m
H-matrices (Hackbusch ’98)
2. Grid → cluster tree (TI) → blockclus-
ter tree (TI×J ) + admissibility condition
→ admissible partitioning → H-matrix →
H-matrix arithmetics .
4 2
2 2 3
3 3
4 2
2 2
4 2
2 2
4
18
3. Let I := I(Ω), t, s ∈ TI, (t × s) ∈ TI×I.
Admissibility : max{diam(t), diam(s)} ≤ η · dist(t, s).
if(adm=true) then M|t×s is a rank-k matrix block
if(adm=false) then divide M|t×s further or define as a dense
matrix block.
Q
Qt
S
dist H=
t
s
...
I
I
I I
I
I
I I I I
I
1
1
2
2
11 12 21 22
I11
I12
I21
I22
19
Definition 0.1 H(TI×J , k) := {M ∈ RI×J
| rank(M |t×s) ≤ k for
all admissible leaves t × s of TI×J }.
n := max(|I|, |J|, |K|).
Operation Sequential Compl. Parallel Complexity
(R.Kriemann 2005)
building(M) N = O(n log n) N
p + O(|V (T)L(T)|)
storage(M) N = O(kn log n) N
Mx N = O(kn log n) N
p
αM ⊕ βM N = O(k2
n log n) N
p
αM M ⊕ βM N = O(k2
n log2
n) N
p + O(Csp(T)|V (T)|)
M−1
N = O(k2
n log2
n) N
p + O(nn2
min)
LU N = O(k2
n log2
n) N
H-LU N = O(k2
n log2
n) N
p + O(k2
n log2
n
n1/d )
20
Application of H-matrices to HDD
Let ω = ω1 ∪ ω2, γω = ∂ω1∂ω.
Suppose Ψg
ω1
, Ψg
ω2
→ Ψg
ω =: A and Ψf
ω1
, Ψf
ω2
→ Ψf
ω =: F.


A11 A12
A21 A22




x1
x2

 =


F1
F2

 b.
Eliminate internal nodal points :


