SlideShare a Scribd company logo
Chapter 14
Problem Solutions

14.1
       vo
Ad =      = −80
       vi
vo (max) = 4.5 ⇒ vi (max) = 56.25 mV
                   56.25
So vi (max)rms =           = 39.77 mV
                     2

14.2




(a)
      4.5
i2 =       = 0.028125 mA
      160
      4.5
iL =       = 4.5 mA
       1
Output Circuit = 4.528 mA
        v     −4.5
 vi = − o =        ⇒ vi = −0.05625 V
         A     80
(b)
                 v   4.5
io ≈ 15 mA = o =
                RL RL
          ⇒ RL (min) = 300 Ω

14.3
(1)       vo = 2 V
(2)       v2 = 12.5 mV
(3)       AOL = 2 × 104
(4)       v1 = 8 μ V
(5)       AOL = 1000

14.4
From Eq. (14.4)
− R2 / R1
ACL =
             1 ⎛ R2 ⎞
         1+     ⎜1 + ⎟
            AoL ⎝     R1 ⎠
               − R2 / R1
−15 =
               1 ⎛ R2 ⎞
         1+          ⎜1 + ⎟
            2 × 103 ⎝    R1 ⎠
                       ⎛R ⎞
                    15 ⎜ 2 ⎟
   ⎛        1 ⎞        ⎝ R1 ⎠ = R2
15 ⎜ 1 +         ⎟+
   ⎝     2 × 103 ⎠ 2 × 103      R1
             R2
15.0075 =       (0.9925)
             R1
R2
   = 15.12
R1

14.5




vI − v1 v1 − v0 v1
       =       + and v0 = − A0 L v1
  R1      R2    Ri
                 v0
so that v1 = −
                 A0 L
 vI v0         ⎛ 1     1      1⎞
    +     = v1 ⎜ +         + ⎟
 R1 R2         ⎝ R1 R2 Ri ⎠
So
 vI       ⎡1        1 ⎛ 1      1     1 ⎞⎤
    = −v0 ⎢ +          ⎜ +        + ⎟⎥
 R1       ⎣ R2 A0 L ⎝ R1 R2 Ri ⎠ ⎦
Then
v0                −(1/ R1 )
    =                                 = ACL
vI ⎡ 1         1 ⎛ 1        1    1 ⎞⎤
      ⎢ +          ⎜ +        + ⎟⎥
      ⎣ R2 A0 L ⎝ R1 R2 Ri ⎠ ⎦
From Equation (14.20) for RL = ∞ and R0 = 0
 1  1  1 (1 + A0 L )
   = + ⋅
Rif Ri R2    1
a.         For Ri = 1 kΩ
                    −(1/ 20)
ACL =
         ⎡ 1       1 ⎛ 1       1 1 ⎞⎤
         ⎢100 + 103 ⎜ 20 + 100 + 1 ⎟ ⎥
         ⎣           ⎝             ⎠⎦
                −0.05
       =
         [0.01 + 1.06 × 10−3 ]
or
⇒ ACL = −4.52
 1 1 1 + 103
   = +       ⇒ Rif = 90.8 Ω
Rif 1 100
b.           For Ri = 10 kΩ
                     −(1/ 20)
ACL =
           ⎡ 1     1 ⎛ 1      1     1 ⎞⎤
           ⎢100 + 103 ⎜ 20 + 100 + 10 ⎟ ⎥
           ⎣          ⎝               ⎠⎦
                 −0.05
       =
           [0.01 + 1.6 × 10−4 ]
or
⇒ ACL = −4.92
 1   1 1 + 103
   = +         ⇒ Rif = 98.9 Ω
Rif 10   100
c.           For Ri = 100 kΩ
                      −(1/ 20)
ACL =
           ⎡ 1     1 ⎛ 1      1     1 ⎞⎤
           ⎢100 + 103 ⎜ 20 + 100 + 100 ⎟ ⎥
           ⎣          ⎝                ⎠⎦
                −0.05
       =
           [0.01 + 7 × 10−5 ]
or
              ⇒ ACL = −4.965
 1   1 1 + 103
   =    +      ⇒ Rif = 99.8 Ω
Rif 100   100

14.6




                 ⎛ R2 ⎞
                 ⎜1 + ⎟
       v
ACL = o =        ⎝    R1 ⎠
       vi ⎡       1 ⎛ R2 ⎞ ⎤
            ⎢1 +     ⎜1 + ⎟ ⎥
            ⎣ AOL ⎝       R1 ⎠ ⎦
For the ideal:
⎛ R2 ⎞ 0.10
⎜1 + ⎟ =           = 50
⎝    R1 ⎠ 0.002
vo (actual ) = (0.10)(1 − 0.001) = 0.0999
So
0.0999        50
       =              = 49.95
 0.002 1 +    1
                 (50)
             AOL
which yields
AOL = 1000

14.7
From Equation (14.18)
                      ⎛A          1 ⎞
                    − ⎜ OL − ⎟
         v
 Avf 1 = o1 =         ⎝ Ro R2 ⎠
          v1 ⎛ 1            1       1 ⎞
                  ⎜      +      + ⎟
                  ⎝ RL Ro R2 ⎠
Or
           ⎛ 5 × 103       1 ⎞
        −⎜             −       ⎟
                1        100 ⎠          −(4.99999 × 103 )
vo1 = ⎝                          ⋅ v1 =                   ⋅ v1
          ⎛1 1 1 ⎞                           1.11
          ⎜     + +          ⎟
          ⎝ 10 1 100 ⎠
vo1 = −4.504495 × 103 ⋅ v1
Now
 i1 vi − v1
     =           ≡K
v1       R1v1
Then
vi − v1 = KR1v1
which yields
           vi
v1 =
       KR1 + 1
Now, from Equation (14.20)
                    ⎡                  1 ⎤
                      1 + 5 × 103 + ⎥
        1       1 ⎢                   10
K= +                ⎢                    ⎥
       10 100 ⎢ 1 + 1 + 1 ⎥
                    ⎢
                    ⎣      10 100 ⎥      ⎦
                    ⎡ 5.0011× 103 ⎤
   = (0.1) + (0.01) ⎢             ⎥ = 45.15495
                    ⎣     1.11    ⎦
Then
               vi               vi
v1 =                       =
     ( 45.15495)(10 ) + 1 452.5495
We find
                      ⎡    vi    ⎤
vo1 = −4.504495 × 103 ⎢          ⎥
                      ⎣ 452.5495 ⎦
Or
       v
Avf 1 = o1 = −9.9536
        vi
For the second stage, RL = ∞
⎛ 5 × 103    1 ⎞
      −⎜         −     ⎟
            1      100 ⎠
vo 2 = ⎝                 ⋅ v1′ = −4.950485 × 103 ⋅ v1′
         ⎛1 1 ⎞
         ⎜ +       ⎟
         ⎝ 1 100 ⎠
                 ⎡           ⎤
       1      1 ⎢1 + 5 × 103 ⎥
K≡ +             ⎢           ⎥ = 49.61485
      10 100 ⎢ 1 + 1 ⎥
                 ⎢
                 ⎣    100 ⎥  ⎦
         vo1              vo1             vo1
v1′ =          =                      =
       KR1 + 1 (49.61485)(10) + 1 497.1485
Then
vo 2 −4.950485 × 103
      =                    = −9.95776
 vo1         497.1485
So
        v
Avf = o 2 = (−9.9536)(−9.95776) ⇒ Avf = 99.12
         vi

14.8
a.




v1 − vI  v v −v
        + 1 + 1 0 =0                                     (1)
R3 + Ri R1     R2
   ⎡ 1         1    1⎤ v      vI
v1 ⎢         + + ⎥= 0 +
   ⎣ R3 + Ri R1 R2 ⎦ R2 R3 + Ri
 v0 v0 − A0 L vd v0 − v1
     +            +      =0                              (2)
 RL        R0        R2
or
   ⎡1      1     1⎤ v     A v
v0 ⎢ +        + ⎥ = 1 + 0L d
   ⎣ RL R0 R2 ⎦ R2         R0
     ⎛ v −v ⎞
vd = ⎜ I 1 ⎟ ⋅ Ri                                        (3)
     ⎝ R3 + Ri ⎠
So substituting numbers:
   ⎡ 1         1    1⎤ v           vI
v1 ⎢        + + ⎥= 0 +                                   (1)
   ⎣10 + 20 10 40 ⎦ 40 10 + 20
or
v1[0.15833] = v0 [0.025] + vI [0.03333]
   ⎡1 1   1 ⎤ v (104 )vd
v0 ⎢ +   + ⎥= 1 +                                        (2)
   ⎣1 0.5 40 ⎦ 40 0.5
or
v0 [3.025] = v1 [ 0.025] + ( 2 × 104 ) vd
      ⎛ v −v ⎞
vd = ⎜ I 1 ⎟ ⋅ 20 = 0.6667 ( vI − v1 )                         (3)
      ⎝ 10 + 20 ⎠
So
v0 [3.025] = v1 [ 0.025] + ( 2 × 104 ) ( 0.6667 )( vI − v1 )   (2)
or
v0 [3.025] = 1.333 ×10 4 vI − 1.333 × 104 v1
From (1):
v1 = v0 ( 0.1579 ) + vI ( 0.2105 )
Then
v0 [3.025] = 1.333 × 104 vI − 1.333 × 104 ⎡ v0 ( 0.1579 ) + vI ( 0.2105 ) ⎤
                                          ⎣                               ⎦
v0 ⎡ 2.1078 ×103 ⎤ = vI ⎡1.0524 ×104 ⎤
   ⎣             ⎦      ⎣            ⎦
or
        v
 ACL = 0 = 4.993
        vI
To find Rif : Use Equation (14.27)
   ⎛ 0.5 0.5 ⎞
iI ⎜ 1 +   +    ⎟
   ⎝     1   40 ⎠
               1 ⎞ ⎛ 0.5 0.5 ⎞ 0.5 ⎫ (10 ) vd
                                                     3
      ⎧⎛ 1
= v1 ⎨⎜ + ⎟ ⎜ 1 +           +      ⎟ −      ⎬−
      ⎩⎝ 10 40 ⎠ ⎝       1      40 ⎠ (40) 2 ⎭      40
iI (1.5125) = v1{(0.125)(1.5125) − 0.0003125} − 25vd
or
iI (1.5125) = vI {0.18875} − 25vd
Now
vd = iI Ri = iI (20) and v1 = vI − iI (20)
So
iI (1.5125) = [vI − iI (20)] ⋅ [0.18875] − 25iI (20)
iI [505.3] = vI (0.18875)
or
vI
     = 2677 kΩ
 iI
Now Rif = 10 + 2677 ⇒ Rif = 2.687 MΩ
To determine R0 f : Using Equation (14.36)
            ⎡             ⎤     ⎡       ⎤
  1     1 ⎢ A0 L          ⎥ 1 ⎢ 103 ⎥
     =     ⋅⎢             ⎥=   ⋅⎢       ⎥
  ′
 R0 f R0 ⎢        R2      ⎥ 0.5 ⎢1 + 40 ⎥
            ⎢1 + R R      ⎥     ⎢ 10 20 ⎥
            ⎣     1  i    ⎦     ⎣       ⎦
     ′
or R0 f = 3.5 Ω
Then R0 f = 1 kΩ 3.5 Ω
⇒ R0 f = 3.49 Ω
b.       Using Equation (14.16)
 dACL         ⎛ 5 ⎞   dA
      = (−10) ⎜ 3 ⎟ ⇒ CL = −(0.05)%
  ACL         ⎝ 10 ⎠   ACL

14.9
v0 − A0 L vd v0 − vI
               +          = 0 and vd = vI − v0
    R0             Ri
So
 v0 A0 L                   v   v
   −        ⋅ (vI − v0 ) + 0 − I = 0
 R0 R0                     Ri Ri
   ⎡1 A      1⎤     ⎡1 A ⎤
v0 ⎢ + 0 L + ⎥ = vI ⎢ + 0 L ⎥
   ⎣ R0 R0 Ri ⎦     ⎣ Ri R0 ⎦
   ⎡ 1 (104 ) 1 ⎤       ⎡ 1   (104 ) ⎤
v0 ⎢    +    +   ⎥ = vI ⎢   +        ⎥
   ⎣ 0.2 0.2 100 ⎦      ⎣100 0.2 ⎦
v0 [5.000501× 104 ] = vI [5.000001× 10 4 ]
           v0
So ACL =      = 0.9999
           vI
b.        Set vI = 0
       v0 − A0 L vd v0
i0 =               + and vd = −v0
           R0       Ri
        ⎡1 A     1⎤
i0 = v0 ⎢ + 0 L + ⎥
        ⎣ R0 R0 Ri ⎦
Then
  1      1 A0 L 1
     =      +  +
 R0 f R0 R0 Ri
or
  1    1 (104 ) 1
     =   +     +
 R0 f 0.2 0.2 100
which yields
R0 f ≅ 0.02 Ω

14.10
vI 1 − v1 vI 2 − v1 v1 − v0
           +           =
     20        10           40
 vI 1 vI 2 v0            ⎡1     1      1⎤
       +     +      = v1 ⎢ + + ⎥
 20 10 40                ⎣ 20 10 40 ⎦
                                       v
and v0 = − A0 L v1 so that v1 = − 0
                                       A0L
Then
                                   ⎧1      1      ⎛ 7 ⎞⎫
 vI 1 (0.05) + vI 2 (0.10) = −v0 ⎨ +            ⋅
                                              3 ⎜     ⎟⎬
                                   ⎩ 40 2 × 10 ⎝ 40 ⎠ ⎭
                            = −v0 [2.50875 × 10−2 ]
           ⇒ v0 = −1.993vI 1 − 3.986vI 2
Δv0 2 − 1.993  Δv
   =          ⇒ 0 = 0.35%
v0      2      v0

