Chapter 16
Problem Solutions

16.1
(a)
            2e ∈s N a
ΔVTN =                  ⎡ 2φ fp + VSB − 2φ fp ⎤
              Cax       ⎣                     ⎦
        ∈ax (3.9)(8.85 × 10 −14 )
Cax =       =                     = 7.67 × 10−8
        tax     450 × 10−8
  2e ∈s N a = ⎡ 2 (1.6 × 10 −19 ) (11.7 ) ( 8.85 × 10−14 )( 8 × 1015 ) ⎤
                                                                           1/ 2

              ⎣                                                        ⎦          = 5.15 × 10 −8
Then
        5.15 × 10−8 ⎡                                        ⎤
ΔVTN =               ⋅ 2(0.343) + VSB − 2(0.343) ⎦
        7.67 × 10−8 ⎣
For VSB = 1 V :
ΔVTN = 0.671 ⎡ 1.686 − 0.686 ⎤ ⇒ ΔVTN = 0.316 V
              ⎣              ⎦
For VSB = 1 V :
              ⎡                 ⎤
 ΔVTN = 0.671 ⎣ 2.686 − 0.686 ⎦ ⇒ ΔVTN = 0.544 V
(b)      For VGS = 2.5 V, VDS = 5 V, transistor biased in the saturation region.
     ID   = K n (VGS − VTN ) 2
For VSB   = 0,
     ID   = 0.2(2.5 − 0.8) 2 = 0.578 mA
For VSB   = 1,
       I D = 0.2 ( 2.5 − [ 0.8 + 0.316]) = 0.383 mA
                                         2



For VSB = 2,
       I D = 0.2 ( 2.5 − [ 0.8 + 0.544]) = 0.267 mA
                                         2




16.2
(a)
       VDD − vO
ID =            = K n ⎡ 2(VGS − VTN )vO − vO ⎤
                      ⎣
                                           2
                                             ⎦
         RD
5 − (0.1)
           = K n ⎡ 2 ( 5 − 0.8 )( 0.1) − ( 0.1) ⎤
                                               2

 40 × 10 3       ⎣                               ⎦
                                           −5
                                    8 × 10 ⎛ W ⎞
or K n = 1.476 × 10−4 A / V 2 =               ⎜ ⎟
                                        2 ⎝L⎠
          ⎛W ⎞
So that ⎜ ⎟ = 3.69
          ⎝L⎠
b.         From Equation (16.10).
K n RD [VIt − VTN ] + [VIt − VTN ] − VDD = 0
                    2



(0.1476)(40) [VIt − 0.8] + [VIt − 0.8] − 5 = 0
                            2



                 −1 ± (1) 2 + 4(0.1476)(40)(5)
or [VIt − 0.8] =
                        2(0.1476)(40)
or [VIt − 0.8] = 0.839
So that VIt = 1.64 V
P = I D (max) ⋅ VDD
               5 − (0.1)
and I D (max) =          = 0.1225 mA
                  40
or P = 0.6125 mW

16.3
a.        From Equation (16.10), the transistor point is found from
K n RD (VIt − VTN ) 2 + (VIt − VTN ) − VDD = 0
K n = 50 μ A / V 2 , RD = 20 k Ω, VTN = 0.8 V
(0.05)(20)(VIt − VTN ) 2 + (VIt − VTN ) − 5 = 0
           −1 ± 1 + 4(0.05)(20)(5)
VIt − VTN =                         = 1.79 V So VIt = 2.59 V
                 2(0.05)(20)
                                                V0t = 1.79 V
Output voltage for vI = 5 V is determined from Equation (16.12):
v0 = 5 − (0.05)(20) ⎡ 2(5 − 0.8)v0 − v0 ⎤
                    ⎣
                                      2
                                        ⎦
 2
v0 − 9.4v0 + 5 = 0
          9.4 ± (9.4) 2 − 4(1)(5)
So v0 =                           = 0.566 V
                  2(1)
b.        For RD = 200 kΩ,
             −1 ± 1 + 4(0.05)(200)(5)
(VIt − VTN ) =                        = 0.659 V So VIt = 1.46 V
                  2(0.05)(200)
V0t = 0.659 V
v0 = 5 − (0.05)(200) ⎡ 2 ( 5 − 0.8 ) v0 − v0 ⎤
                     ⎣
                                           2
                                             ⎦
      2
or 10v0 − 85v0 + 5 = 0

               (85 ) − 4 (10 )( 5 )
                   2
       85 ±
v0 =                                = 0.0592 V
                 2 (10 )




16.4
(a)           P = IV
0.25 = I (33) ⇒ I = 75.76 μA
      3.3 − 0.15
 R=                ⇒ R = 41.6 K
       0.07576
     ⎛ k ′ ⎞⎛ W ⎞
 I = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN )
                              2

     ⎝ 2 ⎠⎝ L ⎠
           ⎛ 80 ⎞ ⎛ W ⎞               ⎛W ⎞
 75.76 = ⎜ ⎟ ⎜ ⎟ ( 3.3 − 0.8 ) ⇒ ⎜ ⎟ = 0.303
                                  2

           ⎝ 2 ⎠⎝ L ⎠                 ⎝L⎠
(b)
VDS (sat) = VGS − VTN
                           V − VDS (sat)
 I D = K n (VGS − VTN ) = DD
                        2

                                  R
⎛ 0.08 ⎞                                    3.3 − (VGS − 0.8 )
        ⎟ ( 0.303) (VGS − 1.6VGS + 0.64 ) =
                      2
⎜
⎝ 2 ⎠                                              41.6
0.504 (VGS − 1.6VGS + 0.64 ) = 4.1 − VGS
         2


       2
0.504VGS + 0.1936VGS − 3.777 = 0
        −0.1936 ± 0.03748 + 4(0.504)(3.777)
VGS =
                     2(0.504)
VGS   = 2.55 V
For 0.8 ≤ VGS ≤ 2.55 V
Transistor biased in saturation region

16.5
(a)
 P = I ⋅ VDD
 0.25 = I (3.3) ⇒ I = 75.76 μA
For Sat Load
              ⎛ 80 ⎞ ⎛ W ⎞                  ⎛W ⎞
 I = 75.76 = ⎜ ⎟ ⎜ ⎟ ( 3.3 − 0.15 − 0.8 ) ⇒ ⎜ ⎟ = 0.343
                                         2

              ⎝  2 ⎠ ⎝ L ⎠L                 ⎝ L ⎠L
⎛ 80 ⎞                                         ⎛ 80 ⎞ ⎛ W ⎞
⎜ ⎟ ( 0.343)( 3.3 − 0.15 − 0.8 ) = I = 75.76 = ⎜ ⎟ ⎜ ⎟ ⎡ 2 ( 2.5 − 0.8 )( 0.15 ) − ( 0.15 ) ⎤
                                2                                                          2

⎝  2⎠                                          ⎝  2 ⎠ ⎝ L ⎠D ⎣                               ⎦
⎛W ⎞
⎜ ⎟ = 3.89
⎝ L ⎠D
Eq 16.21
                      ⎛    3.89 ⎞
      3.3 − 0.8 + 0.8 ⎜1 +
                      ⎜          ⎟
                      ⎝    0.343 ⎟ 5.994
                                 ⎠=
VIt =
                     3.89           4.3677
               1+
                     0.343
 0.8 ≤ VGS ≤ 1.372 V

16.6
(a)      From Equation (16.23)
 KD ⎡                                                        K
      2 3 − 0.5 )( 0.25 ) − ( 0.25 ) ⎤ = ( 3 − 0.25 − 0.5 ) ⇒ D = 4.26
     ⎣ (
                                    2                      2

 KL                                   ⎦                      KL
KD ⎡                                                          K
                 2 2.5 − 0.5 )( 0.25 ) − ( 0.25 ) ⎤ = ( 3 − 0.25 − 0.5 ) ⇒ D = 5.4
               ⎣ (
                                                 2                      2
(b)
            KL                                     ⎦                      KL
           iD = K L (VGSL − VTNL ) = K L (VDD − vO − VTNL ) 2
                                     2


(c)            ⎛ 0.080 ⎞
                        ⎟ (1)(3 − 0.25 − 0.5) ⇒ iD = 0.203 mA
                                             2
             =⎜
               ⎝ 2 ⎠
           P = iD ⋅ VDD = (0.203)(3) ⇒ P = 0.608 mW
for both parts (a) and (b).

16.7
P = 0.4 mW = iD ⋅ VDD = iD (3) ⇒ iD = 0.1333 mA
iD = K L (VDD − vO − VTNL ) 2
          ⎛ 0.080 ⎞ ⎛ W ⎞                              ⎛W ⎞
                  ⎟ ⎜ ⎟ ( 3 − 0.1 − 0.5 ) = ( 0.2304 ) ⎜ ⎟
                                         2
0.1333 = ⎜
          ⎝   2 ⎠ ⎝ L ⎠L                               ⎝ L ⎠L
   ⎛W ⎞
So ⎜ ⎟ = 0.579
   ⎝ L ⎠L
KD ⎡
     2 2.5 − 0.5 )( 0.1) − ( 0.1) ⎤ = ( 3 − 0.1 − 0.5 )
   ⎣ (
                                 2                      2

KL                                 ⎦
      KD                ⎛W ⎞
⇒        = 14.8 so that ⎜ ⎟ = 8.55
      KL                ⎝ L ⎠D

VIt =
                     (
        3 − 0.5 + 0.5 1 + 14.8   )
              1 + 14.8
or
VIt = 1.02 V , VOt = 0.52 V

16.8
We have
 KD
     ⎣ 2 ( vI − VTND ) vO − vO ⎦ = (VDD − vO − VTNL )
                                                      2
     ⎡                       2
                               ⎤
 KL
(W / L )D ⎡
            2 V − V − VTN )( 0.08VDD ) − ( 0.08VDD ) ⎤ = (VDD − 0.08VDD − VTN )
          ⎣ ( DD TN
                                                         2                             2

(W / L )L                                                  ⎦

(W / L )D ⎡
          ⎣ 2 (VDD − 2 ( 0.2 )VDD ) ( 0.08VDD ) − 0.0064VDD ⎤ = ⎡( 0.92 − 0.2 )VDD ⎤ = 0.5184VDD
                                                         2                           2        2

(W / L )L                                                    ⎦ ⎣                   ⎦

(W / L )D                         (W / L )D
          [0.096] = 0.5184 ⇒                 = 5.4
(W / L )L                         (W / L )L

16.9
VOH = VB − VTN = Logic 1
So
(a)      VB = 4 V ⇒ VOH         = 3V
(b)      VB = 5 V ⇒ VOH         = 4V
(c)      VB = 6 V ⇒ VOH         = 5V
(d)      VB = 7 V ⇒ VOH         = 5 V ,since VDS = 0
For vI = VOH
K D ⎡ 2 ( vI − VT ) vO − vO ⎤ = K L [VB − vO − VT ]
                          2                                2
    ⎣                       ⎦
Then
            (1) ⎡ 2 ( 3 − 1)VOL − VOL ⎤ = ( 0.4 ) [ 4 − VOL − 1]
                                                                 2
(a)             ⎣
                                    2
                                      ⎦                                ⇒ VOL = 0.657 V

            (1) ⎣ 2 ( 4 − 1)VOL − V         ⎦ = ( 0.4 ) [5 − VOL − 1] ⇒ VOL = 0.791 V
                                                                   2
(b)             ⎡                       2
                                       OL
                                            ⎤

            (1) ⎡ 2 ( 5 − 1)VOL − VOL ⎤ = ( 0.4 ) [6 − VOL − 1]
                                                                 2
(c)             ⎣
                                    2
                                      ⎦                                ⇒ VOL = 0.935 V
(d)       Load in non-sat region
iDD = iOL
(1) ⎡ 2 ( 5 − 1) VOL − VOL ⎤ = ( 0.4 ) ⎡ 2 ( 7 − VOL − 1)( 5 − VOL ) − ( 5 − VOL ) ⎤
                         2                                                        2
    ⎣                      ⎦           ⎣                                            ⎦
8VOL − VOL = ( 0.4 ) ⎡ 2 ( 6 − VOL )( 5 − VOL ) − ( 25 − 10VOL + VOL ) ⎤
         2
                     ⎣
                                                                   2
                                                                       ⎦
               = ( 0.4 ) ⎡ 2 ( 30 − 11VOL + VOL ) − 25 + 10VOL − VOL ⎤
                         ⎣
                                              2                    2
                                                                     ⎦
               = ( 0.4 ) ⎡60 − 22VOL + 2VOL − 25 + 10VOL − VOL ⎤
                         ⎣
                                          2                  2
                                                               ⎦
         2                      2
8VOL − VOL = 14 − 4.8VOL + 0.4VOL
     2
1.4VOL − 12.8VOL + 14 = 0
         12.8 ± 163.84 − 4 (1.4 )(14 )
VOL =
                        2 (1.4 )
VOL = 1.27V
For load
VDS ( sat ) = 7 − 1.27 − 1 = 4.73V
VDS = 5 − 1.27 = 3.73 non-sat