A11 − A12A−1
22 A21 0
A21 A22




x1
x2

 =


F1 − A12A−1
22 F2
F2

 b.
Ψg
ωx1 := (A11 − A12A−1
22 A21)x1 = (F1 − A12A−1
22 F2)b = Ψf
ωb
x2 = A−1
22 F2b − A−1
22 A21x1 =: Φf
ωb + Φg
ωx1,
21
13 4
4 4
5
5 8 5
5 8
2
2
8 5
5 16 5
5 8
5
5
8 5
5
16 5
5 8
1
1
8 5
5
8 5
5 15
5
5
16 5
5 15
Matrix Ψg with the weak admissibility condition
9 3
8 3
3 3
8 3
8 3
3 3
8 3
8 3
3
3 9
3 8
3 3
3 8
3 8
3 3
3 8
3 8
3 3
3 3
8 3 3
3
3 3
3 3
3 8 3
3
8 3
3 3
3
3 3
3 3
3 3
3
3
3
3
3 8
3 3
3
3 3
3 3
8 3
8 3
3 3
8 3
8 3
3 3
3 3
3 3
3 3
3 3
3
3 3
3 3
3 3
8 3
12 8
3 3
12 8
4 4
3 8
3 3
3 3
3 3
4 4
3 8
3 3
3 3
3 3
3 3
8 3
3 8
3 3
3 8
3 8 8
3 3
3
3
3 8
3 3
3
3 8
3 8
3 3
3 8
3 3
3 3
3
3 3
3 3
3 8
3
3 3
3 3
3 8
3 8
3 3
3 8
3 3
3 3
3 3
3 8
3 3
8 8
3 3
3 3
3 8
4 4
3 8
8 8
3 3
8 8
4 4
8 8
8 3
8 3
8 3
8 3 8
3
8 3
3 3
8 3
8 3
3
8 3
7 3
3
3
9 8
9 8 8
8
1
8 8
8 8
8 3
8 8
8 3
8 8
8 8
3 8
8 8
3 8
3 3
3 3
8 3
3 3
8 3
3 8
3 3
3 8
3 3
3 3
8 3
8 8
8 3
8 8
8 8
3 7
8 8
3 7
3 8
3 3
8 3
3 3
3 3
Matrix Ψf with the standard admissibility condition
22
Building (Ψg
ω)H
∈ R512×512
from (Ψg
ω1
)H
and (Ψg
ω2
)H
∈ R384×384
.
25 5
5 8
6
6 16 6
6 16
6
6 32 7
7 32
1
1
32 6
6
16 6
6 32 6
6 16
6
6 32
11
11
32 6
6
16 6
6
32 5
5 16
6
6 32
1
1
32 6
6
32 5
5
16 6
6
16 5
5 31
25
5 8
6 16
6 16
6 32
7 32
32
16
32
16
32
6
32
6
16
6
32
5 16
6 32
32
32
16
16
31
19
32
5 32
6
32
5 31
25
8
16
16
32
32
1
32
6
16
6 32
6 16
6 32
5
32
16
32
16
32
1
32
6
32
5
16
6
16
5 31
20
32
5 32
6
32
5 31
25 7
7 8
9
9 16 10
10 16
11
11 32 18
18 32
15
15
32 17
17
16 10
10
32 8
8 16
11
11 32
19
19
32 11
11 32 14
14
32 12
12 31
17 8
8 16 11
11
16 8
8 32 10
10 16
17
17 32
14
14
32 16
16
17 6
6 16 9
9
16 10
10
16 8
8 31
20
20
32 12
12 32 13
13
32 11
11 31
25 5
5 8
6
6 16 6
6 16
6
6 32 7
7 32
1
1
32 6
6
16 6
6 32 6
6 16
6
6 32
11
11
32 6
6
16 6
6
32 5
5 16
6
6 32
1
1
32 6
6
32 5
5
16 6
6
16 5
5 31
32
32
32 10
10 32 12
12
32 10
10 31
PSfrag replacements
(Ψg
ω1
)H
(Ψg
ω2
)H
(Ψg
ω1
)H
|I×I
(Ψg
ω2
)H
|I×I
(Ψg
ω)H
∈ H(TI×I, k)
˜H
23
Complexity and storage
storage complexity
Ψg
- O(k3√
nhnH log
√
nhnH)
Ψf
- O(k3√
nhnH log2 √
nhnH)
Φg
O(k
√
nhnH) O(k2√
nhnH)
Φf
O(k2√
nhnH log2 √
nhnH) O(k3√
nhnH log
√
nhnH)
24
Prolongation of the right-hand side on the fine grid
h H, fH ∈ VH ⊂ Vh is given ⇒ to build fh.
Mappings Ψf
, Φf
can be compressed.
H h
.
=
g replacements
Φfh
ωΦfH
ω Ph←H
ω
25
Truncation of the small scales :
S(Φω) = S(Φg
ω) + S(Φf
ω) = O(k2√
nhnH log
√
nhnH).
Ω
h
HPSfrag replacements
T≥H
Th
TTh
T<H
Th
Fig. 3 – Domain decomposition tree TTh
and its parts.
26
Numeric results
27
(left) Skin problem, (right) model of a cell.
a b
c
Lipid layer
α
β
0 10.25 0.75
0.5
1
4h
[Khoromskij, Wittum 02]
28
α
ucg−˜u 2
ucg 2
ucg − ˜u ∞ ucg − ˜u A
1.0 6.6 ∗ 10−9
7.1 ∗ 10−10
2.3 ∗ 10−7
10−1
2.0 ∗ 10−8
1.4 ∗ 10−8
2.0 ∗ 10−6
10−2
6.6 ∗ 10−8
2.6 ∗ 10−7
1.7 ∗ 10−5
10−3
7.4 ∗ 10−7
1.8 ∗ 10−5
4.2 ∗ 10−4
10−4
4.2 ∗ 10−6
1.8 ∗ 10−3
1.4 ∗ 10−2
10−5
7.0 ∗ 10−5
2.3 ∗ 10−1
9.0 ∗ 10−1
Tab. 1 – Dependence of absolute and relative errors on α.
1292
dofs, εk = 10−8
, β = 1.0, residium Au − f = 10−10