14.11




       ⎛ 40 ⎞            ⎛ 4⎞
vB = ⎜           ⎟ v2 = ⎜ ⎟ v2 = 0.8v2              (1)
       ⎝ 40 + 10 ⎠       ⎝ 5⎠
v1 − v A v A − v0
          =
   10          40
 v1 v0          ⎛1       1 ⎞
     +     = vA ⎜ + ⎟
10 40           ⎝ 10 40 ⎠
v1 (0.1) + v0 (0.025) = vA (0.125)                  (2)
v0 = A0 L vd = A0 L (vB − v A )                     (3)
or
v0 = A0 L [0.8v2 − v A ]
  v0
      − 0.8v2 = −v A
 A0 L
                             v0
           ⇒ v A = 0.8v2 −
                             A0 L
Then
⎡          v ⎤
v1 (0.1) + v0 (0.025) = (0.125) ⎢0.8v2 − 0 ⎥
                                  ⎣        A0 L ⎦
                               ⎡        0.125 ⎤
    v1 (0.1) − v2 (0.1) = −v0 ⎢0.025 +
                               ⎣         103 ⎥⎦
                                          −2
                        = −v0 [2.5125 × 10 ]
                                 v0
                     ⇒ Ad =            = 3.9801
                               v2 − v1
                         ΔAd 0.0199
                     ⇒       =      ⇒ 0.4975%
                          Ad    4

14.12
a.        Considering the second op-amp and Equation (14.20), we have
                 ⎡       ⎤
  1      1    1 ⎢1 + 100 ⎥            101
      = +       ⋅⎢       ⎥ = 0.10 +
 Rif 2 10 0.1 ⎢ 1 + 1 ⎥             (0.1)(11)
                 ⎢ 0.1 ⎥
                 ⎣       ⎦
So Rif 2 = 0.0109 kΩ
The effective load on the first op-amp is then
RL1 = 0.1 + Rif 2 = 0.1109 kΩ
Again using Equation (14.20), we have
                           1
              1 + 100 +
  1     1 1             0.1109 = 0.10 + 110.017
     = + ⋅
 Rif 10 1 1 + 1 + 1                      11.017
                   0.1109 1
so that
 Rif = 99.1 Ω
b.        To determine R0 f :
For the first op-amp, we can write, using Equation (14.36)
             ⎡           ⎤    ⎡         ⎤
  1      1 ⎢ A0 L        ⎥ 1 ⎢ 100 ⎥
       =    ⋅⎢           ⎥ = ⋅⎢         ⎥
 R0 f 1 R0 ⎢        R2 ⎥ 1 ⎢        40 ⎥
               1+               1+
             ⎢           ⎥    ⎢         ⎥
                              ⎣ 1 || 10 ⎦
             ⎣ R1 || Ri ⎦
which yields R0 f 1 = 0.021 kΩ
For the second op-amp, then
            ⎡                      ⎤
            ⎢                      ⎥
  1     1 ⎢           A0 L         ⎥
     =    ⋅
 R0 f R0 ⎢              R2         ⎥
            ⎢1 + ( R + R ) || R    ⎥
            ⎣       1     0f1  i   ⎦
          ⎡              ⎤
        1 ⎢      100     ⎥
     = ⋅⎢                ⎥
        1 ⎢1 +    0.10   ⎥
          ⎢ (0.121) ||10 ⎥
          ⎣              ⎦
or R0 f = 18.4 Ω
c.        To find the gain, consider the second op-amp.
v01 − (−vd 2 ) vd 2 −vd 2 − v02
              +    =                        (1)
     0.1        Ri     0.1
 v01        ⎛ 1     1     1 ⎞      v02
     + vd 2 ⎜     + +       ⎟=−
0.1         ⎝ 0.1 10 0.1 ⎠         0.1
or
v01 (10) + vd 2 (20.1) = −v02 (10)
v02 − A0 L vd 2 v02 − (−vd 2 )
               +               =0           (2)
     R0              0.1
v02         ⎛ 100 1 ⎞ v02
     − vd 2 ⎜     −     ⎟+    =0
 1          ⎝ 1 0.1 ⎠ 0.1
v02 (11) − vd 2 (90) = 0
or
vd 2 = v02 (0.1222)
Then Equation (1) becomes
v01 (10) + v02 (0.1222)(20.1) = −v02 (10)
or
v01 = −v02 (1.246)
Now consider the first op-amp.




vI − (−vd 1 ) vd 1 −vd 1 − v01
             +    =                         (1)
     1         Ri       1
              ⎛1 1 1⎞
vI (1) + vd 1 ⎜ + + ⎟ = −v01 (1)
              ⎝ 1 10 1 ⎠
or
vI (1) + vd 1 (2.1) = −v01 (1)
  v01   v − A0 L vd 1 v01 − (−vd 1 )
       + 01          +               =0     (2)
0.1109      R0              1
    ⎛ 1         1 1⎞         ⎛ 100 1 ⎞
v01 ⎜          + + ⎟ − vd 1 ⎜     − ⎟=0
    ⎝ 0.1109 1 1 ⎠           ⎝ 1 1⎠
v01 (11.017) − vd 1 (99) = 0
or
vd 1 = v01 (0.1113)
Then Equation (1) becomes
vI (1) + v01 (0.1113)(2.1) = −v01
or vI = −v01 (1.234)
We had v01 = −v02 (1.246)
So vI = v02 (1.246)(1.234)
     v02
or       = 0.650
     vI
                v02
d.         Ideal    =1
                vI
So ratio of actual to ideal = 0.650.

14.13
(a)        For the op-amp. A0 L ⋅ f 3dB = 106
           106
 f 3dB =          = 50 Hz
         2 × 104
For the closed-loop amplifier.
         106
 f 3dB =      = 40 kHz
          25
(b)        Open-loop amplifier.
        2 × 104             2 × 104
 A=               ⇒| A | =
              f                        2
       1+ j                   ⎛ f ⎞
             f3dB          1+ ⎜      ⎟
                              ⎝ f3dB ⎠
                                2 × 104
 f = 0.25 f 3dB ⇒ A =                          = 1.94 × 104
                                           2
                              1 + (0.25)
                           2 × 104
 f = 5 f 3− dB ⇒ A =           = 3.92 × 103
                     1 + (5) 2
Closed-loop amplifier
                            25
 f = 0.25 f 3dB ⇒ A =                = 24.25
                        1 + (0.25) 2
                             25
 f = 5 f 3− dB ⇒ A =                   = 4.90
                           1 + (5) 2

14.14
The open loop gain can be written as
                              A0
 A0 L ( f ) =
              ⎛          f ⎞⎛              f ⎞
              ⎜1 + j ⋅      ⎟⎜ 1 + j ⋅         ⎟
              ⎝        f PD ⎠ ⎝        5 × 106 ⎠
where A0 = 2 × 105.
The closed-loop response is
         A0 L
ACL =
      1 + β A0 L
At low frequency,
          2 × 105
100 =
      1 + β (2 × 105 )
So that β = 9.995 × 10−3.
Assuming the second pole is the same for both the open-loop and closed-loop, then
             ⎛ f ⎞         −1 ⎛     f ⎞
φ = − tan −1 ⎜      ⎟ − tan ⎜         6 ⎟
             ⎝ f PD ⎠         ⎝ 5 × 10 ⎠
For a phase margin of 80°, φ = −100°.
So
                    ⎛ f ⎞
−100 = −90 − tan −1 ⎜       6 ⎟
                    ⎝ 5 × 10 ⎠
or
 f = 8.816 × 105 Hz
Then
 A0 L = 1
                                 2 × 105
      =
                                   2                            2
               ⎛ 8.816 × 105 ⎞            ⎛ 8.816 × 105 ⎞
            1+ ⎜             ⎟         1+ ⎜         6   ⎟
               ⎝     f PD    ⎠            ⎝ 5 × 10 ⎠
or
8.816 × 105
             ≅ 1.9696 × 105
      f PD
or
 f PD = 4.48 Hz

14.15
(a)         1st stage
 (10) f3− dB = 1 MHz ⇒ f 3− dB = 100 kHz
2nd stage
 (50) f3− dB = 1 MHz ⇒ f 3− dB = 20 kHz
Bandwidth of overall system ≅ 20 kHz
(b)         If each stage has the same gain, so
 K = 500 ⇒ K = 22.36
   2

Then bandwidth of each stage
 (22.36) f 3− dB = 1 MHz ⇒ f 3− dB = 44.7 kHz

14.16




            Ao
 A=
                 f
      1+ j
              f3− dB
               Ao                            5 × 104
 A=                           ⇒ 200 =                          ⇒ f3− dB = 40 Hz
                          2                                2
             ⎛ f ⎞                            ⎛ 104 ⎞
          1+ ⎜        ⎟                    1+ ⎜        ⎟
             ⎝ f3− dB ⎠                       ⎝ f3− dB ⎠
Then
 fT = (5 × 104 )(40) ⇒ fT = 2 MHz

14.17
(5 × 104 ) f PD = 106 ⇒ f PD = 20 Hz
(25) f 3− dB 106 ⇒ f3− dB = 40 kHz
           Avo                              25
Av =                     ⇒ Av =
                 f                                     2
        1+ j                            ⎛     f    ⎞
               f3− dB                1+ ⎜        3 ⎟
                                        ⎝ 40 × 10 ⎠
At f = 0.5 f 3− dB = 20 kHz
               25
 Av =                     = 22.36
          1 + (0.5) 2
At f = 2 f 3− dB = 80 kHz
            25
 Av =                    = 11.18
          1 + (2) 2

14.18
(20 × 103 ) ⋅ Avf       MAX
                              = 106 ⇒ Avf   MAX
                                                  = 50

14.19
From Equation (14.55),
            SR      10 × 106
F P BW =          =
         2π VP 0 2π (10)
or
F P BW = f max = 159 kHz

14.20
a.         Using Equation (14.55),
             8 × 106
VP 0   =
         2π (250 × 103 )
or
VP 0 = 5.09 V
b.




           1       1
Period T =   =            = 4 × 10−6 s
            f 250 × 103
One-fourth period = 1 μ s
          VP 0
Slope =        = SR = 8 V/μ s
          1μ s
           ⇒ VP 0 = 8 V

14.21
For input (a), maximum output is 5 V.
S R = 1 V/μs
so




For input (b), maximum output is 2 V.




For input (c), maximum output is 0.5 V so the output is




14.22
For input (a), max v01 = 3 V.




Then v02   max
                 = 3(3) = 9 V




For input (b), max v01 = 1.5 V.
Then v02     max
                   = 3 (1.5 ) = 4.5 V




14.23
 f MAX = 20 kHz, SR = 0.8 V / μ s
           SR       0.8 × 106
V po =           =               ⇒ V po = 6.37 V
         2π f MAX 2π (20 × 103 )

14.24
               ⎛V ⎞                      ⎛V ⎞
I1 = I S 1 exp ⎜ BE1 ⎟ , I 2 = I S 2 exp ⎜ BE 2 ⎟
               ⎝ VT ⎠                    ⎝ VT ⎠
Want I1 = I 2 , so
                             ⎛V ⎞
       5 × 10−14 (1 + x) exp ⎜ BE1 ⎟
I1
   =1=                       ⎝ VT ⎠
I2                           ⎛V ⎞
       5 × 10−14 (1 − x) exp ⎜ BE 2 ⎟
                             ⎝ VT ⎠
         (1 + x)     ⎛ V −V ⎞
    =            exp ⎜ BE1 BE 2 ⎟
         (1 − x)     ⎝    VT    ⎠
Or
1+ x         ⎛ V − VBE1 ⎞          ⎛ VOS ⎞
      = exp ⎜ BE 2         ⎟ = exp ⎜     ⎟
1− x         ⎝      VT     ⎠       ⎝ VT ⎠
             ⎛ 0.0025 ⎞
      = exp ⎜          ⎟ = 1.10
             ⎝ 0.026 ⎠
Now
1 + x = (1 − x )(1.10) ⇒
x = 0.0476 ⇒ 4.76%

14.25
From Equation (14.62),
⎛ vCE1 ⎞          ⎛     vCE 2     ⎞
⎜1+ V ⎟ I ⎜ 1+ V                  ⎟
⎜      AN ⎟
            = S3 ⋅⎜       AN      ⎟
⎜ 1 + vEB ⎟ I S 4 ⎜ 1 + vEC 4     ⎟
⎜ V ⎟             ⎜               ⎟
⎝      AP ⎠       ⎝     VAP       ⎠
For vCE 2 = 0.6 V, then vEC 4 = 5 V. We have vCE1 = 5 V so
⎛       5 ⎞          ⎛ 0.6 ⎞
⎜ 1 + 80 ⎟ I S 3 ⎜ 1 + 80 ⎟
⎜          ⎟=       ⋅⎜       ⎟
⎜ 1 + 0.6 ⎟ I S 4 ⎜ 1 + 5 ⎟
⎜          ⎟         ⎜       ⎟
⎝      80 ⎠          ⎝    80 ⎠
or
 I S 3 (1.0625) 2
      =              = 1.112
 I S 4 (1.0075) 2
So
I S 3 = (10−14 ) (1.112 )
or
I S 3 = 1.112 × 10−14 A