16.10
a.          For load VOt = VDD + VTNL = 5 − 2 = 3 V
     KD
        ⋅ (VIt − VTND ) = −VTNL
     KL
 500
      (VIt − 0.8 ) = − ( −2 )
 100
⇒ VIt = 1.69 V ⎫
                ⎬ Load
  VOt = 3 V ⎭

Driver: VOt = VIt − VTND = 1.69 − 0.8 = 0.89 V
           VIt = 1.69 V ⎫
                        ⎬ Driver
           V0t = 0.89 V ⎭
b.          From Equation (16.29(b)):
500                                         2
     ⋅ ⎣ 2(5 − 0.8)v0 − v0 ⎦ = ⎡ − ( −2 ) ⎤
       ⎡                 2
                           ⎤ ⎣            ⎦
100
   2
5v0 − 42v0 + 4 = 0

               ( 42 ) − 4 ( 5)( 4 )
                    2
        42 ±
v0 =                                ⇒ v0 = 0.0963 V
                  2 (5)
                                                       2
            iD = K L ( −VTNL ) = 100 ⎣ − ( −2 ) ⎦ ⇒ iD = 400 μ A
                                   2
c.                                   ⎡          ⎤
16.11
⎛ 500 ⎞ ⎡
      ⎟ ⎣ 2 ( 3 − 0.5 )( 0.1) − ( 0.1) ⎤ = ( −VTNL )
                                      2              2
⎜                                       ⎦
⎝ 50 ⎠
So
( −VTNL )
            2
                = 4.9 ⇒ VTNL = −2.21 V

16.12
(a)
 P = iD ⋅ VDD
150 = iD ⋅ ( 3) ⇒ iD = 50 μ A
iD = K L (−VTNL ) 2
     ⎛ 80 ⎞ ⎛ W ⎞        2 ⎛W ⎞
50 = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 1.25
     ⎝  2 ⎠ ⎝ L ⎠L ⎣   ⎦
                           ⎝ L ⎠L
KD ⎡
     2 ( 3 − 0.5 )( 0.1) − ( 0.1) ⎤ = ⎡ − ( −1) ⎤
                                 2                2

KL ⎣                               ⎦ ⎣          ⎦

 K D (W / L ) D            ⎛W ⎞
     =           = 2.04 ⇒ ⎜ ⎟ = 2.55
 K L (W / L ) L            ⎝ L ⎠D
For the Load:
VOt = VDD + VTNL = 3 − 1 ⇒ VOt = 2 V
  2.04 (VIt − 0.5 ) = ⎡ − ( −1) ⎤ ⇒ VIt = 1.20 V
                      ⎣         ⎦
For the Driver:
VOt = VIt − VTND = 1.20 − 0.5 ⇒ VOt = 0.70 V
                                      VIt = 1.20 V
(b)             NM L = VIL − VOLU
                NM H = VOHU − VIH
                       ⎡ − ( −1) ⎤
                       ⎣         ⎦
VIL = 0.5 +                            = 0.902 V
                   ( 2.04 )(1 + 2.04 )
           2 ⎡ − ( −1) ⎤
VIH = 0.5 + ⎣          ⎦ = 1.31 V
             3 ( 2.04 )
Then VOHU = ( 3 − 1) + ( 2.04 )( 0.902 − 0.5 ) = 2.82 V
         (1.31 − 0.5)
VOLU =            = 0.405 V
           2
NM L = 0.902 − 0.405 ⇒ NM L = 0.497 V
NM H = 2.82 − 1.31 ⇒ NM H = 1.51 V

16.13
a.      From Equation (16.29(b)):
⎛W ⎞ ⎡                                       ⎛W ⎞
⎜ ⎟ ⎣ 2 ( 2.5 − 0.5 )( 0.05 ) − ( 0.05 ) ⎤ = ⎜ ⎟ [− ( −1)]
                                        2                 2

⎝  L ⎠D                                   ⎦ ⎝ L ⎠L
        ⎛W ⎞
        ⎜ ⎟ =1
        ⎝ L ⎠L
⎛W ⎞
Then          ⎜ ⎟ = 5.06
              ⎝ L ⎠D
              ⎛ 80 ⎞              2
b.       iD = ⎜ ⎟ (1) ⎡ − ( −1) ⎤
                      ⎣         ⎦
              ⎝ 2⎠
or iD = 40 μ A
P = iD ⋅ VDD = ( 40 )( 2.5 ) ⇒ P = 100 μ W

16.14
a.         i.            vI = 0.5 V ⇒ iD = 0 ⇒ P = 0
           ii.           vI = 5 V, From Equation (16.12),
v0 = 5 − ( 0.1)( 20 ) ⎡ 2 ( 5 − 1.5 ) v0 − v0 ⎤
                      ⎣
                                            2
                                              ⎦
  2
2v0 − 15v0 + 5 = 0

                 (15 ) − 4 ( 2 )( 5 )
                     2
       15 ±
v0 =                                  ⇒ v0 = 0.35 V
                   2 ( 2)
     5 − 0.35
iD =          = 0.2325 mA
         20
P = iD ⋅ VDD = ( 0.2325 )( 5 ) ⇒ P = 1.16 mW
b.         i.        vI = 0.25 V ⇒ iD = 0 ⇒ P = 0
ii.         vI = 4.3 V, From Equation (16.23),
100 ⎣ 2 ( 4.3 − 0.7 ) v0 − v0 ⎦ = 10 [5 − v0 − 0.7 ]
                                                      2
    ⎡                       2
                              ⎤
10 ⎡7.2v0 − v0 ⎤ = 18.49 − 8.6v0 + v0
   ⎣
             2
               ⎦
                                    2


Then
   2
11v0 − 80.6v0 + 18.49 = 0

                   (80.6 ) − 4 (11)(18.49 )
                          2
       80.6 ±
v0 =                                        ⇒ v0 = 0.237 V
                       2 (11)
Then
iD = 10 [5 − 0.237 − 0.7 ] = 165 μ A
                              2


P = iD ⋅ VDD = (165 )( 5 ) ⇒ P = 825 μ W
c.         i.            vI = 0.03 V ⇒ iD = 0 ⇒ P = 0
           ii.           vI = 5 V
                                                             2
                         iD = K L ( −VTNL ) = (10 ) ⎡ − ( −2 ) ⎤ = 40 μ A
                                           2
                                                    ⎣          ⎦
                         P = iD ⋅ VDD = ( 40 )( 5 ) ⇒ P = 200 μ W

16.15
vo1 = 3.8V
Load & Driver in Sat, region, ML1, MD1
iDL = iDD
⎛W ⎞                  ⎛W ⎞
⎜ ⎟ ( vGSL − VTNL ) = ⎜ ⎟ ( vGSD − VTND )
                   2                      2

⎝ L ⎠L                ⎝ L ⎠D
(1) ( 5 − vo1 − 0.8 ) = (10 )( vI − 0.8 )
                          2                         2



0.16 = 10 ( vI − 0.8 )
                                   2


vI = 0.9265V
Now MD2: Non Sat and ML2: Sat
iDL = iDD
⎛W ⎞                  ⎛W ⎞
⎜ ⎟ ( vGSL − VTNL ) = ⎜ ⎟ ⎡ 2 ( vo1 − VTND ) vo 2 − vo 2 ⎤
                   2                                 2
                             ⎣                           ⎦
⎝ L ⎠L                ⎝ L ⎠D
(1)( 5 − vo 2 − 0.8 )          = (10 ) ⎡ 2 ( 3.8 − 0.8 ) vo 2 − vo 2 ⎤
                           2                                     2
                                       ⎣                             ⎦
( 4.2 − vo 2 )
                 2
                     = 10 ⎡ 6vo 2 − vo 2 ⎤
                          ⎣
                                     2
                                         ⎦
                   2                 2
17.64 − 8.4vo 2 + vo 2 = 60vo 2 − 10vo 2
   2
11vo 2 − 68.4vo 2 + 17.64 = 0
          68.4 ± 4678.56 − 4 (11)(17.64 )
vo 2 =
                                   2 (11)
vo 2 = 0.270 V

16.16
a.          From Equation (16.41),
              2 ⎡ − ( −2 ) ⎤
VIH    = 0.8 + ⎣           ⎦ ⇒ V = 1.95 V = v
                                             01
                   3( 4)
                                IH



M D 2 in non-saturation and M L 2 in saturation.
K D ⎡ 2 ( v01 − VTND ) v02 − v02 ⎤ = K L ( −VTNL )
                              2                                2
    ⎣                            ⎦
                                                           2
4 ⎣ 2 (1.95 − 0.8 ) v02 − v02 ⎦ = (1) ⎡ − ( −2 ) ⎤
  ⎡                        2
                              ⎤       ⎣          ⎦
  2
4v02 − 9.2v02 + 4 = 0

                     ( 9.2 ) − 4 ( 4 )( 4 )
                               2
         9.2 ±
v02 =                                       ⇒ v02 = 0.582 V
                         2 ( 4)
Both M D1 and M L1 in saturation region. From Equation (16.28(b)).
     4 ⋅ ( vI − 0.8 ) = − ( −2 )
or vI = 1.8 V
                                        ( +2 )
b.            VIL = 0.8 +                         = 1.25 V = v01
                                       4 (1 + 4 )
M D 2 in saturation, M L 2 in non-saturation
K D [ vO1 − VTND ] = K L ⎡ 2 ( −VTNL )( 5 − vO 2 ) − ( 5 − vO 2 ) ⎤
                  2                                              2
                         ⎣                                         ⎦
4 (1.25 − 0.8 ) = 2 ( 2 )( 5 − v02 ) − ( 5 − v02 )
                        2                                      2



( 5 − v02 )       − 4 ( 5 − v02 ) + 0.81 = 0
              2



                            ( 4)       − 4 (1)( 0.81)
                                   2
                  4±
5 − v02 =                                                = 0.214 V
                                   2 (1)
so
v02 = 4.786 V
To find vI :
4 ( v01 − 0.8 ) = (1) ( − ( −2 ) )
                    2                            2



v01 − 0.8 = 1
v01 − 1.8 = V
c.        VIH = 1.95 V, VIL = 1.25 V

16.17
a.       i.    Neglecting the body effect,
v0 = VDD − VTN
Assume VDD = 5 V, then v0 = 4.2 V
ii.      Taking the body effect into account: From Problem 16.1.
VTN = VTN 0 + 0.671 ⎡ 0.686 + VSB − 0.686 ⎤
                     ⎣                    ⎦
and VSB = v0
Then
                                        (
v0 = 5 − ⎡ 0.8 + 0.671 0.686 + v0 − 0.686 ⎤
         ⎣                                  ⎦                        )
v0 = 4.756 − 0.671 0.686 + v0
0.671 0.686 + v0 = 4.756 − v0
0.450 ( 0.686 + v0 ) = 22.62 − 9.51v0 + v0
                                         2

 2
v0 − 9.96v0 + 22.3 = 0

                        ( 9.96 )           − 4 ( 22.3)
                                       2
       9.96 ±
v0 =                                  ⇒ v0 = 3.40 V
                      2
b.            PSpice results similar to Figure 16.13(a).