,
A = 1.22 ∗ 105
.
29
ε
ucg−˜u 2
ucg 2
ucg − ˜u ∞ ucg − ˜u A
10−6
4.4 ∗ 10−1
6.67 ∗ 102
1.1 ∗ 103
10−8
7.27 ∗ 10−5
2.3 ∗ 10−1
9.0 ∗ 10−1
10−10
5.1 ∗ 10−7
1.0 ∗ 10−3
3.0 ∗ 10−3
10−12
3.9 ∗ 10−9
1.2 ∗ 10−5
2.9 ∗ 10−5
10−14
1.2 ∗ 10−11
6.6 ∗ 10−7
1.2 ∗ 10−7
10−16
1.6 ∗ 10−12
1.1 ∗ 10−8
1.7 ∗ 10−8
Tab. 2 – Dependence of absolute and relative errors on εk. 1292
dofs, α = 10−5
, β = 1.0, residium Au − f = 10−10
,
A 2 = 1.22 ∗ 105
.
ε is responsible for the H-matrix approximation accuracy.
σk ≤ εσ1.
30
dofs Φg,Φf ,h,Kb Φg,Φf ,H=0.5,Kb Φg,Φf ,H=0.125,Kb
332 2.45 ∗ 102, 4 ∗ 102 9.1 ∗ 10, 1.7 ∗ 102 2 ∗ 102, 2.8 ∗ 102
652 1.1 ∗ 103, 2.4 ∗ 103 2.9 ∗ 102, 1.2 ∗ 103 7.9 ∗ 102, 1.8 ∗ 103
1292 5 ∗ 103, 1.4 ∗ 104 6.8 ∗ 102, 8 ∗ 103 2.6 ∗ 103, 1.2 ∗ 104
2562 2.1 ∗ 104, 7.86 ∗ 104 1.4 ∗ 103, 4.1 ∗ 104 7.4 ∗ 103, 6.9 ∗ 104
Tab. 3 – Dependence of memory requirements for Φg
and Φf
on numbers of dofs and size of the interface, f = 4, nmin = 12,
u = x2
+ y2
and k = 7.
31
Storage
ε LLT (Mb) HDD(Mb) (A−1)H(Mb)
10−3 13.3 19.7 51.0
10−4 14.7 20.1 64.0
10−5 16.0 20.4 75.2
10−6 17.2 20.6 87.4
Tab. 4 – Dependence of memory requirements on ε, 1292
dofs.
32
dofs HDD pre,LLT ,cg Inv(A) pre,LLT
332 0.19 0.1=0.03+0.02+0.04 0.24 0.11=0.03+0.08
652 0.96 0.6=0.2+0.1+0.26 3.54 0.5=0.2+0.3
1292 5.6 5=2.6+0.6+1.8 65.8 4.7=2.7+2.0
2572 36.1 53=38.0+3.4+11.4 - 50=38.2+11.7
5122 218 - - -
Tab. 5 – Comparison of times for the skin problem with
α(x, y) = 10−5
, ε = εcg = 10−8
.
33
Oscillatory coefficients
global k ˜u40 − ˜uk 2 / ˜u40 2 ˜u40 − ˜uk ∞
2 7 7 ∗ 10−2
4 2 ∗ 10−2 1.8 ∗ 10−3
6 5.4 ∗ 10−4 4.5 ∗ 10−5
8 6.6 ∗ 10−5 6.3 ∗ 10−6
10 7.6 ∗ 10−6 9 ∗ 10−7
Tab. 6 – α(x, y) = 1 + 0.5sin(50x)sin(50y)
ω u40 − ˜uk 2 / u40 2 u40 − ˜uk ∞
10 1.65 ∗ 10−4 1.76 ∗ 10−5
50 1.8 ∗ 10−4 1.9 ∗ 10−5
450 7.7 ∗ 10−4 10−4
Tab. 7 – 2572
Dofs, f = 1, α(x, y) = 1 + 0.5sin(ωx)sin(ωy).
34
Ω
α
β
0.1 0.2 0.8 0.9
0.1
0.2
0.8
0.9
Fig. 4 – Domain Ω = (0, 1)2
with jumping coefficients α and β.
35
ε Au − f 2 cg ; HDD(sec)
ucg−˜u 2
˜u 2
ucg − ˜u ∞
10−4
2 ∗ 10−4
5.3 ; 8.9 6.7 ∗ 10−1
1.4
10−6
4.8 ∗ 10−7
5.0 ; 10.1 1.8 ∗ 10−4
9.5 ∗ 10−4
10−8
1.4 ∗ 10−8
5.7 ; 11.5 1.1 ∗ 10−6
1.48 ∗ 10−5
10−10
1.45 ∗ 10−8
6.7 ; 12.3 5.3 ∗ 10−7
10−5
10−12
1.2 ∗ 10−8
7.4 ; 13.5 5.2 ∗ 10−7
10−5
Tab. 8 – Dependence of the relative and absolute errors on ε,
˜u is HDD solution from ε, α = 10, β = 0.01, 1292
dofs.
36
Properties of HDD :
1. HDD computes uh := Bhfh + Chgh or uh := BHfH + Chgh.
2. Bh, BH and Ch have H-matrix format.
3. The complexities are O(k2
nh log3
nh) and
O(k2√
nhnH log3 √
nhnH).
4. The storages are O(knh log2
nh) and
O(k
√
nhnH log2 √
nhnH).
5. HDD computes functionals of the solution :
(a) Neumann data ∂uh
∂n at the boundary,
(b) mean values ω
uhdx, ω ⊂ Ω, the solution at a point,
the solution in a small subdomain ω,
(c) flux C
u−→n dx, where C is a curve in Ω.
37
6. HDD for multiple right-hand sides and multiple Dirichlet
data.
7. HDD can easily be parallelized.
8. Problems with repeated patterns.
38
Thanks for your attention !