14.26




By superposition:
            R
vo (vi ) = − 2 ⋅ vi = −50vi
            R1
            ⎛ R ⎞
vo (vos ) = ⎜ 1 + 2 ⎟ ⋅ vos = 51vos
            ⎝     R1 ⎠
So
vo = vo ( vi ) + vo ( vos ) = −50vi + 51vos
For vi = 20 mV and vos + 2.5 mV
vo = −50(0.02) + 51(0.0025) = −0.8725 V
For vi = 20 mV and vos = −2.5 mV
vo = −50(0.02) + 51(−0.0025) = −1.1275 V
So
−1.1275 ≤ vo ≤ −0.8725 V

14.27
vo = −50vi = −50 ⎡ ±2.5 mV + sin ω t ( mV ) ⎤
                 ⎣                          ⎦
vo = [ ±0.125 − 0.25sin ω t ] ( v )

14.28
0.5 × 10−3
I=              = 5 × 10−8 A
        104
Also
                        i
       dV             1      I
I = C o ⇒ Vo = ∫ Idt = ⋅ t
        dt           C0      C
Then
     5 × 10−8
5=            t ⇒ t = 103 s
    10 × 10−6

14.29
                       ⎛ 100 ⎞
a.        | v01 | = 10 ⎜ 1 +    ⎟ or | v01 | = 110 mV
                       ⎝     10 ⎠
Then
                           ⎛ 50 ⎞
| v02 | = | v01 | (5) + 10 ⎜ 1 + ⎟ = (110)(5) + (10)(6)
                           ⎝ 10 ⎠
or
| v02 | = 610 mV

14.30
v0 due to vI
           ⎛   1 ⎞
v0 = (0.5) ⎜1 + ⎟ = 0.9545 V
           ⎝ 1.1 ⎠
Wiper arm at V + = 10 V, (using superposition)
     ⎛ R1 || R5 ⎞             ⎛ 0.0909 ⎞
v1 = ⎜               ⎟ (10) = ⎜             ⎟ (10)
     ⎝ R1 || R5 + R4 ⎠        ⎝ 0.0909 + 10 ⎠
                            = 0.090
             ⎛ 1⎞
Then v01 = − ⎜ ⎟ (0.090) = −0.090
             ⎝ 1⎠
Wiper arm in center, v1 = 0 and v02 = 0
Wiper arm at V − = −10 V, v1 = −0.090
So
v03 = 0.090
Finally, total output v0 : (from superposition)
Wiper arm at V + ,
v0 = 0.8645 V
Wiper arm in center,
v0 = 0.9545 V
Wiper arm at V − ,
v0 = 1.0445 V

14.31
a.        R1′ = R2 = 0.5 || 25 = 0.490 kΩ
                 ′
or
R1′ = R2 = 490 Ω
       ′
b.       From Equation (14.75),
           ⎛ 125 × 10−6 ⎞
(0.026) ln ⎜        −14 ⎟
                          + (0.125) R1′
           ⎝ 2 × 10     ⎠
                       ⎛ 125 × 10−6 ⎞
        = (0.026) ln ⎜           −14 ⎟
                                       + (0.125) R2′
                       ⎝ 2.2 × 10 ⎠
0.586452 + (0.125) R1′ = 0.583974 + (0.125) R2   ′
0.002478 = (0.125)( R2 − R1′)
                       ′
So R2 − R1′ = 0.0198 kΩ ⇒ 19.8 Ω
      ′
Then
  R2 (1 − x) Rx   R × Rx
                − 1       = 0.0198
 R2 + (1 − x) Rx R1 + xRx
 (0.5)(1 − x)(50)       (0.5)(50) x
                   −                 = 0.0198
(0.5) + (1 − x)(50) (0.5) + x(50)
 25(1 − x)       25 x
             −            = 0.0198
50.5 − 50 x 0.5 + 50 x
(0.5 + 50 x)(25 − 25 x) − (25 x)(50.5 − 50 x)
                                              = 0.0198
          (50.5 − 50 x )(0.5 + 50 x)
25 {0.5 − 0.5 x + 50 x − 50 x 2 − 50.5 x + 50 x 2 } = 0.0198 {25.25 + 2525 x − 25 x − 2500 x 2 }
25 {0.5 − x} = 0.0198 {25.25 + 2500 x − 2500 x 2 }
0.5 − x = 0.019998 + 1.98 x − 1.98 x 2
1.98 x 2 − 2.98 x + 0.48 = 0
     2.98 ± (2.98) 2 − 4(1.98)(0.48)
x=
                2(1.98)
So
 x = 0.183
and
1 − x = 0.817

14.32
R1′ = R1 ||15 = 0.5 ||15 = 0.4839 kΩ
  ′
R2 = R2 || 35 = 0.5 || 35 = 0.4930 kΩ
From Equation (14.75),
             ⎛i ⎞                        ⎛i ⎞
(0.026) ln ⎜ C1 ⎟ + iC1 R1′ = (0.026) ln ⎜ C 2 ⎟ + iC 2 R2
                                                         ′
             ⎝ IS3 ⎠                     ⎝ IS 4 ⎠
             ⎛i ⎞
(0.026) ln ⎜ C1 ⎟ = iC 2 R2 − iC1 R1′
                           ′
             ⎝ iC 2 ⎠
           ⎛i ⎞             ⎡ i      R′ ⎤
                          ′
(0.026) ln ⎜ C1 ⎟ = iC 2 R2 ⎢1 − C1 ⋅ 1 ⎥
           ⎝ iC 2 ⎠         ⎣         ′
                                iC 2 R2 ⎦
            ⎛i ⎞                  ⎡             ⎛ i ⎞⎤
(0.026) ln ⎜ C1 ⎟ = iC 2 (0.4930) ⎢1 − (0.9815) ⎜ C1 ⎟ ⎥
            ⎝ iC 2 ⎠              ⎣             ⎝ iC 2 ⎠ ⎦
By trial and error:
iC1 = 252 μ A and iC 2 = 248 μ A
or
 iC1
     = 1.0155
iC 2

14.33
From Eq. (14.79), we have
                        ⎛ R ⎞
vo = I B1 R2 − I B 2 R3 ⎜ 1 + 2 ⎟
                        ⎝    R1 ⎠
I B1 = 1 μ A I B 2 = 2 μ A
Setting vo = 0, we have
                                           ⎛ 200 ⎞
0 = (10−6 )( 200 × 103 ) − ( 2 × 10−6 ) R3 ⎜ 1 +    ⎟
                                           ⎝     20 ⎠
         200 × 10−3
R3 =                  ⇒ R = 9.09 K
      ( 2 ×10−6 ) (11) 3
14.34




      R2
1+       = 80
      R1
      R1 = 6.329 K
V f = vI = 5sin ω t ( mV )
I1 + I B = I 2
(a)        VI = 0 ⇒ VX = 0 I 2 = I B
           VO = (10−6 )(500 × 103 ) ⇒ vo = 0.50 V

           VX       v − VX
(b)           + IB = o
           R1          R2
              ⎛ 1  1 ⎞     v            ⎛ 1  1 ⎞
           VX ⎜ + ⎟ + I B = 0 ⇒ vo = R2 ⎜ + ⎟ vI + I B R2
              ⎝ R1 R2 ⎠    R1           ⎝ R1 R2 ⎠
           vo = 80 ⎡5sin ω t ( mV ) ⎤ + (10−6 )( 500 × 103 )
                   ⎣                ⎦
           vo = [ 0.5 + 0.4sin ω t ] ( v )

14.35
a.
For I B 2 = 1 μ A, then v0 = − (10−6 )(104 )
or         v0 = −0.010 V
b.         If a 10 kΩ resistor is included in the feedback loop




Now v0 = − I B 2 (10) + I B1 (10) = 0
Circuit is compensated if I B1 = I B 2 .

14.36
From Equation (14.83), we have
v0 = R2 I 0S
where R2 = 40 kΩ and I 0 S = 3 μ A.
Then
v0 = ( 40 × 103 )( 3 × 10−6 )
or
v0 = 0.12 V

14.37
a.         Assume all bias currents are in the same direction and into each op-amp.
v01 = I B1 (100 kΩ ) = (10−6 )(105 ) ⇒ v01 = 0.1 V
Then
v02 = v01 ( −5 ) + I B1 ( 50 kΩ )
     = ( 0.1)( −5 ) + (10−6 )( 5 × 104 )
     = −0.5 + 0.05
or
v02 = −0.45 V
b.        Connect R3 = 10 ||100 = 9.09 kΩ resistor to noninverting terminal of first op-amp, and
R3 = 10 || 50 = 8.33 kΩ resistor to noninverting terminal of second op-amp.
14.38
a.       For a constant current through a capacitor.
      1 t
v0 = ∫ I dt
     C 0
        0.1× 10−6
or v0 =             ⋅ t ⇒ v0 = (0.1)t
          10−6
b.       At t = 10 s,          v0 = 1 V
c.       Then
     100 × 10−12
v0 =       −6
                 ⋅ t ⇒ v0 = (10−4 )t
        10
At t = 10 s,          v0 = 1 mV

14.39
a.         Assume all bias currents are into the op-amp.
v01 = I B1 ( 50 kΩ ) = (10 ×10−6 )( 50 ×103 )
or
v01 = v02 = 0.5 V
v03 = ( −1)( v01 ) + (10 × 10−6 )( 20 × 103 )
or
v03 = −0.3 V
b.         RA = 10 || 50 ⇒ RA = 8.33 kΩ
RB = 20 || 20 ⇒ RB = 10 kΩ
c.        Assume the worst case offset current, that is, I 0 S = I B1 − I B 2 or I 0 S = I B 2 − I B1 .
From Equation (14.83),
v01 = R2 I 0 S = ( 50 × 103 )( 2 × 10−6 )
or
v01 = v02 = 0.1 V
v03 = ( −1) v01 − I 0 S R2
     = ( −1)( 0.1) − ( 2 × 10−6 )( 20 × 103 )
or
v03 = −0.14 V

14.40
a.        Using Equation (14.79),
Circuit (a),
                                                            ⎛ 50 ⎞
v0 = ( 0.8 × 10−6 )( 50 × 103 ) − ( 0.8 ×10−6 )( 25 × 103 ) ⎜1 + ⎟
                                                            ⎝ 50 ⎠
or
v0 = 0
Circuit (b),
                                                        ⎛ 50 ⎞
v0 = ( 0.8 × 10−6 )( 50 × 103 ) − ( 0.8 × 10 −6 )(103 ) ⎜1 + ⎟
                                                        ⎝ 50 ⎠
            −2
   = 4 × 10 − 1.6
or
v0 = −1.56 V
b.        Assume I B1 = 0.7 μ A and I B 2 = 0.9 μ A, then using Equation (14.79):
Circuit (a),
⎛ 50 ⎞
v0 = ( 0.7 × 10−6 )( 50 × 103 ) − ( 0.9 × 10−6 )( 25 × 103 ) ⎜ 1 + ⎟
                                                             ⎝ 50 ⎠
   = 0.035 − 0.045
or        v0 = −0.010 V
Circuit (b),
                                                       ⎛ 50 ⎞
v0 = ( 0.7 × 10−6 )( 50 × 103 ) − ( 0.9 × 10−6 )(106 ) ⎜1 + ⎟
                                                       ⎝ 50 ⎠
   = 0.035 − 1.8
or        v0 = −1.765 V

14.41
a.        If R = 0,
         ⎛ 100 ⎞
v0,max = ⎜1 +     ⎟ V0 S + I B (100 kΩ)
         ⎝    10 ⎠
       = (11)(10 × 10−3 ) + (2 × 10−6 )(100 × 103 )
v0,max = 0.110 + 0.20
      ⇒ v0,max = 0.310 V
b.