16.18
Results similar to Figure 16.13(b).

16.19
a.        M X on, M Y cutoff.
From Equation (16.29(b)):
 KD ⎡
      2 5 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ = ⎡ − ( −2 ) ⎤
                                                    2

    ⎣ (
                                  2

 KL                                 ⎦ ⎣           ⎦

      KD
or       = 2.44
      KL
b.            For v X = vY = .5 V
2
2 ( 2.44 ) ⎣ 2 ( 5 − 0.8 ) v0 − v0 ⎤ = ⎡ − ( −2 ) ⎤
           ⎡                     2
                                   ⎦ ⎣            ⎦
     2
4.88v0 − 41.0v0 + 4 = 0

                          ( 41) − 4 ( 4.88 )( 4 )
                                2
                  41 ±
           v0 =
                             2 ( 4.88 )
or
v0 = 0.0987 V
c.
     ⎛ 80 ⎞               2
iD = ⎜ ⎟ (1) ⎡ − ( −2 ) ⎤ = 160 μ A
     ⎝  2⎠ ⎣            ⎦
P = (160 )( 5 ) ⇒ P = 800 μ W
for both parts (a) and (b).

16.20
(a)        Maximum value of vO in low state- when only one input is high, then,
KD ⎡
     2 ( 3 − 0.5 )( 0.1) − ( 0.1) ⎤ = ⎡ − ( −1) ⎤
                                 2                2

KL ⎣                               ⎦ ⎣          ⎦
KD
   = 2.04
KL
(b)
 P = iD ⋅ VDD
0.1 = iD (3) ⇒ iD = 33.3 μ A
     ⎛ k′ ⎞⎛ W ⎞
iD = ⎜ n ⎟ ⎜ ⎟ ( −VTNL )
                         2

     ⎝ 2 ⎠ ⎝ L ⎠L
        ⎛ 80 ⎞⎛ W ⎞          2 ⎛W ⎞
33.3 = ⎜ ⎟⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 0.8325
                     ⎣     ⎦
        ⎝ 2 ⎠⎝ L ⎠ L           ⎝ L ⎠L
     ⎛W ⎞
Then ⎜ ⎟ = 1.70
     ⎝ L ⎠D
                                                          2
(c)        3 ( 2.04 ) ⎡ 2 ( 3 − 0.5 ) vO − vO ⎤ = ⎡ − ( −1) ⎤ ⇒ vO = 0.0329 V
                      ⎣
                                            2
                                              ⎦ ⎣           ⎦

16.21
(a)       One driver in non-sat,
I D = K L ( −VTNL ) = K D ⎡ 2 (VGS − VTND ) VDSD − VDSD ⎤
                   2                                2
                          ⎣                             ⎦
              K
⎡ − ( −1) ⎤ = D ⎡ 2 ( 3.3 − 0.5 )( 0.1) − ( 0.1) ⎤
            2                                   2
⎣         ⎦   KL ⎣                                ⎦
KD
   = 1.82
KL
(b)
P = ± VDD
0.1 = ± ( 3.3) ⇒ I = 30.3 μ A
           ⎛ 80 ⎞ ⎛ W ⎞        2 ⎛W ⎞
30.3 = I = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 0.7575
                        ⎣    ⎦
           ⎝ 2 ⎠ ⎝ L ⎠L          ⎝ L ⎠L
⎛W ⎞
⎜ ⎟ = 1.38
⎝ L ⎠D
(c)
                                   0.1
(i)         Two inputs High, vo ≈      = 0.05 V
                                    2
                                    0.1
(ii)        Three inputs High, vo ≈     = 0.0333 V
                                     3
                                   0.1
(iii)       Four inputs High, vo ≈     = 0.025 V
                                    4

16.22
a.
P = iD ⋅ VDD
250 = iD ( 5 ) ⇒ iD = 50 μΑ
     ⎛ k' ⎞⎛W ⎞
iD = ⎜ n ⎟ ⎜ ⎟ [ −VTNL1 ]
                         2

     ⎝ 2 ⎠ ⎝ L ⎠ ML1
     ⎛ 60 ⎞ ⎛ W ⎞           2
50 = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −2 ) ⎤
                     ⎣    ⎦
     ⎝ 2 ⎠ ⎝ L ⎠ ML1
        ⎛W ⎞
So that ⎜ ⎟ = 0.417
        ⎝ L ⎠ ML1
KD
   ⎡ 2 ( vI − VTND ) vO − vO ⎤ = [ −VTNL ]
                           2              2

KL ⎣                         ⎦
KD ⎡
     2 5 − 0.8 )( 0.15 ) − ( 0.15 ) ⎤ = ⎡ − ( −2 ) ⎤
                                                     2

   ⎣ (
                                   2

KL                                   ⎦ ⎣           ⎦
       KD          ⎛W ⎞
or        = 3.23 ⇒ ⎜ ⎟       = 1.35
       KL          ⎝ L ⎠ MD1
b.          For v X = vY = 0 ⇒ v01 = 5 and v03 = 4.2
Then
K D 2 ⎡ 2 ( vO1 − VTND ) vO 2 − vO 2 ⎤ + K D 3 ⎡ 2 ( vO 3 − VTND ) vO 2 − vO 2 ⎤ = K L 2 [ −VTNL 2 ]
                                 2                                         2                        2
      ⎣                              ⎦         ⎣                               ⎦
K D 2 ∝ 8, K D 3 ∝ 8, K L 2 ∝ 1
                                                                                     2
8 ⎡ 2 ( 5 − 0.8 ) v02 − v02 ⎤ + 8 ⎡ 2 ( 4.2 − 0.8 ) v02 − v02 ⎤ = (1) ⎡ − ( −2 ) ⎤
  ⎣
                         2
                            ⎦     ⎣
                                                           2
                                                              ⎦       ⎣          ⎦
            2                2
67.2v02 − 8v02 + 54.4v02 − 8v02 = 4
Then
   2
16v0 − 121.6v0 + 4 = 0

                    (121.6 ) − 4 (16 )( 4 )
                              2
         121.6 ±
v02 =
                      2 (16 )
So v02 = 0.0330 V

16.23
a.         We can write
K x ⎡ 2 ( v X − VTN ) vDSX − vDSX ⎤ = K y ⎡ 2 ( vY − vDSX − VTN ) vDSY − vDSY ⎤ = K L [VDD − vO − VTN ]
                              2                                           2                           2
    ⎣                             ⎦       ⎣                                   ⎦
where v0 = vDSX + vDSY
We have
v X = vY = 9.2 V , VDD = 10 V , VTN = 0.8 V
                                            2        2
As a good first approximation, neglect the vDSX and vDSY terms. Let v0 ≈ 2vDSX . Then from the first and
third terms in the above equation.
9 ⎡ 2 ( 9.2 − 0.8 ) vDSX ⎤ ≅ (1)(10 − 2vDSX − 0.8 )
                                                            2
  ⎣                      ⎦
(151.2 ) vDSX   ≅ 84.64 − 36.8vDSX
So that vDSX = 0.450 V
From the first and second terms of the above equation.
9 ⎡ 2 ( 9.2 − 0.8 ) vDSX ⎤ ≅ 9 ⎡ 2 ( 9.2 − vDSX − 0.8 ) vDSY ⎤
  ⎣                      ⎦     ⎣                             ⎦
or
(16.8)( 0.45) = 2 ( 9.2 − 0.45 − 0.8) vDSY
which yields vDSY = 0.475 V
Then v0 = vDSX + vDSY = 0.450 + 0.475
or v0 = 0.925 V
We have vGSX = 9.2 V
and vGSY = 9.2 − vDSX = 9.2 − 0.45
or vGSY = 8.75 V
b.       Since v0 is close to ground potential, the body effect will have minimal effect on the results. From
a PSpice analysis:
For part (a):
vDSX = 0.462 V, vDSY = 0.491 V, v0 = 0.9536 V, vGSX = 9.2 V, and vGSY = 8.738 V
For part (b):
vDSX = 0.441 V, vDSY = 0.475 V, v0 = 0.9154 V, vGSX = 9.2 V, and vGSY = 8.759 V

16.24
a.           We can write
K x ⎡ 2 ( v X − VTNX ) vDSX − vDSX ⎤ = K y ⎡ 2 ( vY − vDSX − VTNY ) vDSY − vDSY ⎤ = K L [ −VTNL ]
                               2                                            2                    2
    ⎣                              ⎦       ⎣                                    ⎦
                                          2
From the first and third terms, (neglect vDSX ),
                                                2
4 ⎡ 2 ( 5 − 0.8 ) vDSX ⎤ = (1) ⎡ − ( −1.5 ) ⎤
  ⎣                    ⎦       ⎣            ⎦
or vDSX = 0.067 V
                                           2
From the second and third terms, (neglect vDSY ),
                                                        2
4 ⎡ 2 ( 5 − 0.067 − 0.8 ) vDSY ⎤ = (1) ⎡ − ( −1.5 ) ⎤
  ⎣                            ⎦       ⎣            ⎦
or vDSY = 0.068 V
Now
vGSX = 5, vGSY = 5 − 0.067 ⇒ vGSY = 4.933 V
and v0 = vDSX + vDSY ⇒ v0 = 0.135 V
Since v0 is close to ground potential, the body-effect has little effect on the results.

16.25
0.2
(a)       We have VDS of each driver ≈             = 0.05 V
                                                4
K L [ −VTNL ] = K D ⎡ 2 (VGSD − VTN ) VDSD
             2
                    ⎣                        − VDSD ⎤
                                                 2
                                                    ⎦
              K
⎡ − ( −1) ⎤ = D ⎡ 2 ( 3.3 − 0.4 )( 0.05 ) − ( 0.05 ) ⎤
            2                                       2
⎣         ⎦   KL ⎣                                    ⎦
KD
   = 3.478
KL
(b)
 P = I VDD
0.15 = I ( 3.3) ⇒ I = 45.45 μ A
        ⎛ 80 ⎞ ⎛ W ⎞        2 ⎛W ⎞
45.45 = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 1.14
                     ⎣    ⎦
        ⎝ 2 ⎠ ⎝ L ⎠L          ⎝ L ⎠L
⎛W ⎞
⎜ ⎟ = 3.95
⎝ L ⎠D

16.26
Complement of (B AND C) OR A ⇒ ( B ⋅ C ) + A

16.27
Considering a truth table, we find
 A        B         Y
 0        0         0
 0        1         1
 1        0         1
 1        1         0
which shows that the circuit performs the exclusive-OR function.

16.28
( A + B )(C + D)

16.29
(a)       Carry-out = A • ( B + C ) + B • C
(b)      For vO1 = Low = 0.2 V
KD ⎡
     2 ( 5 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ = ⎡ − ( −1.5 ) ⎤ ⇒
                                   2                   2

KL ⎣                                 ⎦ ⎣             ⎦

     ⎛W ⎞            ⎛W ⎞
For ⎜ ⎟ = 1, then ⎜ ⎟ = 1.37
     ⎝ L ⎠L          ⎝ L ⎠D
              ⎛W ⎞
So, for M 6 : ⎜ ⎟ = 1.37
              ⎝ L ⎠6
To achieve the required composite conduction parameter,
                ⎛W ⎞
For M 1 − M 5 : ⎜ ⎟ = 2.74
                ⎝ L ⎠1− 5

16.30




AE: VDS ≈ 0.075
                  ⎛W ⎞
(1) ⎡ − ( −1) ⎤ ≅ ⎜ ⎟ ⎡ 2 ( 3.3 − 0.4 )( 0.075 ) − ( 0.075 ) ⎤
                2                                           2
    ⎣         ⎦     L ⎠D ⎣                                    ⎦
                  ⎝
⎛W ⎞        ⎛W ⎞            ⎛W ⎞       ⎛W ⎞       ⎛W ⎞
⎜ ⎟ = ⎜ ⎟ = 2.33 ⇒ ⎜ ⎟ = ⎜ ⎟ = ⎜ ⎟ = 4.66
⎝ L ⎠ A ⎝ L ⎠E              ⎝ L ⎠ B ⎝ L ⎠C ⎝ L ⎠ D

16.31
Not given
16.32
a.        From Equation (16.43),
           5 − 0.8 + 0.8
vI = VIt =               = VIt = 2.5 V
               1+1
p − channel, V0 Pt = 2.5 − ( −0.8 ) ⇒ V0 Pt = 3.3 V
n − channel, V0 Nt = 2.5 − 0.8 ⇒ V0 Nt = 1.7 V

c            For vI = 2 V, NMOS in saturation and PMOS in nonsaturation. From Equation (16.49),
( 2 − 0.8)= ⎡ 2 ( 5 − 2 − 0.8 )( 5 − v0 ) − ( 5 − v0 ) ⎤
             2                                        2
             ⎣                                          ⎦
1.44 = 4.4(5 − v0 ) − (5 − v0 ) 2
So ( 5 − v0 ) − 4.4 ( 5 − v0 ) + 1.44 = 0
                 2