More Related Content

PDF
My PhD talk "Application of H-matrices for computing partial inverse"
PDF
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
PDF
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
PDF
Statistical Inference Using Stochastic Gradient Descent
PPT
Composite functions
PDF
Algebra 2 Section 5-1
DOCX
PDF
Lesson 25: Evaluating Definite Integrals (slides)
My PhD talk "Application of H-matrices for computing partial inverse"
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
Statistical Inference Using Stochastic Gradient Descent
Composite functions
Algebra 2 Section 5-1
Lesson 25: Evaluating Definite Integrals (slides)

What's hot (19)

PDF
Comparing estimation algorithms for block clustering models
PDF
Mac331 complex analysis_mfa_week6_16-10-20 (1)
PDF
Lectures4 8
PDF
Ba32759764
PDF
On πgθ-Homeomorphisms in Topological Spaces
DOCX
Tugasmatematikakelompok 150715235527-lva1-app6892
PDF
Pc12 sol c04_4-2
PDF
A common fixed point of integral type contraction in generalized metric spacess
PDF
Fixed point result in menger space with ea property
PDF
Pc12 sol c04_ptest
PDF
Linear algebra-solutions-manual-kuttler-1-30-11-otc
PDF
Stability criterion of periodic oscillations in a (2)
PDF
Some properties of gi closed sets in topological space.docx
PDF
Instantons and Chern-Simons Terms in AdS4/CFT3
DOCX
Tugasmatematikakelompok
DOCX
Digital text
DOCX
Tugas matematika kelompok
PDF
Pgrw-closed map in a Topological Space
KEY
0210 ch 2 day 10
Comparing estimation algorithms for block clustering models
Mac331 complex analysis_mfa_week6_16-10-20 (1)
Lectures4 8
Ba32759764
On πgθ-Homeomorphisms in Topological Spaces
Tugasmatematikakelompok 150715235527-lva1-app6892
Pc12 sol c04_4-2
A common fixed point of integral type contraction in generalized metric spacess
Fixed point result in menger space with ea property
Pc12 sol c04_ptest
Linear algebra-solutions-manual-kuttler-1-30-11-otc
Stability criterion of periodic oscillations in a (2)
Some properties of gi closed sets in topological space.docx
Instantons and Chern-Simons Terms in AdS4/CFT3
Tugasmatematikakelompok
Digital text
Tugas matematika kelompok
Pgrw-closed map in a Topological Space
0210 ch 2 day 10
Ad

Viewers also liked (20)