R = 10.1|| 100 = 9.17 kΩ = R

14.42
          ⎛ Ri ⎞
a.        ⎜         ⎟ (15) = 0.010 V
          ⎝ Ri + R2 ⎠
  15
        = 0.0006667
15 + R2
15(1 − 0.0006667) = 0.0006667 R2
Then
R2 = 22.48 MΩ
b.        R1 = Ri || RF = 15 || 10 ⇒ R1 = 6 kΩ

14.43
a.       Assume the offset voltage polarities are such as to produce the worst case values, but the bias
currents are in the same direction.
Use superposition:
Offset voltages
          ⎛ 100 ⎞
| v01 | = ⎜1 +    ⎟ (10) = 110 mV =| v01 |
          ⎝    10 ⎠
                     ⎛ 50 ⎞
| v02 | = (5)(110) + ⎜ 1 + ⎟ (10)
                     ⎝ 10 ⎠
            ⇒ | v02 | = 610 mV
Bias Currents:
v01 = I B (100 kΩ) = (2 ×10−6 )(100 × 103 ) = 0.2 V
Then
v02 = (−5)(0.2) + (2 × 10−6 )(50 × 103 ) = −0.9 V
Worst case: v01 is positive and v02 is negative, then
v01 = 0.31 V and v02 = −1.51 V
b.       Compensation network:




If we want
⎛ RB ⎞ +                   +
⎜         ⎟ V = 20 mV and V = 10 V
⎝ RB + RC ⎠
⎛ 8.33 ⎞
⎜           ⎟ (10) = 0.020
⎝ 8.33 + RC ⎠
or        RC ≅ 4.15 MΩ

14.44
Assume bias currents are in same direction, but assume polarity of offset voltages are such as to
produce the worst case output.
a.         Let I B1 = 5.5 μ A, I B 2 = 4.5 μ A
Bias Current Effects:
v01 = I B1 (50 kΩ) = 0.275 V ⇒ v02 = 0.275 V
v03 = I B1 (20 kΩ) − v01 ⇒ v03 = −0.165 V
Offset Voltage Effects:
           ⎛ 50 ⎞
v01 = (5) ⎜1 + ⎟ = 30 mV ⇒ v02 = 30 mV
           ⎝ 10 ⎠
                ⎛ 20 ⎞
v03 = −v01 − 5 ⎜ 1 + ⎟ ⇒ v03 = −40 mV
                ⎝ 20 ⎠
Total Effect: v01 = 0.305 V and v02 = 0.305 V v03 = −0.205 V

14.45
For circuit (a), effect of bias current:
v0 = (50 × 103 )(100 × 10−9 ) ⇒ 5 mV
Effect of offset voltage
⎛ 50 ⎞
v0 = (2) ⎜1 + ⎟ = 4 mV
         ⎝ 50 ⎠
So net output voltage is v0 = 9 mV
For circuit (b), effect of bias current:
Let I B 2 = 550 nA, I B1 = 450 nA, then from Equation (14.79),
                                                     ⎛ 50 ⎞
 v0 = (450 × 10−9 )(50 × 103 ) − (550 × 10−9 )(106 ) ⎜1 + ⎟
                                                     ⎝ 50 ⎠
               −2
    = 2.25 × 10 − 1.1
or
 v0 = −1.0775 V
If the offset voltage is negative, then
 v0 = (−2)(2) = −4 mV
So the net output voltage is
 v0 = −1.0815 V

14.46
a.      At T = 25°C, V0 S = 2 mV so the output voltage for each circuit is
v0 = 4 mV
b.       For T = 50°C, the offset voltage for is
V0 S = 2 mV + (0.0067)(25) = 2.1675 mV
so the output voltage for each circuit is
v0 = 4.335 mV

14.47
a.       At T = 25°C,         V0 S = 1 mV, then
          ⎛ 50 ⎞
v01 = (1) ⎜ 1 + ⎟ ⇒ v01 = 6 mV
          ⎝ 10 ⎠
and
          ⎛ 60 ⎞        ⎛ 60 ⎞
v02 = v01 ⎜ 1 + ⎟ + (1) ⎜ 1 + ⎟
          ⎝ 20 ⎠        ⎝ 20 ⎠
    = 6(4) + (1)(4) ⇒ v02 = 28 mV
b.        At T = 50°C, V0 S = 1 + (0.0033)(25) = 1.0825 mV, then
v01 = (1.0825)(6) ⇒ v01 = 6.495 mV
and
v02 = (6.495)(4) + (1.0825)(4)
or
v02 = 30.31 mV

14.48
25°C; I B = 500 nA, I 0 S = 200 nA
50°C, I B = 500 nA + (8 nA / °C)(25°C) = 700 nA
      I 0 S = 200 nA + (2 nA / °C)(25°C) = 250 nA
a.         Circuit (a): For I B , bias current cancellation, v0 = 0
Circuit (b): For I B , Equation (14.79),
                                                     ⎛ 50 ⎞
v0 = (500 × 10−9 )(50 × 103 ) − (500 × 10 −9 )(106 ) ⎜ 1 + ⎟
                                                     ⎝ 50 ⎠
   = 0.025 − 1.00 ⇒ v0 = −0.975 V
b.        Due to offset bias currents.
Circuit (a):
v0 = (200 × 10−9 )(50 × 103 ) ⇒ v0 = 0.010 V
Circuit (b):
Let I B 2 = 600 nA
    I B1 = 400 nA
Then
                                                    ⎛ 50 ⎞
v0 = (400 × 10−9 )(50 × 103 ) − (600 × 10−9 )(106 ) ⎜ 1 + ⎟
                                                    ⎝ 50 ⎠
   = 0.020 − 1.20 ⇒ v0 = −1.18 V
c.       Circuit (a): Due to I B , v = 0
Circuit (b): Due to I B ,
                                                    ⎛ 50 ⎞
v0 = (700 × 10−9 )(50 × 103 ) − (700 × 10−9 )(106 ) ⎜1 + ⎟
                                                    ⎝ 50 ⎠
   = 0.035 − 1.40 ⇒ v0 = −1.365 V
Circuit (a): Due to I 0 S ,
v0 = (250 × 10−9 )(50 × 103 ) ⇒ v0 = 0.0125 V
Circuit (b): Due to I 0 S ,
Let I B 2 = 825 nA
    I B1 = 575 nA
Then
                                                    ⎛ 50 ⎞
v0 = (575 × 10−9 )(50 × 103 ) − (825 × 10−9 )(106 ) ⎜ 1 + ⎟
                                                    ⎝ 50 ⎠
   = 0.02875 − 1.65 ⇒ v0 = −1.62 V

14.49
25°C; I B = 2 μ A, I 0 S = 0.2 μ A
50°C, I B = 2 μ A + (0.020 μ A / °C)(25°C ) = 2.5 μ A
      I 0 S = 0.2 μ A + (0.005 μ A / °C)(25°C) = 0.325 μ A
a.          Due to I B : (Assume bias currents into op-amp).
v01 = I B (50 kΩ) = (2 × 10−6 )(50 × 103 )
          ⇒ v01 = 0.10 V
          ⎛ 60 ⎞                              ⎛ 60 ⎞
v02 = v01 ⎜ 1 + ⎟ + I B (60 kΩ) − I B (50 kΩ) ⎜ 1 + ⎟
          ⎝    20 ⎠                           ⎝ 20 ⎠
                        −6                    −6
    = (0.1)(4) + (2 × 10 )(60 × 10 ) − (2 × 10 )(60 × 103 )4
                                  3


or        v02 = 0.12 V
b.       Due to I 0 S :
 1st op-amp. Let I B1 = 2.1 μ A
2nd op-amp. Let I B1 = 2.1 μ A
                 I B 2 = 1.9 μ A
v01 = I B1 (50 kΩ) = (2.1× 10−6 )(50 × 103 )
          ⇒ v01 = 0.105 V
          ⎛ 60 ⎞                                 ⎛ 60 ⎞
v02 = v01 ⎜ 1 + ⎟ + I B1 (60 kΩ) − I B 2 (50 kΩ) ⎜1 + ⎟
          ⎝    20 ⎠                              ⎝ 20 ⎠
    = (0.105)(4) + (2.1× 10 )(60 × 10 ) − (1.9 × 10 −6 )(50 × 103 )(4)
                             −6           3


or
v02 = 0.166 V
c.        Due to I B :
v01 = (2.5 × 10 −6 )(50 × 103 ) ⇒ v01 = 0.125 V
          ⎛ 60 ⎞                              ⎛ 60 ⎞
v01 = v02 ⎜ 1 + ⎟ + I B (60 kΩ) − I B (50 kΩ) ⎜1 + ⎟
          ⎝    20 ⎠                           ⎝ 20 ⎠
                            −6
    = (0.125)(4) + (2.5 × 10 )(60 × 10 ) − (2.5 × 106 )(50 × 103 (4)
                                        3


or         v02 = 0.15 V
Due to I 0 S :
Let I B1 = 2.625 μ A
     I B 2 = 2.3375 μ A
v01 = I B1 (50 kΩ) = (2.6625 × 10−6 )(50 × 103 )
            ⇒ v01 = 1.133 V
          ⎛ 60 ⎞                                 ⎛ 60 ⎞
v02 = v01 ⎜ 1 + ⎟ + I B1 (60 kΩ) − I B 2 (50 kΩ) ⎜ 1 + ⎟
          ⎝ 20 ⎠                                 ⎝ 20 ⎠
    = (0.133)(4) + (2.6625 × 10−6 )(60 × 103 ) − (2.3375 × 10−6 )(50 × 103 )(4)
or
v02 = 0.224 V

14.50




       ⎛ R4 ⎞                                ⎛ R2 ⎞
vB = ⎜            ⎟ vI 1 and v0 (vI 2 ) = vB ⎜ 1 + ⎟
       ⎝ R3 + R4 ⎠                           ⎝    R1 ⎠
or
             ⎛ R4 ⎞ ⎛ R2 ⎞
v0 (vI 2 ) = ⎜           ⎟ ⎜ 1 + ⎟ vI 2
             ⎝ R3 + R4 ⎠ ⎝      R1 ⎠
or vI 1 .
                 R2
v0 (vI 1 ) = −      ⋅ vI
                 R1
Then
     ⎛ R4 ⎞⎛ R2 ⎞             R2
v0 = ⎜         ⎟⎜ 1 + ⎟ vI 2 − ⋅ vI 1
     ⎝ R3 + R4 ⎠ ⎝   R1 ⎠     R1
                          V                 V
we can write vI 2 = vcm + d and vI 1 = Vcm − d ⋅ Then
                            2                2
     ⎛ R4 ⎞⎛ R2 ⎞ ⎛            Vd ⎞ R2 ⎛        Vd ⎞
v0 = ⎜         ⎟⎜ 1 + ⎟ ⎜ Vcm + ⎟ − ⋅ ⎜ Vcm − ⎟
     ⎝ R3 + R4 ⎠ ⎝   R1 ⎠ ⎝     2 ⎠ R1 ⎝         2⎠
Common-mode gain
      v   ⎛ R4 ⎞ ⎛ R2 ⎞ R2
Acm = 0 = ⎜        ⎟ ⎜1 + ⎟ −
     Vcm ⎝ R3 + R4 ⎠ ⎝   R1 ⎠ R1
Differential mode gain
      v     1 ⎡⎛ R4 ⎞⎛ R2 ⎞ R2 ⎤
Ad = 0 = ⎢⎜            ⎟⎜ 1 + ⎟ + ⎥
      Vd 2 ⎣⎝ R3 + R4 ⎠ ⎝    R1 ⎠ R1 ⎦
Then
             A
CM RR = d
             Acm
            1 ⎡⎛ R4 ⎞ ⎛ R2 ⎞ R2 ⎤
             ⋅ ⎢⎜         ⎟ ⎜1 + ⎟ + ⎥
            2 ⎣⎝ R3 + R4 ⎠ ⎝     R1 ⎠ R1 ⎦
          =
             ⎡⎛ R4 ⎞ ⎛ R2 ⎞ R2 ⎤
             ⎢⎜         ⎟ ⎜1 + ⎟ − ⎥
             ⎣⎝ R3 + R4 ⎠ ⎝     R1 ⎠ R1 ⎦
               ⎡                          ⎤
               ⎢                          ⎥
            1 ⎢ R4    1      ⎛ R2 ⎞ R2 ⎥
             ⋅ ⋅           ⋅ ⎜1 + ⎟ +
            2 ⎢ R3
                 ⎛ R4 ⎞ ⎝         R1 ⎠ R1 ⎥
               ⎢ ⎜ 1+ ⎟                   ⎥
               ⎢
               ⎣ ⎝ R3 ⎠                   ⎥
                                          ⎦
CM RR =
          R4        1     ⎛ R2 ⎞ R2
             ⋅          ⋅ ⎜1 + ⎟ −
          R3 ⎛ R4 ⎞ ⎝            R1 ⎠ R1
               ⎜1 + ⎟
               ⎝ R3 ⎠
Minimum CMRR ⇒ Maximum denominator
          R                     R
⇒ maximum 4 and minimum 2 . Then
          R3                     R1
R4 (1.02)(50)
  =           = 5.204
R3 (0.98)(10)
R2 (0.98)(50)
   =            = 4.804
 R1 (1.02)(10)
Then
        1 ⎡ 5.204                      ⎤
                   ⋅ (5.804) + (4.804) ⎥
        2 ⎢ 6.204
CMRR = ⎣                               ⎦
         ⎡ 5.204                     ⎤
         ⎢ 6.204 ⋅ (5.804) − (4.804) ⎥
         ⎣                           ⎦
        1
          ⋅ (9.6725)
      = 2
         (0.06447)
CMRR = 75.0 ⇒ CMRRdB = 20 log10 (75.0)
         ⇒ CMRRdB = 37.5 dB

14.51
Use the results of Problem 14.50:
    R 1 + x ⎛ 50 ⎞
Let 4 =        ⋅ ⎜ ⎟ ≈ (1 + 2 x)(5)
    R3 1 − x ⎝ 10 ⎠
    R 1 − x ⎛ 50 ⎞
Let 2 =        ⋅ ⎜ ⎟ ≈ (1 − 2 x)(5)
    R1 1 + x ⎝ 10 ⎠
Then
1 ⎡ (1 + 2 x ) 5                                  ⎤
              ⎢              ⋅ ( 6 − 10 x ) + (1 − 2 x )( 5 ) ⎥
            2 ⎣ 6 + 10 x                                      ⎦
CMRR =
             ⎡ (1 + 2 x ) 5                                  ⎤
             ⎢              ⋅ ( 6 − 10 x ) − (1 − 2 x )( 5 ) ⎥
             ⎣ 6 + 10 x                                      ⎦
           1
               ⎡30 + 10 x − 100 x + 30 − 10 x − 100 x 2 ⎤
               ⎣
                                     2
                                                                 ⎦
         = 2
           ⎡30 + 10 x − 100 x − ( 30 − 10 x − 100 x ) ⎤
                                   2                           2
           ⎣                                                     ⎦
           1
             ⋅ [60 − 200 x 2 ]
           2                     30 − 100 x 2
         =                     =
                  20 x              20 x
a.        For CMRRdB = 90 dB ⇒ CMRR = 31, 623 x will be small, neglect the x 2 term. Then
           30
20 x =           ⇒ x = 0.0000474 = 0.00474%
         31, 623
b.         For CMRRdB = 60 dB ⇒ CMRR = 1000. Then
          30
20 x =        ⇒ x = 0.0015 = 0.15%
         1000