                         ( 4.4 )       − 4 (1)(1.44 )
                                   2
                 4.4 ±
( 5 − v0 ) =
                       2
or
5 − v0 = 0.356 ⇒ v0 = 4.64 V
By symmetry, for vI = 3 V, v0 = 0.356 V

16.33
                   ⎛ 80 ⎞
(a)          K n = ⎜ ⎟ ( 2 ) = 80 μ A / V 2
                   ⎝ 2⎠
                   ⎛ 40 ⎞
             K p = ⎜ ⎟ ( 4 ) = 80 μ A / V 2
                   ⎝ 2 ⎠
                                            Kn
                     VDD + VTP +               ⋅ VTN
                                            Kp              3.3 − 0.4 + (1)(0.4)
(i)          VIt =                                      =
                                           Kn                       1+1
                             1+
                                           Kp
             VIt = 1.65 V
PMOS:
VOt = VIt − VTP = 1.65 − ( −0.4 ) ⇒ VOt = 2.05 V
NMOS:
VOt = VIt − VTN = 1.65 − ( 0.4 ) ⇒ VOt = 1.25 V
(iii) For vO = 0.4 V : NMOS: Non-sat: PMOS:Sat
K n ⎡ 2 (VGSN − VTN )VDS − VDS ⎤ = K p [VSGP + VTP ]
                            2                                      2
    ⎣                          ⎦
2 ( vI − 0.4 )( 0.4 ) − ( 0.4 ) = ( 3.3 − vI − 0.4 ) ⇒ vI = 1.89 V
                                       2                       2


For vO = 2.9 V , By symmetry
vI = 1.65 − (1.89 − 1.65 ) ⇒ vI = 1.41 V
                   ⎛ 80 ⎞
(b)          K n = ⎜ ⎟ ( 2 ) = 80 μ A/V 2
                   ⎝ 2⎠
                   ⎛ 40 ⎞
             K p = ⎜ ⎟ ( 2 ) = 40 μ A/V 2
                   ⎝ 2 ⎠
80
                     3.3 − 0.4 +        ⋅ ( 0.4 )
(i)          VIt =                   40           ⇒ VIt = 1.44 V
                                    80
                                 1+
                                    40
PMOS:
VOt = 1.44 − ( −0.4 ) ⇒ VOt = 1.84 V
NMOS:
VOt = 1.44 − 0.4 ⇒ VOt = 1.04 V
(iii)        For vO = 0.4 V

                             ⎦ ( )[
      ⎡                      ⎤ = 40 3.3 − vI − 0.4]2 ⇒ vI = 1.62 V
(80 ) ⎣ 2 ( vI − 0.4 )( 0.4 ) − ( 0.4 )
                                            2



For vO = 2.9 V : NMOS: Sat, PMOS: Non-sat
(80 ) [vI − 0.4]         = ( 40 ) ⎡ 2 ( 3.3 − vI − 0.4 )( 0.4 ) − ( 0.4 ) ⎤ ⇒ vI = 1.18 V
                     2                                                   2
                                  ⎣                                        ⎦

16.34
(a)          From Eq. (16.43), switching voltage
(i)

         VDD + VTP +
                             Kn
                                ⋅ VTN                       2 ( 4)
                             Kp             3.3 + ( −0.4 ) +       ( 0.4 ) 3.2266
vI t =                                  =                    12           =        ⇒ vIt = 1.776 V
                   Kn                                   2 ( 4)              1.8165
                1+                                   1+
                   Kp                                    12
(ii)         v0 = 3.1 V , PMOS, non-sat; NMOS, sat
   ′
⎛ kp ⎞⎛ W ⎞                                       ′
                                              ⎛ kn ⎞ ⎛ W ⎞
⎜ ⎟ ⎜ ⎟ ⎣ 2 (VSG + VTP ) VSD − VSD ⎦ = ⎜ ⎟ ⎜ ⎟ (VGS − VTN )
                                                                       2
             ⎡                         2
                                         ⎤
⎝ 2 ⎠⎝ L ⎠p                                   ⎝  2 ⎠ ⎝ L ⎠n
⎛ 40 ⎞                                                          ⎛ 80 ⎞
⎜ ⎟ (12 ) ⎡ 2 ( 3.3 − vI − 0.4 )( 3.3 − 3.1) − ( 3.3 − 3.1) ⎤ = ⎜ ⎟ ( 4 ) [ vI − 0.4]
                                                           2                         2

⎝ 2 ⎠      ⎣                                                 ⎦ ⎝ 2⎠
12 [1.16 − 0.4vI − 0.04] = 8 ⎣ vI2 − 0.8vI + 0.16 ⎤
                             ⎡                    ⎦
8vI2 − 1.6vI − 12.16 = 0
         1.6 ± 2.56 + 4 ( 8 ) (12.16 )
vI =                                            ⇒ vI = 1.337 V
                         2 (8)
(iii)        v0 = 0.2 V PMOS: sat, NMOS, non-sat.
⎛ 40 ⎞                       ⎛ 80 ⎞
⎜ ⎟ (12 ) [3.3 − vI − 0.4] = ⎜ ⎟ ( 4 ) ⎡ 2 ( vI − 0.4 )( 0.2 ) − ( 0.2 ) ⎤
                          2                                             2

⎝ 2 ⎠                        ⎝ 2⎠      ⎣                                  ⎦
12 ⎡8.41 − 5.8vI + vI2 ⎤ = 8 [ 0.4vI − 0.2]
   ⎣                   ⎦
12vI2 − 72.8vI + 102.52 = 0
         72.8 ± 5299.84 − 4 (12 )(102.52 )
vI =
                             2 (12 )
vI = 2.222 V
(b)
2 ( 6)
                   3.3 + ( −0.4 ) +           ( 0.4 ) 3.5928
(i)        vIt =                         4           =
                                    2 (6)              2.732
                                 1+
                                      4
           vIt = 1.315 V
(ii)       From (a), (ii)
 4 [1.16 − 0.4vI − 0.04] = 12 ⎡vI2 − 0.8vI + 0.16 ⎤
                              ⎣                   ⎦
12vI2 − 8vI − 2.56 = 0
       8 ± 64 + 4 (12 )( 2.56 )
vI =                                   ⇒ vI = 0.903 V
                 2 (12 )
(iii)     From (a), (iii)
 4⎣⎡8.41 − 5.8vI + vI2 ⎤ = 12 [ 0.4vI − 0.2]
                       ⎦
4vI2 − 28vI + 36.04 = 0
       28 ± 784 − 4 ( 4 )( 36.04 )
vI =                                      ⇒ vI = 1.70 V
                    2 ( 4)

16.35
a.         For vO1 = 0.6 < VTN ⇒ vO 2 = 5 V
N1 in nonsaturation and P in saturation. From Equation (16.45),
                         1

⎡ 2 ( vI − 0.8 )( 0.6 ) − ( 0.6 )2 ⎤ = [5 − vI − 0.8]2
⎣                                  ⎦
1.2vI − 1.32 = 17.64 − 8.4vI + vI2
or
vI2 − 9.6vI + 18.96 = 0

               ( 9.6 )       − 4 (1)(18.96 )
                         2
       9.6 ±
vI =
                             2
or
vI = 2.78 V
b.        V0 Nt ≤ v02 ≤ V0 Pt
From symmetry, VIt = 2.5 V
V0 Pt = 2.5 + 0.8 = 3.3 V
and V0 Nt = 2.5 − 0.8 = 1.7 V
So 1.7 ≤ v02 ≤ 3.3 V

16.36
a.        V0 Nt ≤ v01 ≤ V0 Pt
By symmetry, VIt = 2.5 V
V0 Pt = 2.5 + 0.8 = 3.3 V
and V0 Nt = 2.5 − 0.8 = 1.7 V
So 1.7 ≤ v01 ≤ 3.3 V
b.         For vO 2 = 0.6 < VTN ⇒ vO 3 = 5 V
N 2 in nonsaturation and P2 in saturation. From Equation (16.57),
⎡ 2 ( vI 2 − 0.8 )( 0.6 ) − ( 0.6 )2 ⎤ = [5 − vI 2 − 0.8]2
⎣                                    ⎦
1.2vI 2 − 1.32 = 17.64 − 8.4vI 2 + vI22
or
vI22 − 9.6vI 2 + 18.96 = 0
So vI 2 = v01 = 2.78 V
For v01 = 2.78, both N1 and P in saturation. Then
                             1

vI = 2.5 V

16.37
a.
   iPeak = K n ( vI − VTN )
     iPeak = 0.1 ⋅ ( 2.5 − 0.8 ) = 0.538 ( mA )
                                                   1/ 2



               iPeak = 0.1 ⋅ (1.65 − 0.8 ) = 0.269 ( mA )
                                                                    1/ 2
b.




16.38
                   ⎛ 50 ⎞
(a)          K n = ⎜ ⎟ ( 2 ) = 50 μ A / V 2
                   ⎝ 2⎠
                   ⎛ 25 ⎞
             K p = ⎜ ⎟ ( 4 ) = 50 μ A / V 2
                   ⎝ 2 ⎠
             I D , peak = K n ( v1 − VTN ) = 50 ( 2.5 − 0.8 )
                                        2                       2


or I D , peak = 144.5 μ A
(b)          K n = 50 μ A / V 2 , K p = 25 μ A/V 2
From Equation (16.55),
                50
      5 − 0.8 +    (0.8)
vIt =           25       = 2.21 V
                50
            1+
                25
Then
I D , peak = K n (VIt − VTN ) 2 = 50 ( 2.21 − 0.8 )
                                                      2


or I D , peak = 99.4 μ A

16.39
(a)      Switching Voltage, Eq. (16.43)
                     2 ( 4)
      3.3 − 0.4 +           ( 0.4 )
 vIt =                  8            = 1.65 V = vIt
                    2 ( 4)
               1+
                      8
           ⎛ 80 ⎞
iD, peak = ⎜ ⎟ ( 4 )(1.65 − 0.4 ) ⇒ iD , peak = 250 μA
                                    2

           ⎝ 2⎠
(b)
                      2 ( 4)
      3.3 − 0.4 +            ( 0.4 )
 vIt =                  4            = 1.436 V = vIt
                    2 ( 4)
               1+
                       4
            ⎛ 80 ⎞
iD , peak = ⎜ ⎟ ( 4 )(1.436 − 0.4 ) ⇒ iD , peak = 172 μA
                                      2

            ⎝ 2⎠
(c)
                      2 ( 4)
      3.3 − 0.4 +            ( 0.4 )
vIt =                  12            ⇒ vIt = 1.776 V
                    2 ( 4)
               1+
                     12
            ⎛ 80 ⎞
iD , peak = ⎜ ⎟ ( 4 )(1.776 − 0.4 ) ⇒ iD , peak = 303 μA
                                     2

            ⎝ 2⎠

16.40
           2
a. P = fCLVDD
For VDD = 5 V, P = (10 × 106 )(0.2 ×10−12 )(5) 2
or P = 50 μ W
For VDD = 15 V, P = (10 × 106 )(0.2 × 10−12 )(15) 2
or P = 450 μ W
b.      For VDD = 5 V, P = (10 × 106 )(0.2 ×10−12 )(5) 2
or P = 50 μ W

16.41
(a)
P = fCLVDD = (150 × 106 )( 0.4 ×10−12 ) ( 5 ) = 1.5 × 10 −3 W / inverter
        2                                    2



Total power: PT = ( 2 × 106 )(1.5 × 10−3 ) ⇒ PT = 3000 W !!!!