PDF
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
PDF
Data sparse approximation of the Karhunen-Loeve expansion
PPTX
2012 금융수학 겨울학교 - FM 210 Mhz
PDF
Connection between inverse problems and uncertainty quantification problems
PDF
Multi-linear algebra and different tensor formats with applications
PDF
Application of hierarchical matrices for partial inverse
PDF
Tensor train to solve stochastic PDEs
PDF
A small introduction into H-matrices which I gave for my colleagues
PDF
My PhD on 4 pages
PDF
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
PDF
add_2_diplom_main
PDF
Litvinenko low-rank kriging +FFT poster
PDF
Low-rank tensor methods for stochastic forward and inverse problems
PDF
Litvinenko nlbu2016
PDF
Response Surface in Tensor Train format for Uncertainty Quantification
PDF
Hierarchical matrix approximation of large covariance matrices
PDF
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
PDF
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
PDF
Scalable hierarchical algorithms for stochastic PDEs and UQ
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
Data sparse approximation of the Karhunen-Loeve expansion
2012 금융수학 겨울학교 - FM 210 Mhz
Connection between inverse problems and uncertainty quantification problems
Multi-linear algebra and different tensor formats with applications
Application of hierarchical matrices for partial inverse
Tensor train to solve stochastic PDEs
A small introduction into H-matrices which I gave for my colleagues
My PhD on 4 pages
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
add_2_diplom_main
Litvinenko low-rank kriging +FFT poster
Low-rank tensor methods for stochastic forward and inverse problems
Litvinenko nlbu2016
Response Surface in Tensor Train format for Uncertainty Quantification
Hierarchical matrix approximation of large covariance matrices
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Scalable hierarchical algorithms for stochastic PDEs and UQ
Ad

Similar to Application H-matrices for solving PDEs with multi-scale coefficients, jumping and strongly oscillatory coefficients (20)

PDF
Application of parallel hierarchical matrices and low-rank tensors in spatial...
PDF
Approximation of large covariance matrices in statistics
PDF
Data sparse approximation of Karhunen-Loeve Expansion
PDF
Data sparse approximation of the Karhunen-Loeve expansion
PDF
Hierarchical matrices for approximating large covariance matries and computin...
PDF
Likelihood approximation with parallel hierarchical matrices for large spatia...
PDF
Overview of sparse and low-rank matrix / tensor techniques
PDF
Poster litvinenko genton_ying_hpcsaudi17
PDF
Barret templates
PDF
Numerical Linear Algebra for Data and Link Analysis.
PDF
Grid generation and adaptive refinement
PPT
06_finite_elements_basics.ppt
PPT
5994944.ppt
PDF
On the Numerical Solution of Differential Equations
PDF
document(1).pdf
PDF
Hierarchical matrix techniques for maximum likelihood covariance estimation
PDF
Fundamentals of computational fluid dynamics
PDF
MSC-2013-12
PDF
Finite Difference Method
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Approximation of large covariance matrices in statistics
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of the Karhunen-Loeve expansion
Hierarchical matrices for approximating large covariance matries and computin...
Likelihood approximation with parallel hierarchical matrices for large spatia...
Overview of sparse and low-rank matrix / tensor techniques
Poster litvinenko genton_ying_hpcsaudi17
Barret templates
Numerical Linear Algebra for Data and Link Analysis.
Grid generation and adaptive refinement
06_finite_elements_basics.ppt
5994944.ppt
On the Numerical Solution of Differential Equations
document(1).pdf
Hierarchical matrix techniques for maximum likelihood covariance estimation
Fundamentals of computational fluid dynamics
MSC-2013-12
Finite Difference Method

More from Alexander Litvinenko (20)

PDF
Poster_density_driven_with_fracture_MLMC.pdf
PDF
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
PDF
litvinenko_Intrusion_Bari_2023.pdf
PDF
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
PDF
litvinenko_Gamm2023.pdf
PDF
Litvinenko_Poster_Henry_22May.pdf
PDF
Uncertain_Henry_problem-poster.pdf
PDF
Litvinenko_RWTH_UQ_Seminar_talk.pdf
PDF
Litv_Denmark_Weak_Supervised_Learning.pdf
PDF
Computing f-Divergences and Distances of High-Dimensional Probability Density...
PDF
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
PDF
Low rank tensor approximation of probability density and characteristic funct...
PDF
Identification of unknown parameters and prediction of missing values. Compar...
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Identification of unknown parameters and prediction with hierarchical matrice...
PDF
Low-rank tensor approximation (Introduction)
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Application of parallel hierarchical matrices for parameter inference and pre...
PDF
Computation of electromagnetic fields scattered from dielectric objects of un...
PDF
Propagation of Uncertainties in Density Driven Groundwater Flow
Poster_density_driven_with_fracture_MLMC.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Intrusion_Bari_2023.pdf
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
litvinenko_Gamm2023.pdf
Litvinenko_Poster_Henry_22May.pdf
Uncertain_Henry_problem-poster.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Low rank tensor approximation of probability density and characteristic funct...
Identification of unknown parameters and prediction of missing values. Compar...
Computation of electromagnetic fields scattered from dielectric objects of un...
Identification of unknown parameters and prediction with hierarchical matrice...
Low-rank tensor approximation (Introduction)
Computation of electromagnetic fields scattered from dielectric objects of un...
Application of parallel hierarchical matrices for parameter inference and pre...
Computation of electromagnetic fields scattered from dielectric objects of un...
Propagation of Uncertainties in Density Driven Groundwater Flow

Recently uploaded (20)

PDF
Sports Quiz easy sports quiz sports quiz
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Basic Mud Logging Guide for educational purpose
PDF
Insiders guide to clinical Medicine.pdf
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Institutional Correction lecture only . . .
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Cell Structure & Organelles in detailed.
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Sports Quiz easy sports quiz sports quiz
VCE English Exam - Section C Student Revision Booklet
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
RMMM.pdf make it easy to upload and study
Renaissance Architecture: A Journey from Faith to Humanism
Basic Mud Logging Guide for educational purpose
Insiders guide to clinical Medicine.pdf
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
STATICS OF THE RIGID BODIES Hibbelers.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Computing-Curriculum for Schools in Ghana
Institutional Correction lecture only . . .
Final Presentation General Medicine 03-08-2024.pptx
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
human mycosis Human fungal infections are called human mycosis..pptx
Cell Structure & Organelles in detailed.
Pharmacology of Heart Failure /Pharmacotherapy of CHF
FourierSeries-QuestionsWithAnswers(Part-A).pdf