More Related Content

PDF
PDF
PDF
PDF
PPT
PPTX
Number system converted
PDF
Capítulo 07 falha por fadiga resultante de carregamento variável
PDF
Number system converted
Capítulo 07 falha por fadiga resultante de carregamento variável

Viewers also liked (6)

PDF
Ch13s
PPTX
Long term Liabilities in Government accounting
PPTX
DOCX
Acc 304 week 10 quiz – strayer new
PPT
Ch14 - Organisation theory design and change gareth jones
RTF
Test questions
Ch13s
Long term Liabilities in Government accounting
Acc 304 week 10 quiz – strayer new
Ch14 - Organisation theory design and change gareth jones
Test questions
Ad

Similar to Ch14s (20)

PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
Sect2 3
PPT
Unit i
Ad

More from Bilal Sarwar (11)

DOCX
Rameysoft-ftp client server, and others+
DOCX
Ramey soft
DOCX
Ramey soft
PDF
Ch17s 3rd Naemen
PDF
Ch17p 3rd Naemen
PDF
PDF
PDF
PDF
PDF
PDF
Rameysoft-ftp client server, and others+
Ramey soft
Ramey soft
Ch17s 3rd Naemen
Ch17p 3rd Naemen

Recently uploaded (20)

PDF
A review of recent deep learning applications in wood surface defect identifi...
PPTX
Tartificialntelligence_presentation.pptx
PDF
WOOl fibre morphology and structure.pdf for textiles
PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
Getting Started with Data Integration: FME Form 101
PDF
Hindi spoken digit analysis for native and non-native speakers
PPTX
The various Industrial Revolutions .pptx
DOCX
search engine optimization ppt fir known well about this
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
CloudStack 4.21: First Look Webinar slides
PPTX
Web Crawler for Trend Tracking Gen Z Insights.pptx
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
Enhancing emotion recognition model for a student engagement use case through...
A review of recent deep learning applications in wood surface defect identifi...
Tartificialntelligence_presentation.pptx
WOOl fibre morphology and structure.pdf for textiles
observCloud-Native Containerability and monitoring.pptx
Univ-Connecticut-ChatGPT-Presentaion.pdf
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
Getting Started with Data Integration: FME Form 101
Hindi spoken digit analysis for native and non-native speakers
The various Industrial Revolutions .pptx
search engine optimization ppt fir known well about this
Zenith AI: Advanced Artificial Intelligence
CloudStack 4.21: First Look Webinar slides
Web Crawler for Trend Tracking Gen Z Insights.pptx
Taming the Chaos: How to Turn Unstructured Data into Decisions
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Assigned Numbers - 2025 - Bluetooth® Document
A contest of sentiment analysis: k-nearest neighbor versus neural network
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Enhancing emotion recognition model for a student engagement use case through...