(b)      For f = 300 MHz
1.5 ×10 = ( 300 ×106 )( 0.4 × 10−12 ) VDD ⇒ VDD = 3.54 V
        −3                             2




16.42
                   3
(a)          P=      7
                       = 3 × 10−7 W
                  10
                                       P
(b)          P = fCLVDD ⇒ CL =
                     2
                                        2
                                      fVDD
3 × 10−7
(i)            CL =                          ⇒ CL = 0.0024 pF
                       ( 5 ×10 ) ( 5)
                                6        2



                             3 × 10−7
(ii)           CL =                              ⇒ CL = 0.00551pF
                       ( 5 ×10 ) ( 3.3)
                                6            2



                            3 × 10−7
(iii)          CL =                              ⇒ CL = 0.0267 pF
                       ( 5 ×10 ) (1.5)
                                6            2




16.43
                     10
(a)            P=          = 2 × 10−6 W
                   5 × 106
                       P
(b)            CL =     2
                     fVDD
                            2 × 10−6
(i)            CL =                          ⇒ CL = 0.01 pF
                       (8 ×10 ) ( 5)
                                6        2



                             2 × 10−6
(ii)           CL =                              ⇒ CL = 0.023 pF
                       (8 ×10 ) ( 3.3)
                                6            2



                            2 × 10−6
(iii)          CL =                              ⇒ CL = 0.111 pF
                       (8 ×10 ) (1.5)
                                6            2


16.44
(a)            For vI ≅ VDD , NMOS in nonsaturation
iD = K n ⎡ 2 ( vI − VTN ) vDS − vDS ⎤ and vDS ≅ 0
         ⎣
                                 2
                                    ⎦
         1  di
So         = D ≅ K n ⎡ 2 (VDD − VTN ) ⎤
                     ⎣                ⎦
        rds dvDS
Or
                      1
rds =
            ′
         ⎛ kn ⎞ ⎛ W ⎞
         ⎜ 2 ⎟ ⎜ L ⎟ ⋅ 2 (VDD − VTN )
         ⎝ ⎠ ⎝ ⎠n
or

                        1
rds =
       ′⎛         ⎞
          W
     kn ⎜         ⎟ ⋅ (VDD − VTN )
        ⎝L        ⎠n
For vI ≅ 0,       PMOS in nonsaturation
iD = K p ⎡ 2 (VDD − vI + VTP ) vSD − vSD ⎤
         ⎣
                                      2
                                         ⎦
and vSD ≅ 0 for vI ≅ 0.
So
  1   di     ⎛ k′ ⎞⎛ W ⎞
    = D ≅ ⎜ ⎟ ⎜ ⎟ ⋅ 2 (VDD + VTP )
                p

 rsd dvSD ⎝ 2 ⎠ ⎝ L ⎠ p
or
                        1
rsd =
          1    ⎛W     ⎞
               ⎜
               ⎜ Lp   ⎟ ⋅ (VDD + VTP )
                      ⎟
          k′
           p   ⎝      ⎠
⎛W ⎞     ⎛W ⎞
(b) For ⎜ ⎟ = 2, ⎜ ⎟ = 4
        ⎝ L ⎠n   ⎝ L ⎠p
                   1
rds =                          ⇒ rds = 2.38 k Ω
        ( 50 )( 2 )( 5 − 0.8 )
                  1
rsd =                            ⇒ rsd = 2.38 k Ω
        ( 25 )( 4 )( 5 − 0.8 )
    ⎛W ⎞
For ⎜ ⎟ = 2,.
    ⎝ L ⎠p
                   1
rsd =                          ⇒ rsd = 4.76 k Ω
        ( 25 )( 2 )( 5 − 0.8 )
Now, for NMOS:
                        vds   0.5
vds = id rds or id =        =     ⇒ id = 0.21 mA
                        rds 2.38
For PMOS:
For rsd = 2.38 k Ω,
        vsd   0.5
id =        =     ⇒ id = 0.21 mA
        rsd 2.38
For rsd = 4.76 k Ω ,
        vsd   0.5
id =        =     ⇒ id = 0.105 mA
        rsd 4.76

16.45
From Equation (16.63)
            3
VIL = 1.5 + ⋅ (10 − 1.5 − 1.5 ) ⇒ VIL = 4.125 V
            8
and Equation (16.62)
         1
V0 HU = ⋅ ⎡ 2 ( 4.125 ) + 10 − 1.5 + 1.5⎤
         2 ⎣                            ⎦
or V0 HU = 9.125 V
From Equation (16.69)
             5
VIH = 1.5 + ⋅ (10 − 1.5 − 1.5 ) ⇒ VIH = 5.875 V
             8
and Equation (16.68)
         1
V0 LU = ⋅ ⎡ 2 ( 5.875 ) − 10 − 1.5 + 1.5⎤
         2 ⎣                            ⎦
or V0 LU = 0.875 V
Now
NM L = VIL − V0 LU = 4.125 − 0.875 ⇒ NM L = 3.25 V
NM H = V0 HU − VTH = 9.125 − 5.875 ⇒ NM H = 3.25 V

16.46
From Equation (16.71)
                                   ⎡    100     ⎤
               (10 − 1.5 − 1.5 ) ⎢
                                 ⎢
                                                ⎥
                                         50 − 1 ⎥ = 1.5 + 7 ⎡ 2 ( 0.632 ) − 1⎤
VIL = 1.5 +                          2                      ⎣                ⎦
                  ⎛ 100 ⎞
                       − 1⎟        ⎢ 100 + 3 ⎥
                  ⎜                ⎢   50       ⎥
                  ⎝ 50    ⎠        ⎣            ⎦
or
VIL = 3.348 V
From Equation (16.70)
         1 ⎧⎛ 100 ⎞                    ⎛ 100 ⎞             ⎫
V0 HU = ⋅ ⎨⎜1 +     ⎟ ( 3.348 ) + 10 − ⎜     ⎟ (1.5 ) + 1.5⎬
         2 ⎩⎝    50 ⎠                  ⎝ 50 ⎠              ⎭
or V0 HU = 9.272 V
From Equation (16.77)
                                 ⎡  ⎛ 100 ⎞     ⎤
                                 ⎢ 2⎜     ⎟     ⎥
               (10 − 1.5 − 1.5 ) ⎢ ⎝ 50 ⎠
VIH    = 1.5 +                               − 1⎥ = 1.5 + 7 [1.51 − 1]
                 ⎛ 100 ⎞ ⎢ ⎛ 100 ⎞              ⎥
                 ⎜      − 1⎟ ⎢ 3 ⎜       ⎟ +1 ⎥
                 ⎝ 50      ⎠ ⎢ ⎝ 50 ⎠
                                 ⎣              ⎥
                                                ⎦
or
VIH = 5.07 V
From Equation (16.76)

        ( 5.07 ) ⎛1 + ⎞ − 10 − ⎛ ⎞ (1.5 ) + 1.5
                     100           100
                 ⎜       ⎟       ⎜     ⎟
V0 LU =          ⎝    50 ⎠       ⎝ 50 ⎠
                           ⎛ 100 ⎞
                          2⎜     ⎟
                           ⎝ 50 ⎠
or V0 LU = 0.9275 V
Now NM L = VIL − V0 LU = 3.348 − 0.9275
or NM L = 2.42 V
NM H = V0 HU − VIH = 9.272 − 5.07
or NM H = 4.20 V

16.47
(a)
 Kn = KP
           3
VIL = VTN +  (VDD + VTP − VTN )
           8
           3
   = 0.4 + ( 3.3 − 0.4 − 0.4 ) ⇒ VIL = 1.3375 V
           8
       1
VOHu = {2 (1.3375 ) + 3.3 − 0.4 + 0.4}
       2
VOHu = 2.9875 V
               5
VIH = 0.4 +      ( 3.3 − 0.4 − 0.4 ) ⇒ VIH = 1.9625 V
               8
         1
VOLu =
         2
           {2 (1.9625) − 3.3 − 0.4 + 0.4}
VOLu   = 0.3125 V
NM H = VOHu − VIH = 2.9875 − 1.9625 ⇒ NM H = 1.025 V
NM L = VIL − VOLu = 1.3375 − 0.3125 ⇒ NM L = 1.025 V

(b)
⎡    2 ( 4)    ⎤
                                ⎢
            ( 3.3 − 0.4 − 0.4 ) ⎢              ⎥
                                      12                    2.5
VIL = 0.4 +                       2         − 1⎥ = 0.4 +           ⎡( −0.147 ) ⎤
              ⎛ ( 2 )( 4 ) ⎞    ⎢ 2 ( 4)
                                          +3 ⎥
                                               ⎥         ( −0.333) ⎣           ⎦
              ⎜           − 1⎟ ⎢
              ⎝ 12           ⎠ ⎣    12         ⎦
VIL = 1.505 V
         1 ⎧⎛ ( 2 )( 4 ) ⎞
           ⎪                                ⎛ 2 ( 4) ⎞               ⎫
                                                                     ⎪ 1
VOHu =     ⎨⎜1 +         ⎟ (1.505 ) + 3.3 − ⎜        ⎟ ( 0.4 ) + 0.4 ⎬ = {2.5083 + 3.3 − 0.2667 + 0.4}
         2 ⎪⎝
           ⎩     12 ⎠                       ⎝ 12 ⎠                   ⎪ 2
                                                                     ⎭
VOHu = 2.9708 V
                                ⎡     ⎛ 2 ( 4) ⎞         ⎤
                                ⎢ 2⎜            ⎟        ⎥
            ( 3.3 − 0.4 − 0.4 ) ⎢ ⎝ 12 ⎠                               2.5
VIH = 0.4 +                                           − 1⎥ = 0.4 +            [ −0.2302] ⇒ VIH = 2.1282 V
               ⎛ 2 ( 4) ⎞       ⎢                        ⎥          ( −0.333)
                       − 1⎟ ⎢ 3
                                     ( 2 )( 4 ) + 1 ⎥
               ⎜
               ⎝ 12       ⎠ ⎢   ⎣       12               ⎥
                                                         ⎦
                  ⎛ 2 ( 4) ⎞            ⎛ 2 ( 4) ⎞
       ( 2.1282 ) ⎜1 +       ⎟ − 3.3 − ⎜          ⎟ ( 0.4 ) + 0.4
                  ⎝     12 ⎠            ⎝ 12 ⎠                       3.547 − 3.3 − 0.2667 + 0.4
VOLu =                                                            =                             ⇒ VOLu = 0.2853 V
                              ⎛ 2 ( 4) ⎞                                        1.333
                            2⎜         ⎟
                              ⎝ 12 ⎠
NM H = VOHu − VIH = 2.9708 − 2.1282 ⇒ NM H = 0.8426 V
NM L = VIL − VOLu = 1.505 − 0.2853 ⇒ NM L = 1.22 V

16.48
a.       v A = vB = 5 V
 N1 and N 2 on, so vDS1 ≈ vDS 2 ≈ 0 V
P and P2 off
  1

So we have a P3 − N 3 CMOS inverter. By symmetry, vC = 2.5 V (Transition Point).
b.      For v A = vB = vC ≡ vI
Want K n ,eff = K p ,eff
 ′
kn ⎛ W ⎞     k ′ ⎛ 3W ⎞
   ⋅⎜ ⎟ = P ⋅⎜        ⎟
2 ⎝ 3L ⎠ n 2 ⎝ L ⎠ P
      ′      ′
With kn = 2k P , then
2 1 ⎛W ⎞    1 ⎛W ⎞
  ⋅ ⋅⎜ ⎟ = ⋅3⋅⎜ ⎟
2 3 ⎝ L ⎠n 2 ⎝ L ⎠ P
   ⎛W ⎞   9 ⎛W ⎞
Or ⎜ ⎟ = ⋅ ⎜ ⎟
   ⎝ L ⎠n 2 ⎝ L ⎠ P
c.       We have
     ⎛ k ′ ⎞ ⎛ W ⎞ ⎛ 2k ′ ⎞ ⎛ 9 ⎞ ⎛ W ⎞
Kn = ⎜ n ⎟ ⎜ ⎟ = ⎜
                        p
                          ⎟⎜ ⎟⎜ ⎟
     ⎝ 2 ⎠ ⎝ L ⎠n ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ L ⎠ p
     ⎛ k′ ⎞⎛ W ⎞
Kp = ⎜ ⎟⎜ ⎟
         p

     ⎝ 2 ⎠⎝ L ⎠p
Then from Equation (16.55)
Kn
        5 + ( −0.8 ) +        ⋅ ( 0.8 )
                           Kp
VIt =
                         Kn
                 1+
                         Kp
Now
Kn        ⎛9⎞
   = ( 2) ⎜ ⎟ = 9
Kp        ⎝ 2⎠
Then
        5 + ( −0.8 ) + 3 ( 0.8 )
VIt =                              ⇒ VIt = 1.65 V
                1+ 3

16.49
By definition, NMOS is on if gate voltage is 5 V and is off if gate voltage is 0 V.
State           N1             N2               N3               N4               N5   v0
1                    off                  on        off         on              on     0
2                    off                  off       on          on              off    0
3                    on                   on        off         off             on     5
4                    on                   on        off         on              on     0