Application H-matrices for solving PDEs with multi-scale coefficients, jumping and strongly oscillatory coefficients

  • 1. 1 Application of H-matrices for solving multiscale problems Litvinenko Alexander, Dissertation work Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften, Leipzig, 10 August, 2006. www.hlib.org www.mis.mpg.de
  • 2. 2 H-matrices Integral Equations, BEM3D Parallel Impl. of H-matrices Helmholz Equation Convection- Diffusion Problems Multigrid+ H-matrices H-Matrix Approximation of sign(A), exp(A), etc Aposteriory Err. Est.+ efficient H-matrix update Lyapunov, Riccati Equations DD methods Schur Complement Methods Hierarchical Domain Decomposition for Multiscale Problems * 3D Skin problem* Multidimensional Problems Fig. 1 – Main directions of applications H-matrices. The sym- bol refers to the projects in which I took part.
  • 3. 3 Contents 1. Examples of multiscale problems 2. Multiscale methods 3. HDD method 4. Hierarchical matrices 5. Application of H-matrices to HDD 6. Complexity and storage of HDD 7. Modifications of HDD – Two scales – Truncation of the small scales 8. Numerical results
  • 4. 4 Example of multiscale problems (a)macroscopic scale (b)microscopic scale Different scales in a porous medium.[Bastian 99]. 10 s -6 10 s -3 10 s 0 10 s 3 10 m -12 10 m -9 10 m -6 10 m -3 Atom Protein Cell Tissue molecular events (ion channel gating) diffusion cell signalling mitosis Example of time and length scales for modeling tumor growth.[Alarcon, Byrne, Maini 05]
  • 5. 5 0,6 0,2 -0,6 0,4 0 x 621 -0,4 -0,2 3 4 50 Fig. 2 – Fine properties of the solution are out of interest.
  • 6. 6 Multiscale methods The equation is : − (a(x) u) = f in Ω, u = 0 on ∂Ω. (1) Homegenisation [Babuska 75], [Bensoussan, Lions, Papanicolau 78], [Jikov, Kozlov, Oleinik 94] Solution is uε (x) = u0(x) + εu1(x, x ε ) + O(ε2 ). u0 is the solution of the homogenized equation a∗ u0 = f in Ω, u0 = 0 on ∂Ω, (2) Resonance effect in MsFEM [T.Hou, X. Wu 97] u − uh 0,Ω = O(h2 + ε/h). (3) Heterogeneous multiscale method [Weinan E, B.Engquist 03]
  • 7. 7 Problem setup The Poisson problem : find u ∈ H1 (Ω) s.t. :    1≤i,j≤2 ∂ ∂xi ai,j(x) ∂ ∂xj u = f in Ω u = g on Γ (4) where ai,j ∈ L∞ (Ω) such A(x) = (ai,j)i,j=1,...,d satisfies 0 < λ ≤ λmin(A(x)) ≤ λmax(A(x)) ≤ λ , ∀x ∈ Ω. ⇒ Oscillatory or jumping coefficients are allowed.
  • 8. 8 The idea of HDD Find operators : Bh, Ch s.t. uh = Bhfh + Chgh, (5) where fh is the rhs and gh the Dirichlet-boundary values. Composed matrix (Bh, Ch) is the ’inverse’ of the stiffness matrix Ah. Complete inverse (Bh, Ch) is too much of information. We might be interested only in few functionals of the solution. Example : we want to know uh(fh, gh) only for fh in a smaller space VH ⊂ Vh.
  • 9. 9 Domain decomposition tree TTh FE discretisation : triangulation Th, Ω = ∪t∈Th t. 1 2 3 4 5 6 7 9 10 11 12 13 14 15 8 5 6 7 11 12 13 14 15 8 1 2 3 4 5 6 7 9 10 3 4 1 9 10 ...... 5 6 11 12 13 14 15 6 7 11 15 8 ...... 2 6 2 6 • Ω is the root of the tree, • TTh is a binary tree, • if ω ∈ TTh has two sons ω1, ω2 ∈ TTh : ω = ω1 ∪ ω2 and γω = ∂ω1 ∩ ∂ω2, • ω ∈ TTh is a leaf, if and only if ω ∈ Th.
  • 10. 10 Notations Let ω ∈ TTh , ω = ω1 ∪ ω2. Γω,1 := ∂ω ∩ ω1, Γω,2 := ∂ω ∩ ω2 and γω := ∂ω1∂ω = ∂ω2∂ω ω 1 ω 2 ωPSfrag replacements ∂ γω Γω,1 Γω,2 Γω I = I(Ω) = set of all vertices of ¯Ω. I(ω) = {i ∈ I ; xi ∈ ω}.
  • 11. 11 Discretisation Let ω ∈ TTh . Denote dω := (fi)i∈I(ω) , (gi)i∈I(∂ω) . Define the following discrete problem in the variational form :    aω(uh, bj) = (fω, bj)L2(ω) ∀ j ∈ I( ◦ ω), uh(xj) = gj ∀ j ∈ I(∂ω). (6) a(bi, bj) = Ω α(x)( bi, bj)dx, (f, bj) = suppbj fbjdx.
  • 12. 12 1. Mapping Ψω Ψω(d) = (Ψω(dω))i∈I(∂ω) with (Ψω(dω))i = aω(uh, bi) − (fω, bi)L2(ω) , Ψωdω = Ψf ωfω + Ψg ωgω. 2. Mapping Φω (Φω(dω))i := uh(xi) , ∀i ∈ I(γω). Hence, Φω(dω) is the trace of uh on γω. Goal of HDD is to build the set of mappings : {Φ0, Φ1, Φ2, ..., Φn} which than produce sequentially the solution on {γω0 , γω1 , γω2 ..., γωn }. ω ω ω 1 2 xj γ ω xj
  • 13. 13 Construction of the mappings Ψω and Φω Let ω1 and ω2 be two sons of ω ∈ TTh . Let dω1 and dω2 the data associated to ω1 and ω2 s.t. : • (consistency conditions for the Dirichlet data) g1,i = g2,i , ∀i ∈ I(ω1) ∩ I(ω2), (7) • (consistency conditions for the right-hand side) f1,i = f2,i , ∀i ∈ I(ω1) ∩ I(ω2). (8) Let uω1 and uω2 be the local FE solutions of the problem (6) for the data dω1 , dω2 .