Ch14s

  • 1. Chapter 14 Problem Solutions 14.1 vo Ad = = −80 vi vo (max) = 4.5 ⇒ vi (max) = 56.25 mV 56.25 So vi (max)rms = = 39.77 mV 2 14.2 (a) 4.5 i2 = = 0.028125 mA 160 4.5 iL = = 4.5 mA 1 Output Circuit = 4.528 mA v −4.5 vi = − o = ⇒ vi = −0.05625 V A 80 (b) v 4.5 io ≈ 15 mA = o = RL RL ⇒ RL (min) = 300 Ω 14.3 (1) vo = 2 V (2) v2 = 12.5 mV (3) AOL = 2 × 104 (4) v1 = 8 μ V (5) AOL = 1000 14.4 From Eq. (14.4)
  • 2. − R2 / R1 ACL = 1 ⎛ R2 ⎞ 1+ ⎜1 + ⎟ AoL ⎝ R1 ⎠ − R2 / R1 −15 = 1 ⎛ R2 ⎞ 1+ ⎜1 + ⎟ 2 × 103 ⎝ R1 ⎠ ⎛R ⎞ 15 ⎜ 2 ⎟ ⎛ 1 ⎞ ⎝ R1 ⎠ = R2 15 ⎜ 1 + ⎟+ ⎝ 2 × 103 ⎠ 2 × 103 R1 R2 15.0075 = (0.9925) R1 R2 = 15.12 R1 14.5 vI − v1 v1 − v0 v1 = + and v0 = − A0 L v1 R1 R2 Ri v0 so that v1 = − A0 L vI v0 ⎛ 1 1 1⎞ + = v1 ⎜ + + ⎟ R1 R2 ⎝ R1 R2 Ri ⎠ So vI ⎡1 1 ⎛ 1 1 1 ⎞⎤ = −v0 ⎢ + ⎜ + + ⎟⎥ R1 ⎣ R2 A0 L ⎝ R1 R2 Ri ⎠ ⎦ Then v0 −(1/ R1 ) = = ACL vI ⎡ 1 1 ⎛ 1 1 1 ⎞⎤ ⎢ + ⎜ + + ⎟⎥ ⎣ R2 A0 L ⎝ R1 R2 Ri ⎠ ⎦ From Equation (14.20) for RL = ∞ and R0 = 0 1 1 1 (1 + A0 L ) = + ⋅ Rif Ri R2 1 a. For Ri = 1 kΩ −(1/ 20) ACL = ⎡ 1 1 ⎛ 1 1 1 ⎞⎤ ⎢100 + 103 ⎜ 20 + 100 + 1 ⎟ ⎥ ⎣ ⎝ ⎠⎦ −0.05 = [0.01 + 1.06 × 10−3 ] or
  • 3. ⇒ ACL = −4.52 1 1 1 + 103 = + ⇒ Rif = 90.8 Ω Rif 1 100 b. For Ri = 10 kΩ −(1/ 20) ACL = ⎡ 1 1 ⎛ 1 1 1 ⎞⎤ ⎢100 + 103 ⎜ 20 + 100 + 10 ⎟ ⎥ ⎣ ⎝ ⎠⎦ −0.05 = [0.01 + 1.6 × 10−4 ] or ⇒ ACL = −4.92 1 1 1 + 103 = + ⇒ Rif = 98.9 Ω Rif 10 100 c. For Ri = 100 kΩ −(1/ 20) ACL = ⎡ 1 1 ⎛ 1 1 1 ⎞⎤ ⎢100 + 103 ⎜ 20 + 100 + 100 ⎟ ⎥ ⎣ ⎝ ⎠⎦ −0.05 = [0.01 + 7 × 10−5 ] or ⇒ ACL = −4.965 1 1 1 + 103 = + ⇒ Rif = 99.8 Ω Rif 100 100 14.6 ⎛ R2 ⎞ ⎜1 + ⎟ v ACL = o = ⎝ R1 ⎠ vi ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ AOL ⎝ R1 ⎠ ⎦ For the ideal: ⎛ R2 ⎞ 0.10 ⎜1 + ⎟ = = 50 ⎝ R1 ⎠ 0.002 vo (actual ) = (0.10)(1 − 0.001) = 0.0999 So
  • 4. 0.0999 50 = = 49.95 0.002 1 + 1 (50) AOL which yields AOL = 1000 14.7 From Equation (14.18) ⎛A 1 ⎞ − ⎜ OL − ⎟ v Avf 1 = o1 = ⎝ Ro R2 ⎠ v1 ⎛ 1 1 1 ⎞ ⎜ + + ⎟ ⎝ RL Ro R2 ⎠ Or ⎛ 5 × 103 1 ⎞ −⎜ − ⎟ 1 100 ⎠ −(4.99999 × 103 ) vo1 = ⎝ ⋅ v1 = ⋅ v1 ⎛1 1 1 ⎞ 1.11 ⎜ + + ⎟ ⎝ 10 1 100 ⎠ vo1 = −4.504495 × 103 ⋅ v1 Now i1 vi − v1 = ≡K v1 R1v1 Then vi − v1 = KR1v1 which yields vi v1 = KR1 + 1 Now, from Equation (14.20) ⎡ 1 ⎤ 1 + 5 × 103 + ⎥ 1 1 ⎢ 10 K= + ⎢ ⎥ 10 100 ⎢ 1 + 1 + 1 ⎥ ⎢ ⎣ 10 100 ⎥ ⎦ ⎡ 5.0011× 103 ⎤ = (0.1) + (0.01) ⎢ ⎥ = 45.15495 ⎣ 1.11 ⎦ Then vi vi v1 = = ( 45.15495)(10 ) + 1 452.5495 We find ⎡ vi ⎤ vo1 = −4.504495 × 103 ⎢ ⎥ ⎣ 452.5495 ⎦ Or v Avf 1 = o1 = −9.9536 vi For the second stage, RL = ∞
  • 5. ⎛ 5 × 103 1 ⎞ −⎜ − ⎟ 1 100 ⎠ vo 2 = ⎝ ⋅ v1′ = −4.950485 × 103 ⋅ v1′ ⎛1 1 ⎞ ⎜ + ⎟ ⎝ 1 100 ⎠ ⎡ ⎤ 1 1 ⎢1 + 5 × 103 ⎥ K≡ + ⎢ ⎥ = 49.61485 10 100 ⎢ 1 + 1 ⎥ ⎢ ⎣ 100 ⎥ ⎦ vo1 vo1 vo1 v1′ = = = KR1 + 1 (49.61485)(10) + 1 497.1485 Then vo 2 −4.950485 × 103 = = −9.95776 vo1 497.1485 So v Avf = o 2 = (−9.9536)(−9.95776) ⇒ Avf = 99.12 vi 14.8 a. v1 − vI v v −v + 1 + 1 0 =0 (1) R3 + Ri R1 R2 ⎡ 1 1 1⎤ v vI v1 ⎢ + + ⎥= 0 + ⎣ R3 + Ri R1 R2 ⎦ R2 R3 + Ri v0 v0 − A0 L vd v0 − v1 + + =0 (2) RL R0 R2 or ⎡1 1 1⎤ v A v v0 ⎢ + + ⎥ = 1 + 0L d ⎣ RL R0 R2 ⎦ R2 R0 ⎛ v −v ⎞ vd = ⎜ I 1 ⎟ ⋅ Ri (3) ⎝ R3 + Ri ⎠ So substituting numbers: ⎡ 1 1 1⎤ v vI v1 ⎢ + + ⎥= 0 + (1) ⎣10 + 20 10 40 ⎦ 40 10 + 20 or v1[0.15833] = v0 [0.025] + vI [0.03333] ⎡1 1 1 ⎤ v (104 )vd v0 ⎢ + + ⎥= 1 + (2) ⎣1 0.5 40 ⎦ 40 0.5
  • 6. or v0 [3.025] = v1 [ 0.025] + ( 2 × 104 ) vd ⎛ v −v ⎞ vd = ⎜ I 1 ⎟ ⋅ 20 = 0.6667 ( vI − v1 ) (3) ⎝ 10 + 20 ⎠ So v0 [3.025] = v1 [ 0.025] + ( 2 × 104 ) ( 0.6667 )( vI − v1 ) (2) or v0 [3.025] = 1.333 ×10 4 vI − 1.333 × 104 v1 From (1): v1 = v0 ( 0.1579 ) + vI ( 0.2105 ) Then v0 [3.025] = 1.333 × 104 vI − 1.333 × 104 ⎡ v0 ( 0.1579 ) + vI ( 0.2105 ) ⎤ ⎣ ⎦ v0 ⎡ 2.1078 ×103 ⎤ = vI ⎡1.0524 ×104 ⎤ ⎣ ⎦ ⎣ ⎦ or v ACL = 0 = 4.993 vI To find Rif : Use Equation (14.27) ⎛ 0.5 0.5 ⎞ iI ⎜ 1 + + ⎟ ⎝ 1 40 ⎠ 1 ⎞ ⎛ 0.5 0.5 ⎞ 0.5 ⎫ (10 ) vd 3 ⎧⎛ 1 = v1 ⎨⎜ + ⎟ ⎜ 1 + + ⎟ − ⎬− ⎩⎝ 10 40 ⎠ ⎝ 1 40 ⎠ (40) 2 ⎭ 40 iI (1.5125) = v1{(0.125)(1.5125) − 0.0003125} − 25vd or iI (1.5125) = vI {0.18875} − 25vd Now vd = iI Ri = iI (20) and v1 = vI − iI (20) So iI (1.5125) = [vI − iI (20)] ⋅ [0.18875] − 25iI (20) iI [505.3] = vI (0.18875) or vI = 2677 kΩ iI Now Rif = 10 + 2677 ⇒ Rif = 2.687 MΩ To determine R0 f : Using Equation (14.36) ⎡ ⎤ ⎡ ⎤ 1 1 ⎢ A0 L ⎥ 1 ⎢ 103 ⎥ = ⋅⎢ ⎥= ⋅⎢ ⎥ ′ R0 f R0 ⎢ R2 ⎥ 0.5 ⎢1 + 40 ⎥ ⎢1 + R R ⎥ ⎢ 10 20 ⎥ ⎣ 1 i ⎦ ⎣ ⎦ ′ or R0 f = 3.5 Ω Then R0 f = 1 kΩ 3.5 Ω ⇒ R0 f = 3.49 Ω b. Using Equation (14.16) dACL ⎛ 5 ⎞ dA = (−10) ⎜ 3 ⎟ ⇒ CL = −(0.05)% ACL ⎝ 10 ⎠ ACL 14.9
  • 7. v0 − A0 L vd v0 − vI + = 0 and vd = vI − v0 R0 Ri So v0 A0 L v v − ⋅ (vI − v0 ) + 0 − I = 0 R0 R0 Ri Ri ⎡1 A 1⎤ ⎡1 A ⎤ v0 ⎢ + 0 L + ⎥ = vI ⎢ + 0 L ⎥ ⎣ R0 R0 Ri ⎦ ⎣ Ri R0 ⎦ ⎡ 1 (104 ) 1 ⎤ ⎡ 1 (104 ) ⎤ v0 ⎢ + + ⎥ = vI ⎢ + ⎥ ⎣ 0.2 0.2 100 ⎦ ⎣100 0.2 ⎦ v0 [5.000501× 104 ] = vI [5.000001× 10 4 ] v0 So ACL = = 0.9999 vI b. Set vI = 0 v0 − A0 L vd v0 i0 = + and vd = −v0 R0 Ri ⎡1 A 1⎤ i0 = v0 ⎢ + 0 L + ⎥ ⎣ R0 R0 Ri ⎦ Then 1 1 A0 L 1 = + + R0 f R0 R0 Ri or 1 1 (104 ) 1 = + + R0 f 0.2 0.2 100 which yields R0 f ≅ 0.02 Ω 14.10
  • 8. vI 1 − v1 vI 2 − v1 v1 − v0 + = 20 10 40 vI 1 vI 2 v0 ⎡1 1 1⎤ + + = v1 ⎢ + + ⎥ 20 10 40 ⎣ 20 10 40 ⎦ v and v0 = − A0 L v1 so that v1 = − 0 A0L Then ⎧1 1 ⎛ 7 ⎞⎫ vI 1 (0.05) + vI 2 (0.10) = −v0 ⎨ + ⋅ 3 ⎜ ⎟⎬ ⎩ 40 2 × 10 ⎝ 40 ⎠ ⎭ = −v0 [2.50875 × 10−2 ] ⇒ v0 = −1.993vI 1 − 3.986vI 2 Δv0 2 − 1.993 Δv = ⇒ 0 = 0.35% v0 2 v0 14.11 ⎛ 40 ⎞ ⎛ 4⎞ vB = ⎜ ⎟ v2 = ⎜ ⎟ v2 = 0.8v2 (1) ⎝ 40 + 10 ⎠ ⎝ 5⎠ v1 − v A v A − v0 = 10 40 v1 v0 ⎛1 1 ⎞ + = vA ⎜ + ⎟ 10 40 ⎝ 10 40 ⎠ v1 (0.1) + v0 (0.025) = vA (0.125) (2) v0 = A0 L vd = A0 L (vB − v A ) (3) or v0 = A0 L [0.8v2 − v A ] v0 − 0.8v2 = −v A A0 L v0 ⇒ v A = 0.8v2 − A0 L Then
  • 9. v ⎤ v1 (0.1) + v0 (0.025) = (0.125) ⎢0.8v2 − 0 ⎥ ⎣ A0 L ⎦ ⎡ 0.125 ⎤ v1 (0.1) − v2 (0.1) = −v0 ⎢0.025 + ⎣ 103 ⎥⎦ −2 = −v0 [2.5125 × 10 ] v0 ⇒ Ad = = 3.9801 v2 − v1 ΔAd 0.0199 ⇒ = ⇒ 0.4975% Ad 4 14.12 a. Considering the second op-amp and Equation (14.20), we have ⎡ ⎤ 1 1 1 ⎢1 + 100 ⎥ 101 = + ⋅⎢ ⎥ = 0.10 + Rif 2 10 0.1 ⎢ 1 + 1 ⎥ (0.1)(11) ⎢ 0.1 ⎥ ⎣ ⎦ So Rif 2 = 0.0109 kΩ The effective load on the first op-amp is then RL1 = 0.1 + Rif 2 = 0.1109 kΩ Again using Equation (14.20), we have 1 1 + 100 + 1 1 1 0.1109 = 0.10 + 110.017 = + ⋅ Rif 10 1 1 + 1 + 1 11.017 0.1109 1 so that Rif = 99.1 Ω b. To determine R0 f : For the first op-amp, we can write, using Equation (14.36) ⎡ ⎤ ⎡ ⎤ 1 1 ⎢ A0 L ⎥ 1 ⎢ 100 ⎥ = ⋅⎢ ⎥ = ⋅⎢ ⎥ R0 f 1 R0 ⎢ R2 ⎥ 1 ⎢ 40 ⎥ 1+ 1+ ⎢ ⎥ ⎢ ⎥ ⎣ 1 || 10 ⎦ ⎣ R1 || Ri ⎦ which yields R0 f 1 = 0.021 kΩ For the second op-amp, then ⎡ ⎤ ⎢ ⎥ 1 1 ⎢ A0 L ⎥ = ⋅ R0 f R0 ⎢ R2 ⎥ ⎢1 + ( R + R ) || R ⎥ ⎣ 1 0f1 i ⎦ ⎡ ⎤ 1 ⎢ 100 ⎥ = ⋅⎢ ⎥ 1 ⎢1 + 0.10 ⎥ ⎢ (0.121) ||10 ⎥ ⎣ ⎦ or R0 f = 18.4 Ω c. To find the gain, consider the second op-amp.
  • 10. v01 − (−vd 2 ) vd 2 −vd 2 − v02 + = (1) 0.1 Ri 0.1 v01 ⎛ 1 1 1 ⎞ v02 + vd 2 ⎜ + + ⎟=− 0.1 ⎝ 0.1 10 0.1 ⎠ 0.1 or v01 (10) + vd 2 (20.1) = −v02 (10) v02 − A0 L vd 2 v02 − (−vd 2 ) + =0 (2) R0 0.1 v02 ⎛ 100 1 ⎞ v02 − vd 2 ⎜ − ⎟+ =0 1 ⎝ 1 0.1 ⎠ 0.1 v02 (11) − vd 2 (90) = 0 or vd 2 = v02 (0.1222) Then Equation (1) becomes v01 (10) + v02 (0.1222)(20.1) = −v02 (10) or v01 = −v02 (1.246) Now consider the first op-amp. vI − (−vd 1 ) vd 1 −vd 1 − v01 + = (1) 1 Ri 1 ⎛1 1 1⎞ vI (1) + vd 1 ⎜ + + ⎟ = −v01 (1) ⎝ 1 10 1 ⎠ or vI (1) + vd 1 (2.1) = −v01 (1) v01 v − A0 L vd 1 v01 − (−vd 1 ) + 01 + =0 (2) 0.1109 R0 1 ⎛ 1 1 1⎞ ⎛ 100 1 ⎞ v01 ⎜ + + ⎟ − vd 1 ⎜ − ⎟=0 ⎝ 0.1109 1 1 ⎠ ⎝ 1 1⎠ v01 (11.017) − vd 1 (99) = 0 or vd 1 = v01 (0.1113) Then Equation (1) becomes