Logic function ( v X OR vY ) ⊗ ( v X AND vZ )
Exclusive OR of ( vX OR vY ) with ( vX AND vZ )

16.50
                   ⎛W ⎞
NMOS in Parallel ⇒ ⎜ ⎟ = 2
                   ⎝ L ⎠n
                   ⎛W ⎞
4-PMOS in series ⇒ ⎜ ⎟ = 4 ( 4 ) = 16
                   ⎝ L ⎠p
(b)         CL doubles ⇒ current must double to maintain switching speed.
   ⎛W ⎞
⇒⎜ ⎟ =4
   ⎝ L ⎠n
⎛W ⎞
⎜ ⎟ = 32
⎝ L ⎠p

16.51
                 ⎛W ⎞
4-NMOS in series ⎜ ⎟ = 4 ( 2 ) = 8
                 ⎝ L ⎠n
                   ⎛W ⎞
4-PMOS in parallel ⎜ ⎟ = 4
                   ⎝ L ⎠p
            ⎛W    ⎞
(b)         ⎜     ⎟ = 16
            ⎝L    ⎠n
            ⎛W    ⎞
            ⎜     ⎟ =8
            ⎝L    ⎠p

16.52
⎛W ⎞
(a)   NMOS in parallel ⇒ ⎜ ⎟ = 2
                          ⎝ L ⎠n
                   ⎛W ⎞
3-PMOS in series ⇒ ⎜ ⎟ = 3 ( 4 ) = 12
                   ⎝ L ⎠P
             ⎛W    ⎞
(b)          ⎜     ⎟ =4
             ⎝L    ⎠n
             ⎛W    ⎞
             ⎜     ⎟ = 24
             ⎝L    ⎠p

16.53
                          ⎛W ⎞
(a)   3-NMOS in series ⎜ ⎟ = 3 ( 2 ) = 6
                          ⎝ L ⎠n
                   ⎛W ⎞
3-PMOS in parallel ⎜ ⎟ = 4
                   ⎝ L ⎠p
             ⎛W    ⎞
(b)          ⎜     ⎟ = 12
             ⎝L    ⎠n
             ⎛W    ⎞
             ⎜     ⎟ =8
             ⎝L    ⎠p

16.54
(a)          Y = A( B + C )( D + E )
(b)




                                                    ⎛W ⎞
(c)       For NMOS in pull down mode, 3 in series ⇒ ⎜ ⎟ = 3 ( 2 ) = 6
                                                    ⎝ L ⎠n
For PMOS
⎛W ⎞
⎜ ⎟ =4
⎝ L ⎠P, A
⎛W ⎞
⎜ ⎟                    = 2 ( 4) = 8
⎝ L ⎠ P , B ,C , D , E
16.55
(a)          Y = A( BD + CE )
(b)




(c)      NMOS: 3 transistors in series for pull down mode.
                     ⎛W ⎞
For twice the speed: ⎜ ⎟ = 2 ( 3)( 2 ) = 12
                     ⎝ L ⎠n
        ⎛W ⎞
PMOS: ⎜ ⎟ = 2 ( 4 ) = 8
        ⎝ L ⎠P, A
⎛W ⎞
⎜ ⎟                    = 2 ( 2 )( 4 ) = 16
⎝ L ⎠ P , B ,C , D , E

16.56
(a)          Y = A + BC + DE
(b)




                ⎛W ⎞                 ⎛W ⎞
(c)    NMOS: ⎜ ⎟ = 2                 ⎜ ⎟                    =4
                ⎝ L ⎠n, A            ⎝ L ⎠ n , B ,C , D , E
PMOS: 3 transistors in series for the pull-up mode
⎛W ⎞
⎜ ⎟ = 3 ( 4 ) = 12
⎝ L ⎠p

16.57
(a)      Y = A + ( B + D)(C + E )
(b)




               ⎛W ⎞                 ⎛W ⎞
(c)      NMOS: ⎜ ⎟ = 2 ( 2 ) = 4    ⎜ ⎟                    = ( 2 )( 4 ) = 8
               ⎝ L ⎠n, A            ⎝ L ⎠ n , B ,C , D , E
PMOS:
⎛W ⎞
⎜ ⎟ = ( 2 ) 3 ( 4 ) = 24
⎝ L ⎠p

16.58
(a) A classic design is shown:
A, B, C signals supplied through inverters.
                        ⎛W ⎞           ⎛W ⎞
(b)      For Inverters, ⎜ ⎟ = 1 and ⎜ ⎟ = 2
                        ⎝ L ⎠n         ⎝ L ⎠p
                                ⎛W ⎞                                       ⎛W ⎞
For PMOS in Logic function, let ⎜ ⎟ = 1 , then for NMOS in Logic function, ⎜ ⎟ = 2.25
                                ⎝ L ⎠p                                     ⎝ L ⎠n

16.59
(a)     A classic design is shown:
⎛W ⎞     ⎛W ⎞
(b)     ⎜ ⎟ = 1, ⎜ ⎟               =2
        ⎝ L ⎠ ND ⎝ L ⎠ NA, NB , NC
        ⎛W ⎞              ⎛W ⎞
        ⎜ ⎟          = 8, ⎜ ⎟           =4
        ⎝ L ⎠ PA, PB      ⎝ L ⎠ PC , PD

16.60
( A OR B )   AND C

16.61
                    ⎛W ⎞
5-NMOS in series ⇒ ⎜ ⎟ = 5 ( 2 ) = 10
                    ⎝ L ⎠n
                     ⎛W ⎞
5-PMOS in parallel ⇒ ⎜ ⎟ = 4
                     ⎝ L ⎠p

16.62
By definition:
NMOS off if gate voltage = 0
NMOS on if gate voltage = 5 V
PMOS off if gate voltage = 5 V
PMOS on if gate voltage = 0

State        N1        P1           NA       NB    NC    v01   N2   P2    v02
1            off       on           off      off   off   5     on   off   0
2            on        off          on       off   off   5     on   off   0
3          off        on           off   off   off   5   on          off   0
4          on         off          off   off   on    5   on          off   0
5          off        on           off   off   off   5   on          off   0
6          on         off          off   on    on    0   off         on    5

Logic function is
v02 = ( v A OR vB ) AND vC

16.63
State                        v01               v02             v03
1                            5                 5               0
2                            0                 0               5
3                            5                 5               0
4                            5                 0               5
5                            5                 5               0
6                            0                 5               0
Logic function:
v03 = ( vX OR vZ ) AND vY

16.64
16.65
16.66
16.67




           dVC
2 I = −C
            dt
So
        1
ΔVC = −   ( 2I ) ⋅ t
        C
For ΔVC = −0.5 V
2 ( 2 x 10−12 ) ⋅ t
−0.5 = −                         ⇒ t = 3.125 ms
              25 x 10−15

16.68
(a)
(i)        vO = 0
(ii)       vO = 4.2 V
(iii)      vO = 2.5 V
(b)
(i)        vO = 0
(ii)       vO = 3.2 V
(iii)      vO = 2.5 V

16.69
(a)
(i)        vo = 0
(ii)       vo = 2.9 V
(iii)      vo = 2.4 V
(b)
(i)        vo = 0
(ii)       vo = 2.0 V
(iii)      vo = 2.0 V

16.70
Neglect the body effect.
a.       v01 (logic 1) = 4.2 V , v02 (logic 1) = 5 V
b.       vI = 5 V ⇒ vGS 1 = 4.2 V
M 1 in nonsaturation and M 2 in saturation. From Equation (16.23)
⎛W   ⎞                                    ⎛W ⎞
     ⎟ ⎡ 2 ( vGS 1 − VTND ) vO1 − vO1 ⎤ = ⎜ ⎟ (VDD − vO1 − VTNL )
                                   2                              2
⎜       ⎣                             ⎦
⎝L   ⎠D                                   ⎝ L ⎠L
⎛W   ⎞ ⎡
     ⎟ ⎣ 2 ( 4.2 − 0.8 )( 0.1) − ( 0.1) ⎤ = (1) [5 − 0.1 − 0.8]
                                       2                       2
⎜                                        ⎦
⎝L   ⎠D
Or
⎛W   ⎞                    ⎛W ⎞
⎜    ⎟ ( 0.67 ) = 16.81 ⇒ ⎜ ⎟ = 25.1
⎝L   ⎠D                   ⎝ L ⎠D
Now
v01 = 4.2 V ⇒ vGS 3 = 4.2 V
M 3 in nonsaturation and M 4 in saturation. From Equation (16.29(b)).
⎛W   ⎞                                      ⎛W ⎞
     ⎟ ⎡ 2 ( vGS 3 − VTND ) vO 2 − vO 2 ⎤ = ⎜ ⎟ [ −VTNL ]
                                    2                    2
⎜       ⎣                               ⎦
⎝L   ⎠D                                     ⎝ L ⎠L
⎛W   ⎞
     ⎟ ⎡ 2 ( 4.2 − 0.8 )( 0.1) − ( 0.1) ⎤ = ( 2 ) ⎡ − ( −1.5 ) ⎤
                                       2                         2
⎜       ⎣                                ⎦        ⎣            ⎦
⎝L   ⎠D
⎛W ⎞
⎜ ⎟ (0.67) = 2.25
⎝ L ⎠D
⎛W ⎞
Or ⎜ ⎟ = 3.36
   ⎝ L ⎠D

16.71
 A          B           Y
 0          0             1
 0          1             0
 1          0             0
 1          1           0.1        ⇒ indeterminate
Without the top transistor, the circuit performs the exclusive-NOR function.

16.72
 A        A       B         B        Y        Z
 0       1        0         1        0        1
 0       1        1         0        1        0
 1       0        0         1        1        0
 1       0        1         0        1        0
Y = A + AB = A + B
Z = Y or Z = AB

16.73




16.74
For φ = 1, φ = 0, then Y = B. And for φ = 0, φ = 1, then Y = A .
A multiplexer.

16.75
Y = AC + BC

16.76
Y = AB + AB = A ⊗ B

16.77
A         B            Y
0         0            0
1         0            1
0         1            1
1         1            0

Exclusive-OR function.

16.78
This circuit is referred to as a two-phase ratioed circuit. The same width-to-length ratios between the driver
and load transistors must be maintained as discussed previously with the enhancement load inverter.
When φ1 is high, v01 becomes the complement of vI . When φ2 goes high, then v0 becomes the
complement of v01 or is the same as vI . The circuit is a shift register.

16.79
Let Q = 0 and Q = 1 ; as S increases, Q decreases. When Q reaches the transition point of the M 5 − M 6
inverter, the flip-flop with change state. From Equation (16.28(b)),
        KL
VIt =       ⋅ ( −VTNL ) + VTND
        KD
where K L = K 6 and K D = K 5 .
Then
         30
VIt =        ⋅ ⎡ − ( −2 ) ⎤ + 1 ⇒ VIt = Q = 2.095 V
        100 ⎣             ⎦
This is the region where both M 1 and M 3 are biased in the saturation region. Then
      K3                        30
S=       ⋅ ( −VTNL ) + VTND =      ⋅ ⎡ − ( −2 ) ⎤ + 1
      K1                        200 ⎣           ⎦

or S = 1.77 V
This analysis neglects the effect of M 2 starting to turn on at the same time.