  • 14. 14 ω ω ω 1 2 xj γ ω xj If uω1 , uω2 satisfy to the Neu- mann condition γ Ψω1 (dω1 ) + γ Ψω2 (dω2 ) = 0, Then, uω defined by uω(xi) :=    uω1 (xi) for i ∈ I(ω1) uω2 (xi) for i ∈ I(ω2) (9) is solution of (6) for the data dω := (fω, gω) given by fω :=    f1,i for i ∈ I(ω1) f2,i for i ∈ I(ω2) gω :=    g1,i for i ∈ I(∂ω1) g2,i for i ∈ I(∂ω2)
  • 15. 15 γ Ψγ ω1 + γ Ψγ ω2 gγ = −Ψf ω1 f1 − ΨΓ ω1 g1,Γ − Ψf ω2 f2 − ΨΓ ω2 g2,Γ. We set M := −( γ Ψγ ω1 + γ Ψγ ω2 ), compute M−1 and solve for gγ : gγ = M−1 (Ψf ω1 f1 + ΨΓ ω1 g1,Γ + Ψf ω2 f2 + ΨΓ ω2 g2,Γ). For given mappings Ψω1 , Ψω2 , defined on the sons ω1, ω2, we can compute Φω and Ψω for the father ω. This recursion process ends as soon as ω = Ω.
  • 16. 16 Hierarchical Process 1. Leaves to Root 1. Compute Ψω on all leaves (3 × 3 matrices). 2. Recursion from the leaves to the root : (a) Compute and store Φω and Ψω from Ψω1 , Ψω2 . (b) Delete Ψω1 , Ψω2 . 2. Root to Leaves 1. Given dω = (fω, gω), compute the solution uh on the interior boundary γω by Φω (dω). 2. Build the data dω1 = (fω1 , gω1 ), dω2 = (fω2 , gω2 ) from dω = (fω, gω) and gγ := Φω (dω).
  • 17. 17 Rank-k matrices 1. R ∈ Rn×m , R = ABT , where A ∈ Rn×k , B ∈ Rm×k , k min(n, m). The storage A and B is k(n + m) instead of n · m. = A B T * R k k n m n m H-matrices (Hackbusch ’98) 2. Grid → cluster tree (TI) → blockclus- ter tree (TI×J ) + admissibility condition → admissible partitioning → H-matrix → H-matrix arithmetics . 4 2 2 2 3 3 3 4 2 2 2 4 2 2 2 4
  • 18. 18 3. Let I := I(Ω), t, s ∈ TI, (t × s) ∈ TI×I. Admissibility : max{diam(t), diam(s)} ≤ η · dist(t, s). if(adm=true) then M|t×s is a rank-k matrix block if(adm=false) then divide M|t×s further or define as a dense matrix block. Q Qt S dist H= t s ... I I I I I I I I I I I 1 1 2 2 11 12 21 22 I11 I12 I21 I22
  • 19. 19 Definition 0.1 H(TI×J , k) := {M ∈ RI×J | rank(M |t×s) ≤ k for all admissible leaves t × s of TI×J }. n := max(|I|, |J|, |K|). Operation Sequential Compl. Parallel Complexity (R.Kriemann 2005) building(M) N = O(n log n) N p + O(|V (T)L(T)|) storage(M) N = O(kn log n) N Mx N = O(kn log n) N p αM ⊕ βM N = O(k2 n log n) N p αM M ⊕ βM N = O(k2 n log2 n) N p + O(Csp(T)|V (T)|) M−1 N = O(k2 n log2 n) N p + O(nn2 min) LU N = O(k2 n log2 n) N H-LU N = O(k2 n log2 n) N p + O(k2 n log2 n n1/d )
  • 20. 20 Application of H-matrices to HDD Let ω = ω1 ∪ ω2, γω = ∂ω1∂ω. Suppose Ψg ω1 , Ψg ω2 → Ψg ω =: A and Ψf ω1 , Ψf ω2 → Ψf ω =: F.   A11 A12 A21 A22     x1 x2   =   F1 F2   b. Eliminate internal nodal points :   A11 − A12A−1 22 A21 0 A21 A22     x1 x2   =   F1 − A12A−1 22 F2 F2   b. Ψg ωx1 := (A11 − A12A−1 22 A21)x1 = (F1 − A12A−1 22 F2)b = Ψf ωb x2 = A−1 22 F2b − A−1 22 A21x1 =: Φf ωb + Φg ωx1,
  • 21. 21 13 4 4 4 5 5 8 5 5 8 2 2 8 5 5 16 5 5 8 5 5 8 5 5 16 5 5 8 1 1 8 5 5 8 5 5 15 5 5 16 5 5 15 Matrix Ψg with the weak admissibility condition 9 3 8 3 3 3 8 3 8 3 3 3 8 3 8 3 3 3 9 3 8 3 3 3 8 3 8 3 3 3 8 3 8 3 3 3 3 8 3 3 3 3 3 3 3 3 8 3 3 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 8 3 3 3 3 3 3 3 8 3 8 3 3 3 8 3 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 8 3 12 8 3 3 12 8 4 4 3 8 3 3 3 3 3 3 4 4 3 8 3 3 3 3 3 3 3 3 8 3 3 8 3 3 3 8 3 8 8 3 3 3 3 3 8 3 3 3 3 8 3 8 3 3 3 8 3 3 3 3 3 3 3 3 3 3 8 3 3 3 3 3 3 8 3 8 3 3 3 8 3 3 3 3 3 3 3 8 3 3 8 8 3 3 3 3 3 8 4 4 3 8 8 8 3 3 8 8 4 4 8 8 8 3 8 3 8 3 8 3 8 3 8 3 3 3 8 3 8 3 3 8 3 7 3 3 3 9 8 9 8 8 8 1 8 8 8 8 8 3 8 8 8 3 8 8 8 8 3 8 8 8 3 8 3 3 3 3 8 3 3 3 8 3 3 8 3 3 3 8 3 3 3 3 8 3 8 8 8 3 8 8 8 8 3 7 8 8 3 7 3 8 3 3 8 3 3 3 3 3 Matrix Ψf with the standard admissibility condition
  • 22. 22 Building (Ψg ω)H ∈ R512×512 from (Ψg ω1 )H and (Ψg ω2 )H ∈ R384×384 . 25 5 5 8 6 6 16 6 6 16 6 6 32 7 7 32 1 1 32 6 6 16 6 6 32 6 6 16 6 6 32 11 11 32 6 6 16 6 6 32 5 5 16 6 6 32 1 1 32 6 6 32 5 5 16 6 6 16 5 5 31 25 5 8 6 16 6 16 6 32 7 32 32 16 32 16 32 6 32 6 16 6 32 5 16 6 32 32 32 16 16 31 19 32 5 32 6 32 5 31 25 8 16 16 32 32 1 32 6 16 6 32 6 16 6 32 5 32 16 32 16 32 1 32 6 32 5 16 6 16 5 31 20 32 5 32 6 32 5 31 25 7 7 8 9 9 16 10 10 16 11 11 32 18 18 32 15 15 32 17 17 16 10 10 32 8 8 16 11 11 32 19 19 32 11 11 32 14 14 32 12 12 31 17 8 8 16 11 11 16 8 8 32 10 10 16 17 17 32 14 14 32 16 16 17 6 6 16 9 9 16 10 10 16 8 8 31 20 20 32 12 12 32 13 13 32 11 11 31 25 5 5 8 6 6 16 6 6 16 6 6 32 7 7 32 1 1 32 6 6 16 6 6 32 6 6 16 6 6 32 11 11 32 6 6 16 6 6 32 5 5 16 6 6 32 1 1 32 6 6 32 5 5 16 6 6 16 5 5 31 32 32 32 10 10 32 12 12 32 10 10 31 PSfrag replacements (Ψg ω1 )H (Ψg ω2 )H (Ψg ω1 )H |I×I (Ψg ω2 )H |I×I (Ψg ω)H ∈ H(TI×I, k) ˜H