  • 11. vI (1) + v01 (0.1113)(2.1) = −v01 or vI = −v01 (1.234) We had v01 = −v02 (1.246) So vI = v02 (1.246)(1.234) v02 or = 0.650 vI v02 d. Ideal =1 vI So ratio of actual to ideal = 0.650. 14.13 (a) For the op-amp. A0 L ⋅ f 3dB = 106 106 f 3dB = = 50 Hz 2 × 104 For the closed-loop amplifier. 106 f 3dB = = 40 kHz 25 (b) Open-loop amplifier. 2 × 104 2 × 104 A= ⇒| A | = f 2 1+ j ⎛ f ⎞ f3dB 1+ ⎜ ⎟ ⎝ f3dB ⎠ 2 × 104 f = 0.25 f 3dB ⇒ A = = 1.94 × 104 2 1 + (0.25) 2 × 104 f = 5 f 3− dB ⇒ A = = 3.92 × 103 1 + (5) 2 Closed-loop amplifier 25 f = 0.25 f 3dB ⇒ A = = 24.25 1 + (0.25) 2 25 f = 5 f 3− dB ⇒ A = = 4.90 1 + (5) 2 14.14 The open loop gain can be written as A0 A0 L ( f ) = ⎛ f ⎞⎛ f ⎞ ⎜1 + j ⋅ ⎟⎜ 1 + j ⋅ ⎟ ⎝ f PD ⎠ ⎝ 5 × 106 ⎠ where A0 = 2 × 105. The closed-loop response is A0 L ACL = 1 + β A0 L At low frequency, 2 × 105 100 = 1 + β (2 × 105 ) So that β = 9.995 × 10−3. Assuming the second pole is the same for both the open-loop and closed-loop, then ⎛ f ⎞ −1 ⎛ f ⎞ φ = − tan −1 ⎜ ⎟ − tan ⎜ 6 ⎟ ⎝ f PD ⎠ ⎝ 5 × 10 ⎠
  • 12. For a phase margin of 80°, φ = −100°. So ⎛ f ⎞ −100 = −90 − tan −1 ⎜ 6 ⎟ ⎝ 5 × 10 ⎠ or f = 8.816 × 105 Hz Then A0 L = 1 2 × 105 = 2 2 ⎛ 8.816 × 105 ⎞ ⎛ 8.816 × 105 ⎞ 1+ ⎜ ⎟ 1+ ⎜ 6 ⎟ ⎝ f PD ⎠ ⎝ 5 × 10 ⎠ or 8.816 × 105 ≅ 1.9696 × 105 f PD or f PD = 4.48 Hz 14.15 (a) 1st stage (10) f3− dB = 1 MHz ⇒ f 3− dB = 100 kHz 2nd stage (50) f3− dB = 1 MHz ⇒ f 3− dB = 20 kHz Bandwidth of overall system ≅ 20 kHz (b) If each stage has the same gain, so K = 500 ⇒ K = 22.36 2 Then bandwidth of each stage (22.36) f 3− dB = 1 MHz ⇒ f 3− dB = 44.7 kHz 14.16 Ao A= f 1+ j f3− dB Ao 5 × 104 A= ⇒ 200 = ⇒ f3− dB = 40 Hz 2 2 ⎛ f ⎞ ⎛ 104 ⎞ 1+ ⎜ ⎟ 1+ ⎜ ⎟ ⎝ f3− dB ⎠ ⎝ f3− dB ⎠ Then fT = (5 × 104 )(40) ⇒ fT = 2 MHz 14.17
  • 13. (5 × 104 ) f PD = 106 ⇒ f PD = 20 Hz (25) f 3− dB 106 ⇒ f3− dB = 40 kHz Avo 25 Av = ⇒ Av = f 2 1+ j ⎛ f ⎞ f3− dB 1+ ⎜ 3 ⎟ ⎝ 40 × 10 ⎠ At f = 0.5 f 3− dB = 20 kHz 25 Av = = 22.36 1 + (0.5) 2 At f = 2 f 3− dB = 80 kHz 25 Av = = 11.18 1 + (2) 2 14.18 (20 × 103 ) ⋅ Avf MAX = 106 ⇒ Avf MAX = 50 14.19 From Equation (14.55), SR 10 × 106 F P BW = = 2π VP 0 2π (10) or F P BW = f max = 159 kHz 14.20 a. Using Equation (14.55), 8 × 106 VP 0 = 2π (250 × 103 ) or VP 0 = 5.09 V b. 1 1 Period T = = = 4 × 10−6 s f 250 × 103 One-fourth period = 1 μ s VP 0 Slope = = SR = 8 V/μ s 1μ s ⇒ VP 0 = 8 V 14.21 For input (a), maximum output is 5 V.
  • 14. S R = 1 V/μs so For input (b), maximum output is 2 V. For input (c), maximum output is 0.5 V so the output is 14.22 For input (a), max v01 = 3 V. Then v02 max = 3(3) = 9 V For input (b), max v01 = 1.5 V.
  • 15. Then v02 max = 3 (1.5 ) = 4.5 V 14.23 f MAX = 20 kHz, SR = 0.8 V / μ s SR 0.8 × 106 V po = = ⇒ V po = 6.37 V 2π f MAX 2π (20 × 103 ) 14.24 ⎛V ⎞ ⎛V ⎞ I1 = I S 1 exp ⎜ BE1 ⎟ , I 2 = I S 2 exp ⎜ BE 2 ⎟ ⎝ VT ⎠ ⎝ VT ⎠ Want I1 = I 2 , so ⎛V ⎞ 5 × 10−14 (1 + x) exp ⎜ BE1 ⎟ I1 =1= ⎝ VT ⎠ I2 ⎛V ⎞ 5 × 10−14 (1 − x) exp ⎜ BE 2 ⎟ ⎝ VT ⎠ (1 + x) ⎛ V −V ⎞ = exp ⎜ BE1 BE 2 ⎟ (1 − x) ⎝ VT ⎠ Or 1+ x ⎛ V − VBE1 ⎞ ⎛ VOS ⎞ = exp ⎜ BE 2 ⎟ = exp ⎜ ⎟ 1− x ⎝ VT ⎠ ⎝ VT ⎠ ⎛ 0.0025 ⎞ = exp ⎜ ⎟ = 1.10 ⎝ 0.026 ⎠ Now 1 + x = (1 − x )(1.10) ⇒ x = 0.0476 ⇒ 4.76% 14.25 From Equation (14.62), ⎛ vCE1 ⎞ ⎛ vCE 2 ⎞ ⎜1+ V ⎟ I ⎜ 1+ V ⎟ ⎜ AN ⎟ = S3 ⋅⎜ AN ⎟ ⎜ 1 + vEB ⎟ I S 4 ⎜ 1 + vEC 4 ⎟ ⎜ V ⎟ ⎜ ⎟ ⎝ AP ⎠ ⎝ VAP ⎠ For vCE 2 = 0.6 V, then vEC 4 = 5 V. We have vCE1 = 5 V so
  • 16. 5 ⎞ ⎛ 0.6 ⎞ ⎜ 1 + 80 ⎟ I S 3 ⎜ 1 + 80 ⎟ ⎜ ⎟= ⋅⎜ ⎟ ⎜ 1 + 0.6 ⎟ I S 4 ⎜ 1 + 5 ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ 80 ⎠ ⎝ 80 ⎠ or I S 3 (1.0625) 2 = = 1.112 I S 4 (1.0075) 2 So I S 3 = (10−14 ) (1.112 ) or I S 3 = 1.112 × 10−14 A 14.26 By superposition: R vo (vi ) = − 2 ⋅ vi = −50vi R1 ⎛ R ⎞ vo (vos ) = ⎜ 1 + 2 ⎟ ⋅ vos = 51vos ⎝ R1 ⎠ So vo = vo ( vi ) + vo ( vos ) = −50vi + 51vos For vi = 20 mV and vos + 2.5 mV vo = −50(0.02) + 51(0.0025) = −0.8725 V For vi = 20 mV and vos = −2.5 mV vo = −50(0.02) + 51(−0.0025) = −1.1275 V So −1.1275 ≤ vo ≤ −0.8725 V 14.27 vo = −50vi = −50 ⎡ ±2.5 mV + sin ω t ( mV ) ⎤ ⎣ ⎦ vo = [ ±0.125 − 0.25sin ω t ] ( v ) 14.28
  • 17. 0.5 × 10−3 I= = 5 × 10−8 A 104 Also i dV 1 I I = C o ⇒ Vo = ∫ Idt = ⋅ t dt C0 C Then 5 × 10−8 5= t ⇒ t = 103 s 10 × 10−6 14.29 ⎛ 100 ⎞ a. | v01 | = 10 ⎜ 1 + ⎟ or | v01 | = 110 mV ⎝ 10 ⎠ Then ⎛ 50 ⎞ | v02 | = | v01 | (5) + 10 ⎜ 1 + ⎟ = (110)(5) + (10)(6) ⎝ 10 ⎠ or | v02 | = 610 mV 14.30 v0 due to vI ⎛ 1 ⎞ v0 = (0.5) ⎜1 + ⎟ = 0.9545 V ⎝ 1.1 ⎠ Wiper arm at V + = 10 V, (using superposition) ⎛ R1 || R5 ⎞ ⎛ 0.0909 ⎞ v1 = ⎜ ⎟ (10) = ⎜ ⎟ (10) ⎝ R1 || R5 + R4 ⎠ ⎝ 0.0909 + 10 ⎠ = 0.090 ⎛ 1⎞ Then v01 = − ⎜ ⎟ (0.090) = −0.090 ⎝ 1⎠ Wiper arm in center, v1 = 0 and v02 = 0 Wiper arm at V − = −10 V, v1 = −0.090 So v03 = 0.090 Finally, total output v0 : (from superposition) Wiper arm at V + , v0 = 0.8645 V Wiper arm in center, v0 = 0.9545 V Wiper arm at V − ,
  • 18. v0 = 1.0445 V 14.31 a. R1′ = R2 = 0.5 || 25 = 0.490 kΩ ′ or R1′ = R2 = 490 Ω ′ b. From Equation (14.75), ⎛ 125 × 10−6 ⎞ (0.026) ln ⎜ −14 ⎟ + (0.125) R1′ ⎝ 2 × 10 ⎠ ⎛ 125 × 10−6 ⎞ = (0.026) ln ⎜ −14 ⎟ + (0.125) R2′ ⎝ 2.2 × 10 ⎠ 0.586452 + (0.125) R1′ = 0.583974 + (0.125) R2 ′ 0.002478 = (0.125)( R2 − R1′) ′ So R2 − R1′ = 0.0198 kΩ ⇒ 19.8 Ω ′ Then R2 (1 − x) Rx R × Rx − 1 = 0.0198 R2 + (1 − x) Rx R1 + xRx (0.5)(1 − x)(50) (0.5)(50) x − = 0.0198 (0.5) + (1 − x)(50) (0.5) + x(50) 25(1 − x) 25 x − = 0.0198 50.5 − 50 x 0.5 + 50 x (0.5 + 50 x)(25 − 25 x) − (25 x)(50.5 − 50 x) = 0.0198 (50.5 − 50 x )(0.5 + 50 x) 25 {0.5 − 0.5 x + 50 x − 50 x 2 − 50.5 x + 50 x 2 } = 0.0198 {25.25 + 2525 x − 25 x − 2500 x 2 } 25 {0.5 − x} = 0.0198 {25.25 + 2500 x − 2500 x 2 } 0.5 − x = 0.019998 + 1.98 x − 1.98 x 2 1.98 x 2 − 2.98 x + 0.48 = 0 2.98 ± (2.98) 2 − 4(1.98)(0.48) x= 2(1.98) So x = 0.183 and 1 − x = 0.817 14.32 R1′ = R1 ||15 = 0.5 ||15 = 0.4839 kΩ ′ R2 = R2 || 35 = 0.5 || 35 = 0.4930 kΩ From Equation (14.75), ⎛i ⎞ ⎛i ⎞ (0.026) ln ⎜ C1 ⎟ + iC1 R1′ = (0.026) ln ⎜ C 2 ⎟ + iC 2 R2 ′ ⎝ IS3 ⎠ ⎝ IS 4 ⎠ ⎛i ⎞ (0.026) ln ⎜ C1 ⎟ = iC 2 R2 − iC1 R1′ ′ ⎝ iC 2 ⎠ ⎛i ⎞ ⎡ i R′ ⎤ ′ (0.026) ln ⎜ C1 ⎟ = iC 2 R2 ⎢1 − C1 ⋅ 1 ⎥ ⎝ iC 2 ⎠ ⎣ ′ iC 2 R2 ⎦ ⎛i ⎞ ⎡ ⎛ i ⎞⎤ (0.026) ln ⎜ C1 ⎟ = iC 2 (0.4930) ⎢1 − (0.9815) ⎜ C1 ⎟ ⎥ ⎝ iC 2 ⎠ ⎣ ⎝ iC 2 ⎠ ⎦ By trial and error:
  • 19. iC1 = 252 μ A and iC 2 = 248 μ A or iC1 = 1.0155 iC 2 14.33 From Eq. (14.79), we have ⎛ R ⎞ vo = I B1 R2 − I B 2 R3 ⎜ 1 + 2 ⎟ ⎝ R1 ⎠ I B1 = 1 μ A I B 2 = 2 μ A Setting vo = 0, we have ⎛ 200 ⎞ 0 = (10−6 )( 200 × 103 ) − ( 2 × 10−6 ) R3 ⎜ 1 + ⎟ ⎝ 20 ⎠ 200 × 10−3 R3 = ⇒ R = 9.09 K ( 2 ×10−6 ) (11) 3 14.34 R2 1+ = 80 R1 R1 = 6.329 K V f = vI = 5sin ω t ( mV ) I1 + I B = I 2 (a) VI = 0 ⇒ VX = 0 I 2 = I B VO = (10−6 )(500 × 103 ) ⇒ vo = 0.50 V VX v − VX (b) + IB = o R1 R2 ⎛ 1 1 ⎞ v ⎛ 1 1 ⎞ VX ⎜ + ⎟ + I B = 0 ⇒ vo = R2 ⎜ + ⎟ vI + I B R2 ⎝ R1 R2 ⎠ R1 ⎝ R1 R2 ⎠ vo = 80 ⎡5sin ω t ( mV ) ⎤ + (10−6 )( 500 × 103 ) ⎣ ⎦ vo = [ 0.5 + 0.4sin ω t ] ( v ) 14.35 a.
  • 20. For I B 2 = 1 μ A, then v0 = − (10−6 )(104 ) or v0 = −0.010 V b. If a 10 kΩ resistor is included in the feedback loop Now v0 = − I B 2 (10) + I B1 (10) = 0 Circuit is compensated if I B1 = I B 2 . 14.36 From Equation (14.83), we have v0 = R2 I 0S where R2 = 40 kΩ and I 0 S = 3 μ A. Then v0 = ( 40 × 103 )( 3 × 10−6 ) or v0 = 0.12 V 14.37 a. Assume all bias currents are in the same direction and into each op-amp. v01 = I B1 (100 kΩ ) = (10−6 )(105 ) ⇒ v01 = 0.1 V Then v02 = v01 ( −5 ) + I B1 ( 50 kΩ ) = ( 0.1)( −5 ) + (10−6 )( 5 × 104 ) = −0.5 + 0.05 or v02 = −0.45 V b. Connect R3 = 10 ||100 = 9.09 kΩ resistor to noninverting terminal of first op-amp, and R3 = 10 || 50 = 8.33 kΩ resistor to noninverting terminal of second op-amp.