16.80
Let vY = R, v X = S , v02 = Q, and v01 = Q. Assume VThN = 0.5 V and VThP = −0.5 V. For S = 0, we have
the following:
If we want the switching to occur for R = 2.5 V, then because of the nonsymmetry between the two
circuits, we cannot have Q and Q both equal to 2.5 V.
Set R = Q = 2.5 V and assume Q goes low.
For the M 1 − M 5 inverter, M 1 in nonsaturation and M 5 in saturation. Then
K n ⎡ 2 ( 2.5 − 0.5 ) Q − Q ⎤ = K p [ 2.5 − 0.5]
                           2                    2
    ⎢
    ⎣                        ⎥
                             ⎦
Or
          2     ⎛ Kp ⎞
4Q − Q = 4 ⎜           ⎟
                ⎝ Kn ⎠
For the other circuit, M 2 − M 4 in saturation and M 6 in nonsaturation. Then
                 2
                                          ⎣        (            )
K n ( 2.5 − 0.5 ) + K n (Q − 0.5) 2 = K p ⎡ 2 5 − Q − 0.5 ( 2.5 ) − ( 2.52 ) ⎤
                                                                             ⎦
Combining these equations and neglecting the Q 3 term, we find
                          Kp
Q = 1.4 V and                  = 0.9
                          kn

16.81
      3.3 + ( −0.4 ) + 0.5
vIt =                      = 1.7 V
              1+1
vI = 1.5 V NMOS Sat; PMOS Non Sat
          = ⎡ 2 ( 3.3 − vI − 0.4 )( 3.3 − vo1 ) − ( 3.3 − vo1 ) ⎤ ⇒ vo1 = 2.88 V
( vI − 0.5)
              2                                                2
            ⎣                                                    ⎦
vI = 1.6 V vo1 = 2.693 V
vI = 1.7 V vo1 = variable (switching region)
vI = 1.8 V          NMOS Non Sat; PMOS Sat
( 3.3 − VI − 0.4 )        = ⎡ 2 ( vI − 0.5 ) vo1 − vo1 ⎤ ⇒ vo1 = 0.607 V
                      2                             2
                            ⎣                          ⎦
Now
vI = 1.5 V, vo1 = 2.88 V ⇒ vo ≈ 0V
vI = 1.6 V, vo1 = 2.693 V
NMOS Non Sat; PMOS Sat
( 3.3 − vo1 − 0.4 ) = ⎡ 2 ( vo1 − 0.5 ) vo − vo2 ⎤
                   2
                      ⎣                          ⎦
vo = 0.00979 V
vI = 1.7 V, v o1 = Switching Mode ⇒ v0 = Switching Mode.
vI = 1.8 V, vo1 = 0.607 V NMOS Sat; PMOS Non Sat
( v01 − 0.5)       = ⎡ 2 ( 3.3 − v01 − 0.4 )( 3.3 − v0 ) − ( 3.3 − v0 ) ⎤ ⇒ v0 = 3.298 V
               2                                                       2
                     ⎣                                                   ⎦

16.82
For R = φ = VDD and S = 0 ⇒ Q = 0, Q = 1
For S = φ = VDD and R = 0 ⇒ Q = 1, Q = 1
The signal φ is a clock signal.
For φ = 0, The output signals will remain in their previous state.

16.83
a.         Positive edge triggered flip-flop when CLK = 1, output of first inverter is D and then Q = D = D .
b.         For example, put a CMOS transmission gate between the output and the gate of M 1 driven by a
CLK pulse.

16.84
For J = 1, K = 0, and CLK = 1; this makes Q = 1 and Q = 0 .
For J = 0, K = 1, and CLK = 1 , and if Q = 1, then the circuit is driven so that Q = 0 and Q = 1.
If initially, Q = 0, then the circuit is driven so that there is no change and Q = 0 and Q = 1.
 J = 1, K = 1, and CLK = 1, and if Q = 1, then the circuit is driven so that Q = 0.
If initially, Q = 0 , then the circuit is driven so that Q = 1.
So if J = K = 1, the output changes state.

16.85
For J = v X = 1, K = vY = 0, and CLK = vZ = 1, then v0 = 0.
For J = v X = 0, K = vY = 1, and CLK = vZ = 1, then v0 = 1.
Now consider J = K = CLK = 1. With v X = vZ = 1, the output is always v0 = 0, So the output does not
change state when J = K = CLK = 1. This is not actually a J − K flip-flop.

16.86
 64 K ⇒ 65,536 transistors arranged in a 256 × 256 array.
(a)     Each column and row decoder required 8 inputs.
(b)
(i)     Address = 01011110 so input = a7 a6 a5 a4 a3 a2 a1a0
(ii)    Address = 11101111 so input = a7 a6 a5 a4 a3 a2 a1a0

(c)
(i)        Address = 00100111 so input = a7 a6 a5 a4 a3 a2 a1a0
(ii)       Address = 01111011 so input = a7 a6 a5 a4 a3 a2 a1a0

16.87
(a)        1-Megabit memory ⇒
        = 1, 048,576 ⇒ 1024 × 1024
Nuclear & input row and column decodes lines necessary = 10
(b)      250K × 4 bits ⇒ 262,144 × 4 bits ⇒ 512 × 512
For 512 lines ⇒ 9 row and column decoder lines necessary.

16.88
Put 128 words in a 8 × 16 array, which means 8 row (or column) address lines and 16 column (or row)
address lines.

16.89
Assume the address line is initially uncharged, then
      dV           1           I
I = C C or VC = ∫ Idt = ⋅ t
       dt          C          C
          VC ⋅ C ( 2.7 ) ( 5.8 × 10 )
                                   −12

Then t =           =                   ⇒
             I          250 × 10−6
t = 6.26 × 10 −8 s ⇒ 62.6 ns

16.90
5 − 0.1 ⎛ 35 ⎞⎛ W     ⎞⎡
                                 ⎟ ⎣ 2 ( 5 − 0.7 )( 0.1) − ( 0.1) ⎤
                                                                 2
(a)               = ⎜ ⎟⎜
              1     ⎝ 2 ⎠⎝ L     ⎠                                 ⎦
    ⎛W   ⎞
or ⎜     ⎟ = 0.329
    ⎝L   ⎠
(b)        16 K ⇒ 16,384 cells
     2
iD ≅   = 2 μA
     1
Power per cell = (2 μ A)(2 V ) = 4 μW
Total Power = PT = (4 μW )(16,384) ⇒ PT = 65.5 mW
Standby current = (2 μ A)(16,384) ⇒ IT = 32.8 mA

16.91
16 K ⇒ 16,384 cells
                                  200
PT = 200 mW ⇒ Power per cell =         ⇒ 12.2 μW
                                16,384
      P    12.2             V     2.5
iD =     =      = 4.88 μ A ≅ DD =     ⇒ R = 0.512 M Ω
     VDD    2.5              R     R
If we want vO = 0.1 V for a logic 0, then
     ⎛ k′ ⎞⎛ W ⎞
iD = ⎜ n ⎟ ⎜ ⎟ ⎡ 2 (VDD − VTN ) vO − vO ⎤
                                      2

     ⎝ 2 ⎠⎝ L ⎠ ⎣                       ⎦

       ⎛ 35 ⎞ ⎛ W ⎞
4.88 = ⎜ ⎟ ⎜ ⎟ ⎡ 2 ( 2.5 − 0.7 )( 0.1) − ( 0.1) ⎤
                                               2

       ⎝ 2 ⎠⎝ L ⎠   ⎣                            ⎦
   ⎛W ⎞
So ⎜ ⎟ = 0.797
   ⎝L⎠

16.92
Q = 0, Q = 1
So D = Logic 1 = 5 V
A very short time after the row has been addressed, D remains charged at VDD = 5 V . Then M p 3, M A, and
 M N 1 begin to conduct and D decreases. In steady-state, all three transistors are biased in the nonsaturation
region. Then
 K p 3 ⎡ 2 (VSG 3 + VTP 3 ) VSD 3 − VSD 3 ⎤ = K nA ⎡ 2 (VGSA − VTNA ) VDSA − VDSA ⎤ = K n1 ⎡ 2 (VGS 1 − VTN 1 ) VDS 1 − VDS 1 ⎤
       ⎣
                                      2
                                          ⎦        ⎣
                                                                              2
                                                                                  ⎦        ⎣
                                                                                                                         2
                                                                                                                              ⎦
Or
K p 3 ⎡ 2 (VDD + VTP 3 )(VDD − D ) − (VDD − D ) ⎤ = K nA ⎡ 2 (VDD − Q − VTNA )( D − Q ) − ( D − Q ) ⎤
                                               2                                                   2
      ⎣                                          ⎦       ⎣                                           ⎦
                                                  = K n1 ⎡ 2 (VDD − VTN 1 ) Q − Q 2 ⎤ (1)
                                                         ⎣                          ⎦
Equating the first and third terms:
⎛ 20 ⎞ ⎡                                      ⎤ ⎛ 40 ⎞
⎜ ⎟ (1) ⎣ 2 ( 5 − 0.8 )( 5 − D ) − ( 5 − D ) ⎦ = ⎜ ⎟ ( 2 ) ⎣ 2 ( 5 − 0.8 ) Q − Q ⎦ (2)
                                            2
                                                           ⎡                    2
                                                                                  ⎤
⎝ 2 ⎠                                            ⎝ 2 ⎠
As a first approximation, neglect the ( 5 − D ) and Q 2 terms. We find
                                                      2


Q = 1.25 − 0.25 D              (3)
Then, equating the first and second terms of Equation (1):
⎛ 20 ⎞ ⎡                                         ⎛ 40 ⎞
⎜ ⎟ (1) ⎣ 2 ( 5 − 0.8 )( 5 − D ) − ( 5 − D ) ⎤ = ⎜ ⎟ (1) ⎡ 2 ( 5 − Q − 0.8 )( D − Q ) − ( D − Q ) ⎤
                                            2                                                    2

⎝ 2 ⎠                                         ⎦ ⎝ 2 ⎠ ⎣                                            ⎦
Substituting Equation (3), we find as a first approximation: D = 2.14 V
Substituting this value of D into equation (2), we find
8.4 ( 5 − 2.14 ) − ( 5 − 2.14 ) = 4 ⎡8.4Q − Q 2 ⎤
                               2
                                    ⎣           ⎦
We find Q = 0.50 V
Using this value of Q, we can find a second approximation for D by equating the second and third terms of
equation (1). We have
20 ⎡ 2 ( 4.2 − Q )( D − Q ) − ( D − Q ) ⎤ = 40 ⎡ 2 ( 4.2Q ) − Q 2 ⎤
                                       2
   ⎣                                     ⎦     ⎣                  ⎦
Using Q = 0.50 V , we find D = 1.79 V

16.93
Initially M N 1 and M A turn on.
 M N 1, Nonsat; M A , sat.
K nA [VDD − Q − VTN ] = K n1 ⎡ 2 (VDD − VTN 1 ) Q − Q 2 ⎤
                      2
                             ⎣                          ⎦
⎛ 40 ⎞                  ⎛ 40 ⎞
⎜ ⎟ (1) [5 − Q − 0.8] = ⎜ ⎟ ( 2 ) ⎣ 2 ( 5 − 0.8 ) Q − Q ⎦
                     2
                                  ⎡                    2
                                                         ⎤
⎝ 2 ⎠                   ⎝ 2 ⎠
which yields
Q = 0.771 V
Initially M P 2 and M B turn on
Both biased in nonsaturation reagion

                      (         ) (           )
 K P 2 ⎡ 2 (VDD + VTP 3 ) VDD − Q − VDD − Q ⎤ = K nB ⎡ 2 (VDD − VTNB ) Q − Q ⎤
                                             2                               2

       ⎢
       ⎣                                       ⎥
                                               ⎦     ⎢
                                                     ⎣                         ⎥
                                                                               ⎦
⎛ 20 ⎞                                     ⎤ ⎛ 40 ⎞ ⎡
             ⎡
                          (    ) (       )                                 ⎤
                                         2                               2
⎜ ⎟ ( 4 ) ⎢ 2 ( 5 − 0.8 ) 5 − Q − 5 − Q ⎥ = ⎜ ⎟ (1) ⎢ 2 ( 5 − 0.8 ) Q − Q ⎥
             ⎣                             ⎦ ⎝ 2 ⎠ ⎣                       ⎦
⎝ 2 ⎠
which yields Q = 3.78 V
Note: (W / L) ratios do not satisfy Equation (16.86)

16.94
For Logic 1, v1:
( 5 )( 0.05 ) + ( 4 )(1) = (1 + 0.05 ) v1 ⇒ v1 = 4.0476 V
v2 :
(5)(0.025) + (4)(1) = (1 + 1.025)v2 ⇒ v2 = 4.0244 V
For Logic 0, v1:
(0)(0.05) + (4)(1) = (1 + 0.05)v1 ⇒ v1 = 3.8095 V
v2 :
(0)(0.025) + (4)(1) = (1 + 0.025)v2 ⇒ v2 = 3.9024 V

16.95
Not given

16.96
Not given

16.97
Not given
16.98
                                 1
(a)       Quantization error =     LSB ≤ 1% ≤ 0.05 V
                                 2
Or LSB ≤ 0.10 V
                             5
For a 6-bit word , LSB =        = 0.078125 V
                             64
                       5
(b)       1 − LSB =      = 0.078125 V
                      64
          3.5424
(c)              × 64 = 45.34 ⇒ n = 45
             5
Digital Output = 101101
45 × 5
       = 3.515625
  64
                                        .
                                     1
Δ = 3.5424 − 3.515625 = 0.026775 < LSB.
                                     2