  • 23. 23 Complexity and storage storage complexity Ψg - O(k3√ nhnH log √ nhnH) Ψf - O(k3√ nhnH log2 √ nhnH) Φg O(k √ nhnH) O(k2√ nhnH) Φf O(k2√ nhnH log2 √ nhnH) O(k3√ nhnH log √ nhnH)
  • 24. 24 Prolongation of the right-hand side on the fine grid h H, fH ∈ VH ⊂ Vh is given ⇒ to build fh. Mappings Ψf , Φf can be compressed. H h . = g replacements Φfh ωΦfH ω Ph←H ω
  • 25. 25 Truncation of the small scales : S(Φω) = S(Φg ω) + S(Φf ω) = O(k2√ nhnH log √ nhnH). Ω h HPSfrag replacements T≥H Th TTh T<H Th Fig. 3 – Domain decomposition tree TTh and its parts.
  • 27. 27 (left) Skin problem, (right) model of a cell. a b c Lipid layer α β 0 10.25 0.75 0.5 1 4h [Khoromskij, Wittum 02]
  • 28. 28 α ucg−˜u 2 ucg 2 ucg − ˜u ∞ ucg − ˜u A 1.0 6.6 ∗ 10−9 7.1 ∗ 10−10 2.3 ∗ 10−7 10−1 2.0 ∗ 10−8 1.4 ∗ 10−8 2.0 ∗ 10−6 10−2 6.6 ∗ 10−8 2.6 ∗ 10−7 1.7 ∗ 10−5 10−3 7.4 ∗ 10−7 1.8 ∗ 10−5 4.2 ∗ 10−4 10−4 4.2 ∗ 10−6 1.8 ∗ 10−3 1.4 ∗ 10−2 10−5 7.0 ∗ 10−5 2.3 ∗ 10−1 9.0 ∗ 10−1 Tab. 1 – Dependence of absolute and relative errors on α. 1292 dofs, εk = 10−8 , β = 1.0, residium Au − f = 10−10 , A = 1.22 ∗ 105 .
  • 29. 29 ε ucg−˜u 2 ucg 2 ucg − ˜u ∞ ucg − ˜u A 10−6 4.4 ∗ 10−1 6.67 ∗ 102 1.1 ∗ 103 10−8 7.27 ∗ 10−5 2.3 ∗ 10−1 9.0 ∗ 10−1 10−10 5.1 ∗ 10−7 1.0 ∗ 10−3 3.0 ∗ 10−3 10−12 3.9 ∗ 10−9 1.2 ∗ 10−5 2.9 ∗ 10−5 10−14 1.2 ∗ 10−11 6.6 ∗ 10−7 1.2 ∗ 10−7 10−16 1.6 ∗ 10−12 1.1 ∗ 10−8 1.7 ∗ 10−8 Tab. 2 – Dependence of absolute and relative errors on εk. 1292 dofs, α = 10−5 , β = 1.0, residium Au − f = 10−10 , A 2 = 1.22 ∗ 105 . ε is responsible for the H-matrix approximation accuracy. σk ≤ εσ1.
  • 30. 30 dofs Φg,Φf ,h,Kb Φg,Φf ,H=0.5,Kb Φg,Φf ,H=0.125,Kb 332 2.45 ∗ 102, 4 ∗ 102 9.1 ∗ 10, 1.7 ∗ 102 2 ∗ 102, 2.8 ∗ 102 652 1.1 ∗ 103, 2.4 ∗ 103 2.9 ∗ 102, 1.2 ∗ 103 7.9 ∗ 102, 1.8 ∗ 103 1292 5 ∗ 103, 1.4 ∗ 104 6.8 ∗ 102, 8 ∗ 103 2.6 ∗ 103, 1.2 ∗ 104 2562 2.1 ∗ 104, 7.86 ∗ 104 1.4 ∗ 103, 4.1 ∗ 104 7.4 ∗ 103, 6.9 ∗ 104 Tab. 3 – Dependence of memory requirements for Φg and Φf on numbers of dofs and size of the interface, f = 4, nmin = 12, u = x2 + y2 and k = 7.
  • 31. 31 Storage ε LLT (Mb) HDD(Mb) (A−1)H(Mb) 10−3 13.3 19.7 51.0 10−4 14.7 20.1 64.0 10−5 16.0 20.4 75.2 10−6 17.2 20.6 87.4 Tab. 4 – Dependence of memory requirements on ε, 1292 dofs.
  • 32. 32 dofs HDD pre,LLT ,cg Inv(A) pre,LLT 332 0.19 0.1=0.03+0.02+0.04 0.24 0.11=0.03+0.08 652 0.96 0.6=0.2+0.1+0.26 3.54 0.5=0.2+0.3 1292 5.6 5=2.6+0.6+1.8 65.8 4.7=2.7+2.0 2572 36.1 53=38.0+3.4+11.4 - 50=38.2+11.7 5122 218 - - - Tab. 5 – Comparison of times for the skin problem with α(x, y) = 10−5 , ε = εcg = 10−8 .
  • 33. 33 Oscillatory coefficients global k ˜u40 − ˜uk 2 / ˜u40 2 ˜u40 − ˜uk ∞ 2 7 7 ∗ 10−2 4 2 ∗ 10−2 1.8 ∗ 10−3 6 5.4 ∗ 10−4 4.5 ∗ 10−5 8 6.6 ∗ 10−5 6.3 ∗ 10−6 10 7.6 ∗ 10−6 9 ∗ 10−7 Tab. 6 – α(x, y) = 1 + 0.5sin(50x)sin(50y) ω u40 − ˜uk 2 / u40 2 u40 − ˜uk ∞ 10 1.65 ∗ 10−4 1.76 ∗ 10−5 50 1.8 ∗ 10−4 1.9 ∗ 10−5 450 7.7 ∗ 10−4 10−4 Tab. 7 – 2572 Dofs, f = 1, α(x, y) = 1 + 0.5sin(ωx)sin(ωy).
  • 34. 34 Ω α β 0.1 0.2 0.8 0.9 0.1 0.2 0.8 0.9 Fig. 4 – Domain Ω = (0, 1)2 with jumping coefficients α and β.
  • 35. 35 ε Au − f 2 cg ; HDD(sec) ucg−˜u 2 ˜u 2 ucg − ˜u ∞ 10−4 2 ∗ 10−4 5.3 ; 8.9 6.7 ∗ 10−1 1.4 10−6 4.8 ∗ 10−7 5.0 ; 10.1 1.8 ∗ 10−4 9.5 ∗ 10−4 10−8 1.4 ∗ 10−8 5.7 ; 11.5 1.1 ∗ 10−6 1.48 ∗ 10−5 10−10 1.45 ∗ 10−8 6.7 ; 12.3 5.3 ∗ 10−7 10−5 10−12 1.2 ∗ 10−8 7.4 ; 13.5 5.2 ∗ 10−7 10−5 Tab. 8 – Dependence of the relative and absolute errors on ε, ˜u is HDD solution from ε, α = 10, β = 0.01, 1292 dofs.
  • 36. 36 Properties of HDD : 1. HDD computes uh := Bhfh + Chgh or uh := BHfH + Chgh. 2. Bh, BH and Ch have H-matrix format. 3. The complexities are O(k2 nh log3 nh) and O(k2√ nhnH log3 √ nhnH). 4. The storages are O(knh log2 nh) and O(k √ nhnH log2 √ nhnH). 5. HDD computes functionals of the solution : (a) Neumann data ∂uh ∂n at the boundary, (b) mean values ω uhdx, ω ⊂ Ω, the solution at a point, the solution in a small subdomain ω, (c) flux C u−→n dx, where C is a curve in Ω.
  • 37. 37 6. HDD for multiple right-hand sides and multiple Dirichlet data. 7. HDD can easily be parallelized. 8. Problems with repeated patterns.
  • 38. 38 Thanks for your attention !