  • 21. 14.38 a. For a constant current through a capacitor. 1 t v0 = ∫ I dt C 0 0.1× 10−6 or v0 = ⋅ t ⇒ v0 = (0.1)t 10−6 b. At t = 10 s, v0 = 1 V c. Then 100 × 10−12 v0 = −6 ⋅ t ⇒ v0 = (10−4 )t 10 At t = 10 s, v0 = 1 mV 14.39 a. Assume all bias currents are into the op-amp. v01 = I B1 ( 50 kΩ ) = (10 ×10−6 )( 50 ×103 ) or v01 = v02 = 0.5 V v03 = ( −1)( v01 ) + (10 × 10−6 )( 20 × 103 ) or v03 = −0.3 V b. RA = 10 || 50 ⇒ RA = 8.33 kΩ RB = 20 || 20 ⇒ RB = 10 kΩ c. Assume the worst case offset current, that is, I 0 S = I B1 − I B 2 or I 0 S = I B 2 − I B1 . From Equation (14.83), v01 = R2 I 0 S = ( 50 × 103 )( 2 × 10−6 ) or v01 = v02 = 0.1 V v03 = ( −1) v01 − I 0 S R2 = ( −1)( 0.1) − ( 2 × 10−6 )( 20 × 103 ) or v03 = −0.14 V 14.40 a. Using Equation (14.79), Circuit (a), ⎛ 50 ⎞ v0 = ( 0.8 × 10−6 )( 50 × 103 ) − ( 0.8 ×10−6 )( 25 × 103 ) ⎜1 + ⎟ ⎝ 50 ⎠ or v0 = 0 Circuit (b), ⎛ 50 ⎞ v0 = ( 0.8 × 10−6 )( 50 × 103 ) − ( 0.8 × 10 −6 )(103 ) ⎜1 + ⎟ ⎝ 50 ⎠ −2 = 4 × 10 − 1.6 or v0 = −1.56 V b. Assume I B1 = 0.7 μ A and I B 2 = 0.9 μ A, then using Equation (14.79): Circuit (a),
  • 22. ⎛ 50 ⎞ v0 = ( 0.7 × 10−6 )( 50 × 103 ) − ( 0.9 × 10−6 )( 25 × 103 ) ⎜ 1 + ⎟ ⎝ 50 ⎠ = 0.035 − 0.045 or v0 = −0.010 V Circuit (b), ⎛ 50 ⎞ v0 = ( 0.7 × 10−6 )( 50 × 103 ) − ( 0.9 × 10−6 )(106 ) ⎜1 + ⎟ ⎝ 50 ⎠ = 0.035 − 1.8 or v0 = −1.765 V 14.41 a. If R = 0, ⎛ 100 ⎞ v0,max = ⎜1 + ⎟ V0 S + I B (100 kΩ) ⎝ 10 ⎠ = (11)(10 × 10−3 ) + (2 × 10−6 )(100 × 103 ) v0,max = 0.110 + 0.20 ⇒ v0,max = 0.310 V b. R = 10.1|| 100 = 9.17 kΩ = R 14.42 ⎛ Ri ⎞ a. ⎜ ⎟ (15) = 0.010 V ⎝ Ri + R2 ⎠ 15 = 0.0006667 15 + R2 15(1 − 0.0006667) = 0.0006667 R2 Then R2 = 22.48 MΩ b. R1 = Ri || RF = 15 || 10 ⇒ R1 = 6 kΩ 14.43 a. Assume the offset voltage polarities are such as to produce the worst case values, but the bias currents are in the same direction. Use superposition:
  • 23. Offset voltages ⎛ 100 ⎞ | v01 | = ⎜1 + ⎟ (10) = 110 mV =| v01 | ⎝ 10 ⎠ ⎛ 50 ⎞ | v02 | = (5)(110) + ⎜ 1 + ⎟ (10) ⎝ 10 ⎠ ⇒ | v02 | = 610 mV Bias Currents: v01 = I B (100 kΩ) = (2 ×10−6 )(100 × 103 ) = 0.2 V Then v02 = (−5)(0.2) + (2 × 10−6 )(50 × 103 ) = −0.9 V Worst case: v01 is positive and v02 is negative, then v01 = 0.31 V and v02 = −1.51 V b. Compensation network: If we want ⎛ RB ⎞ + + ⎜ ⎟ V = 20 mV and V = 10 V ⎝ RB + RC ⎠ ⎛ 8.33 ⎞ ⎜ ⎟ (10) = 0.020 ⎝ 8.33 + RC ⎠ or RC ≅ 4.15 MΩ 14.44 Assume bias currents are in same direction, but assume polarity of offset voltages are such as to produce the worst case output. a. Let I B1 = 5.5 μ A, I B 2 = 4.5 μ A Bias Current Effects: v01 = I B1 (50 kΩ) = 0.275 V ⇒ v02 = 0.275 V v03 = I B1 (20 kΩ) − v01 ⇒ v03 = −0.165 V Offset Voltage Effects: ⎛ 50 ⎞ v01 = (5) ⎜1 + ⎟ = 30 mV ⇒ v02 = 30 mV ⎝ 10 ⎠ ⎛ 20 ⎞ v03 = −v01 − 5 ⎜ 1 + ⎟ ⇒ v03 = −40 mV ⎝ 20 ⎠ Total Effect: v01 = 0.305 V and v02 = 0.305 V v03 = −0.205 V 14.45 For circuit (a), effect of bias current: v0 = (50 × 103 )(100 × 10−9 ) ⇒ 5 mV Effect of offset voltage
  • 24. ⎛ 50 ⎞ v0 = (2) ⎜1 + ⎟ = 4 mV ⎝ 50 ⎠ So net output voltage is v0 = 9 mV For circuit (b), effect of bias current: Let I B 2 = 550 nA, I B1 = 450 nA, then from Equation (14.79), ⎛ 50 ⎞ v0 = (450 × 10−9 )(50 × 103 ) − (550 × 10−9 )(106 ) ⎜1 + ⎟ ⎝ 50 ⎠ −2 = 2.25 × 10 − 1.1 or v0 = −1.0775 V If the offset voltage is negative, then v0 = (−2)(2) = −4 mV So the net output voltage is v0 = −1.0815 V 14.46 a. At T = 25°C, V0 S = 2 mV so the output voltage for each circuit is v0 = 4 mV b. For T = 50°C, the offset voltage for is V0 S = 2 mV + (0.0067)(25) = 2.1675 mV so the output voltage for each circuit is v0 = 4.335 mV 14.47 a. At T = 25°C, V0 S = 1 mV, then ⎛ 50 ⎞ v01 = (1) ⎜ 1 + ⎟ ⇒ v01 = 6 mV ⎝ 10 ⎠ and ⎛ 60 ⎞ ⎛ 60 ⎞ v02 = v01 ⎜ 1 + ⎟ + (1) ⎜ 1 + ⎟ ⎝ 20 ⎠ ⎝ 20 ⎠ = 6(4) + (1)(4) ⇒ v02 = 28 mV b. At T = 50°C, V0 S = 1 + (0.0033)(25) = 1.0825 mV, then v01 = (1.0825)(6) ⇒ v01 = 6.495 mV and v02 = (6.495)(4) + (1.0825)(4) or v02 = 30.31 mV 14.48 25°C; I B = 500 nA, I 0 S = 200 nA 50°C, I B = 500 nA + (8 nA / °C)(25°C) = 700 nA I 0 S = 200 nA + (2 nA / °C)(25°C) = 250 nA a. Circuit (a): For I B , bias current cancellation, v0 = 0 Circuit (b): For I B , Equation (14.79), ⎛ 50 ⎞ v0 = (500 × 10−9 )(50 × 103 ) − (500 × 10 −9 )(106 ) ⎜ 1 + ⎟ ⎝ 50 ⎠ = 0.025 − 1.00 ⇒ v0 = −0.975 V b. Due to offset bias currents. Circuit (a):
  • 25. v0 = (200 × 10−9 )(50 × 103 ) ⇒ v0 = 0.010 V Circuit (b): Let I B 2 = 600 nA I B1 = 400 nA Then ⎛ 50 ⎞ v0 = (400 × 10−9 )(50 × 103 ) − (600 × 10−9 )(106 ) ⎜ 1 + ⎟ ⎝ 50 ⎠ = 0.020 − 1.20 ⇒ v0 = −1.18 V c. Circuit (a): Due to I B , v = 0 Circuit (b): Due to I B , ⎛ 50 ⎞ v0 = (700 × 10−9 )(50 × 103 ) − (700 × 10−9 )(106 ) ⎜1 + ⎟ ⎝ 50 ⎠ = 0.035 − 1.40 ⇒ v0 = −1.365 V Circuit (a): Due to I 0 S , v0 = (250 × 10−9 )(50 × 103 ) ⇒ v0 = 0.0125 V Circuit (b): Due to I 0 S , Let I B 2 = 825 nA I B1 = 575 nA Then ⎛ 50 ⎞ v0 = (575 × 10−9 )(50 × 103 ) − (825 × 10−9 )(106 ) ⎜ 1 + ⎟ ⎝ 50 ⎠ = 0.02875 − 1.65 ⇒ v0 = −1.62 V 14.49 25°C; I B = 2 μ A, I 0 S = 0.2 μ A 50°C, I B = 2 μ A + (0.020 μ A / °C)(25°C ) = 2.5 μ A I 0 S = 0.2 μ A + (0.005 μ A / °C)(25°C) = 0.325 μ A a. Due to I B : (Assume bias currents into op-amp). v01 = I B (50 kΩ) = (2 × 10−6 )(50 × 103 ) ⇒ v01 = 0.10 V ⎛ 60 ⎞ ⎛ 60 ⎞ v02 = v01 ⎜ 1 + ⎟ + I B (60 kΩ) − I B (50 kΩ) ⎜ 1 + ⎟ ⎝ 20 ⎠ ⎝ 20 ⎠ −6 −6 = (0.1)(4) + (2 × 10 )(60 × 10 ) − (2 × 10 )(60 × 103 )4 3 or v02 = 0.12 V b. Due to I 0 S : 1st op-amp. Let I B1 = 2.1 μ A 2nd op-amp. Let I B1 = 2.1 μ A I B 2 = 1.9 μ A v01 = I B1 (50 kΩ) = (2.1× 10−6 )(50 × 103 ) ⇒ v01 = 0.105 V ⎛ 60 ⎞ ⎛ 60 ⎞ v02 = v01 ⎜ 1 + ⎟ + I B1 (60 kΩ) − I B 2 (50 kΩ) ⎜1 + ⎟ ⎝ 20 ⎠ ⎝ 20 ⎠ = (0.105)(4) + (2.1× 10 )(60 × 10 ) − (1.9 × 10 −6 )(50 × 103 )(4) −6 3 or v02 = 0.166 V c. Due to I B :
  • 26. v01 = (2.5 × 10 −6 )(50 × 103 ) ⇒ v01 = 0.125 V ⎛ 60 ⎞ ⎛ 60 ⎞ v01 = v02 ⎜ 1 + ⎟ + I B (60 kΩ) − I B (50 kΩ) ⎜1 + ⎟ ⎝ 20 ⎠ ⎝ 20 ⎠ −6 = (0.125)(4) + (2.5 × 10 )(60 × 10 ) − (2.5 × 106 )(50 × 103 (4) 3 or v02 = 0.15 V Due to I 0 S : Let I B1 = 2.625 μ A I B 2 = 2.3375 μ A v01 = I B1 (50 kΩ) = (2.6625 × 10−6 )(50 × 103 ) ⇒ v01 = 1.133 V ⎛ 60 ⎞ ⎛ 60 ⎞ v02 = v01 ⎜ 1 + ⎟ + I B1 (60 kΩ) − I B 2 (50 kΩ) ⎜ 1 + ⎟ ⎝ 20 ⎠ ⎝ 20 ⎠ = (0.133)(4) + (2.6625 × 10−6 )(60 × 103 ) − (2.3375 × 10−6 )(50 × 103 )(4) or v02 = 0.224 V 14.50 ⎛ R4 ⎞ ⎛ R2 ⎞ vB = ⎜ ⎟ vI 1 and v0 (vI 2 ) = vB ⎜ 1 + ⎟ ⎝ R3 + R4 ⎠ ⎝ R1 ⎠ or ⎛ R4 ⎞ ⎛ R2 ⎞ v0 (vI 2 ) = ⎜ ⎟ ⎜ 1 + ⎟ vI 2 ⎝ R3 + R4 ⎠ ⎝ R1 ⎠ or vI 1 . R2 v0 (vI 1 ) = − ⋅ vI R1 Then ⎛ R4 ⎞⎛ R2 ⎞ R2 v0 = ⎜ ⎟⎜ 1 + ⎟ vI 2 − ⋅ vI 1 ⎝ R3 + R4 ⎠ ⎝ R1 ⎠ R1 V V we can write vI 2 = vcm + d and vI 1 = Vcm − d ⋅ Then 2 2 ⎛ R4 ⎞⎛ R2 ⎞ ⎛ Vd ⎞ R2 ⎛ Vd ⎞ v0 = ⎜ ⎟⎜ 1 + ⎟ ⎜ Vcm + ⎟ − ⋅ ⎜ Vcm − ⎟ ⎝ R3 + R4 ⎠ ⎝ R1 ⎠ ⎝ 2 ⎠ R1 ⎝ 2⎠ Common-mode gain v ⎛ R4 ⎞ ⎛ R2 ⎞ R2 Acm = 0 = ⎜ ⎟ ⎜1 + ⎟ − Vcm ⎝ R3 + R4 ⎠ ⎝ R1 ⎠ R1
  • 27. Differential mode gain v 1 ⎡⎛ R4 ⎞⎛ R2 ⎞ R2 ⎤ Ad = 0 = ⎢⎜ ⎟⎜ 1 + ⎟ + ⎥ Vd 2 ⎣⎝ R3 + R4 ⎠ ⎝ R1 ⎠ R1 ⎦ Then A CM RR = d Acm 1 ⎡⎛ R4 ⎞ ⎛ R2 ⎞ R2 ⎤ ⋅ ⎢⎜ ⎟ ⎜1 + ⎟ + ⎥ 2 ⎣⎝ R3 + R4 ⎠ ⎝ R1 ⎠ R1 ⎦ = ⎡⎛ R4 ⎞ ⎛ R2 ⎞ R2 ⎤ ⎢⎜ ⎟ ⎜1 + ⎟ − ⎥ ⎣⎝ R3 + R4 ⎠ ⎝ R1 ⎠ R1 ⎦ ⎡ ⎤ ⎢ ⎥ 1 ⎢ R4 1 ⎛ R2 ⎞ R2 ⎥ ⋅ ⋅ ⋅ ⎜1 + ⎟ + 2 ⎢ R3 ⎛ R4 ⎞ ⎝ R1 ⎠ R1 ⎥ ⎢ ⎜ 1+ ⎟ ⎥ ⎢ ⎣ ⎝ R3 ⎠ ⎥ ⎦ CM RR = R4 1 ⎛ R2 ⎞ R2 ⋅ ⋅ ⎜1 + ⎟ − R3 ⎛ R4 ⎞ ⎝ R1 ⎠ R1 ⎜1 + ⎟ ⎝ R3 ⎠ Minimum CMRR ⇒ Maximum denominator R R ⇒ maximum 4 and minimum 2 . Then R3 R1 R4 (1.02)(50) = = 5.204 R3 (0.98)(10) R2 (0.98)(50) = = 4.804 R1 (1.02)(10) Then 1 ⎡ 5.204 ⎤ ⋅ (5.804) + (4.804) ⎥ 2 ⎢ 6.204 CMRR = ⎣ ⎦ ⎡ 5.204 ⎤ ⎢ 6.204 ⋅ (5.804) − (4.804) ⎥ ⎣ ⎦ 1 ⋅ (9.6725) = 2 (0.06447) CMRR = 75.0 ⇒ CMRRdB = 20 log10 (75.0) ⇒ CMRRdB = 37.5 dB 14.51 Use the results of Problem 14.50: R 1 + x ⎛ 50 ⎞ Let 4 = ⋅ ⎜ ⎟ ≈ (1 + 2 x)(5) R3 1 − x ⎝ 10 ⎠ R 1 − x ⎛ 50 ⎞ Let 2 = ⋅ ⎜ ⎟ ≈ (1 − 2 x)(5) R1 1 + x ⎝ 10 ⎠ Then
  • 28. 1 ⎡ (1 + 2 x ) 5 ⎤ ⎢ ⋅ ( 6 − 10 x ) + (1 − 2 x )( 5 ) ⎥ 2 ⎣ 6 + 10 x ⎦ CMRR = ⎡ (1 + 2 x ) 5 ⎤ ⎢ ⋅ ( 6 − 10 x ) − (1 − 2 x )( 5 ) ⎥ ⎣ 6 + 10 x ⎦ 1 ⎡30 + 10 x − 100 x + 30 − 10 x − 100 x 2 ⎤ ⎣ 2 ⎦ = 2 ⎡30 + 10 x − 100 x − ( 30 − 10 x − 100 x ) ⎤ 2 2 ⎣ ⎦ 1 ⋅ [60 − 200 x 2 ] 2 30 − 100 x 2 = = 20 x 20 x a. For CMRRdB = 90 dB ⇒ CMRR = 31, 623 x will be small, neglect the x 2 term. Then 30 20 x = ⇒ x = 0.0000474 = 0.00474% 31, 623 b. For CMRRdB = 60 dB ⇒ CMRR = 1000. Then 30 20 x = ⇒ x = 0.0015 = 0.15% 1000