16.99
                                 1
(a)       Quantization error =     LSB ≤ 0.5% ≤ 0.05 V
                                 2
1 − LSB = 0.10 V
                          10
For a 7-beit word, LSB =      = 0.078125 V
                          128
(b)       1 − LSB = 0.078125 V
          3.5424
(c)              ×128 = 45.34272 ⇒ n = 45
            10
Digital output = 0101101
        45 × 10
Now             = 3.515625
         128
                                          1
Δ = 3.5424 − 3.515625 = 0.026775 V <        LSB
                                          2

16.100
                ⎛0 1 0 1 ⎞
(a)        vo = ⎜ + + + ⎟ ( 5 )
                ⎝ 2 4 8 16 ⎠
           vo = 1.5625 V
                ⎛1 0 1 0 ⎞
(b)        vo = ⎜ + + + ⎟ ( 5 )
                ⎝ 2 4 8 16 ⎠
           vo = 3.125 V

16.101
               ⎛1⎞
(a)     LSB = ⎜ ⎟ ( 5 ) = 0.3125 V
               ⎝ 16 ⎠
        1
          LSB = 0.15625 V
        2
         ⎛ 10 ⎞
Now vo = ⎜           ⎟ (5)
         ⎝ 20 + ΔR1 ⎠
For vo = 2.5 + 0.15625 = 2.65625 V
             (10 )( 5)
20 + ΔR1 =          ⇒ ΔR1 = −1.176 K
            2.65625
For vo = 2.5 − 0.15625 = 2.34375 V
              (10 )( 5 )
20 + ΔR1 =
          2.34375 V
ΔR1 = +1.333 K
For ΔR1 = 1.176 K ⇒ ΔR1 = 5.88%
                       ⎛    10     ⎞
(b)      For R4 : vo = ⎜           ⎟ ( 5)
                       ⎝ 160 + ΔR4 ⎠
vo = 0.3125 + 0.15625 = 0.46875 V
              (10 )( 5 )
160 + ΔR4 =          ⇒ ΔR4 = −53.33K
            0.46875
Or vo = 0.3125 − 0.15625 = 0.15625 V
              (10 )( 5 )
160 + ΔR4 =        ⇒ ΔR4 = 160 K
           0.15625
For ΔR4 = 53.33K ⇒ ΔR4 = 33.33%

16.102
(a)       R5 = 320 kΩ
          R6 = 640 kΩ
          R7 = 1280 kΩ
          R8 = 2560 kΩ
               ⎛ 10 ⎞
(b)       vo = ⎜      ⎟ ( 5 ) = 0.01953125 V
               ⎝ 2560 ⎠

16.103
(a)
      V      −5
 I1 = REF =     ⇒ I1 = −0.50 mA
       2 R 10
       I
 I 2 = 1 = −0.25 mA
       2
      I2
 I 3 = = −0.125 mA
       2
       I3
 I 4 = = −0.0625 mA
       2
      I4
 I 5 = = −0.03125 mA
       2
       I
 I 6 = 5 = −0.015625 mA
       2
(b)       Δvo = I 6 RF = ( 0.015625 )( 5 )
          Δvo = 0.078125 V
(c)       vo = − [ I 2 + I 5 + I 6 ] RF = [ 0.25 + 0.03125 + 0.015625] ( 5 )
          vo = 1.484375 V
(d)      For 101010; vo = ( 0.50 + 0.125 + 0.03125 )( 5 ) = 3.28125 V
For 010101; vo = ( 0.25 + 0.0625 + 0.015625 )( 5 ) = 1.640625 V
Δvo = 1.640625 V

16.104
 1         ⎛V ⎞⎛ R ⎞ V           5
    LSB = ⎜ REF ⎟ ⎜ ⎟ = REF =      = 0.3125 V
 2         ⎝ 8 R ⎠ ⎝ 2 ⎠ 16     16
Ideal
                ⎛ 3V ⎞        3
 v A for 011 ⇒ ⎜ REF ⎟ ( R ) = VREF = 1.875 V
                ⎝  8R ⎠       8
                        1
Range of v A = 1.875 ± LSB
                        2
or 1.5625 ≤ vA ≤ 2.1875 V

16.105
6-bits ⇒ 26 = 64 resistors
26 − 1 = 63 comparators

16.106
(a)      10- bit output ⇒ 1024 clock periods
                  1     1
1 clock period = = 6 = 1 μS
                  f 10
May conversion time = 1024 μS = 1.024 mS
(b)
 1        1⎛ 5 ⎞
   LSB = ⎜          ⎟ = 0.002441406 V
 2        2 ⎝ 1024 ⎠
                      ⎛ 5 ⎞
 v′ = (128 + 16 + 2 ) ⎜
  A                          ⎟ = 0.712890625 V
                      ⎝ 1024 ⎠
                          1
So range of v A = v′ ± LSB
                     A
                          2
0.710449219 ≤ v A ≤ 0.715332031 V
(c)      0100100100 ⇒ 256 + 32 + 4 = 292 clock pulses

16.107
                N ×5
(a)      3.125 =     ⇒ N = 640 ⇒ 512 + 128
                1024
Output = 1010000000
(b)
         N ×5
1.8613 =      ⇒ N = 381.19 ⇒ N = 381 ⇒ 256 + 64 + 32 + 16 + 8 + 4 + 1
         1024
Output = 0101111101

More Related Content

PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan

What's hot (14)

PDF
PDF
Defendiendo Nuestro Router CISCO
PDF
Fast dct algorithm using winograd’s method
DOC
Design &amp; Simulation of Cargo Stabilization System
XLSX
Latihan korelasi ganda
PDF
PDF
W ee network_theory_10-06-17_ls2-sol
DOC
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
DOCX
Calculo de momentos en una viga continua cuando se encuentran
PDF
Back Propagation in Deep Neural Network
PDF
Question answers Optical Fiber Communications 4th Edition by Keiser
PDF
Btl lý thuyết độ tin cậy
PDF
POTENCIAS Y RADICALES
PDF
Precise position control of a magnetic levitation system System using Differe...
Defendiendo Nuestro Router CISCO
Fast dct algorithm using winograd’s method
Design &amp; Simulation of Cargo Stabilization System
Latihan korelasi ganda
W ee network_theory_10-06-17_ls2-sol
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
Calculo de momentos en una viga continua cuando se encuentran
Back Propagation in Deep Neural Network
Question answers Optical Fiber Communications 4th Edition by Keiser
Btl lý thuyết độ tin cậy
POTENCIAS Y RADICALES
Precise position control of a magnetic levitation system System using Differe...
Ad

Viewers also liked (15)

PDF
PDF
PDF
Ch17p 3rd Naemen
PDF
PDF
PDF
PDF
PDF
PDF
Ch17s 3rd Naemen
PDF
PDF
PDF
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
PPTX
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
PPTX
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
PDF
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Ch17p 3rd Naemen
Ch17s 3rd Naemen
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Ad

Similar to Ch16s (20)

PDF
PDF
PDF
PDF
PDF
PDF
9789740329480
PDF
05777828
PDF
PDF
PDF
Lecture notes 06
PDF
Solutions manual for microelectronic circuits analysis and design 3rd edition...
ZIP
Pracfinl.Key
PDF
PPT
Unit i
DOC
Standard formula
PDF
PDF
Topic 6 kft 131
PDF
SPICE MODEL of NJM2711 in SPICE PARK
PDF
Chapter 1 solutions
9789740329480
05777828
Lecture notes 06
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Pracfinl.Key
Unit i
Standard formula
Topic 6 kft 131
SPICE MODEL of NJM2711 in SPICE PARK
Chapter 1 solutions

More from Bilal Sarwar (6)

DOCX
Rameysoft-ftp client server, and others+
DOCX
Ramey soft
DOCX
Ramey soft
PDF
PDF
PDF
Rameysoft-ftp client server, and others+
Ramey soft
Ramey soft

Recently uploaded (20)

PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PPT
Geologic Time for studying geology for geologist
PDF
Zenith AI: Advanced Artificial Intelligence
PPTX
Modernising the Digital Integration Hub
PDF
August Patch Tuesday
PDF
Architecture types and enterprise applications.pdf
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
Unlock new opportunities with location data.pdf
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
Hindi spoken digit analysis for native and non-native speakers
PPT
What is a Computer? Input Devices /output devices
PDF
sustainability-14-14877-v2.pddhzftheheeeee
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PPTX
Web Crawler for Trend Tracking Gen Z Insights.pptx
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
CloudStack 4.21: First Look Webinar slides
PDF
A review of recent deep learning applications in wood surface defect identifi...
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
Geologic Time for studying geology for geologist
Zenith AI: Advanced Artificial Intelligence
Modernising the Digital Integration Hub
August Patch Tuesday
Architecture types and enterprise applications.pdf
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
observCloud-Native Containerability and monitoring.pptx
Unlock new opportunities with location data.pdf
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Assigned Numbers - 2025 - Bluetooth® Document
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Hindi spoken digit analysis for native and non-native speakers
What is a Computer? Input Devices /output devices
sustainability-14-14877-v2.pddhzftheheeeee
Final SEM Unit 1 for mit wpu at pune .pptx
Web Crawler for Trend Tracking Gen Z Insights.pptx
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
CloudStack 4.21: First Look Webinar slides
A review of recent deep learning applications in wood surface defect identifi...

Ch16s

  • 1. Chapter 16 Problem Solutions 16.1 (a) 2e ∈s N a ΔVTN = ⎡ 2φ fp + VSB − 2φ fp ⎤ Cax ⎣ ⎦ ∈ax (3.9)(8.85 × 10 −14 ) Cax = = = 7.67 × 10−8 tax 450 × 10−8 2e ∈s N a = ⎡ 2 (1.6 × 10 −19 ) (11.7 ) ( 8.85 × 10−14 )( 8 × 1015 ) ⎤ 1/ 2 ⎣ ⎦ = 5.15 × 10 −8 Then 5.15 × 10−8 ⎡ ⎤ ΔVTN = ⋅ 2(0.343) + VSB − 2(0.343) ⎦ 7.67 × 10−8 ⎣ For VSB = 1 V : ΔVTN = 0.671 ⎡ 1.686 − 0.686 ⎤ ⇒ ΔVTN = 0.316 V ⎣ ⎦ For VSB = 1 V : ⎡ ⎤ ΔVTN = 0.671 ⎣ 2.686 − 0.686 ⎦ ⇒ ΔVTN = 0.544 V (b) For VGS = 2.5 V, VDS = 5 V, transistor biased in the saturation region. ID = K n (VGS − VTN ) 2 For VSB = 0, ID = 0.2(2.5 − 0.8) 2 = 0.578 mA For VSB = 1, I D = 0.2 ( 2.5 − [ 0.8 + 0.316]) = 0.383 mA 2 For VSB = 2, I D = 0.2 ( 2.5 − [ 0.8 + 0.544]) = 0.267 mA 2 16.2 (a) VDD − vO ID = = K n ⎡ 2(VGS − VTN )vO − vO ⎤ ⎣ 2 ⎦ RD 5 − (0.1) = K n ⎡ 2 ( 5 − 0.8 )( 0.1) − ( 0.1) ⎤ 2 40 × 10 3 ⎣ ⎦ −5 8 × 10 ⎛ W ⎞ or K n = 1.476 × 10−4 A / V 2 = ⎜ ⎟ 2 ⎝L⎠ ⎛W ⎞ So that ⎜ ⎟ = 3.69 ⎝L⎠ b. From Equation (16.10). K n RD [VIt − VTN ] + [VIt − VTN ] − VDD = 0 2 (0.1476)(40) [VIt − 0.8] + [VIt − 0.8] − 5 = 0 2 −1 ± (1) 2 + 4(0.1476)(40)(5) or [VIt − 0.8] = 2(0.1476)(40) or [VIt − 0.8] = 0.839
  • 2. So that VIt = 1.64 V P = I D (max) ⋅ VDD 5 − (0.1) and I D (max) = = 0.1225 mA 40 or P = 0.6125 mW 16.3 a. From Equation (16.10), the transistor point is found from K n RD (VIt − VTN ) 2 + (VIt − VTN ) − VDD = 0 K n = 50 μ A / V 2 , RD = 20 k Ω, VTN = 0.8 V (0.05)(20)(VIt − VTN ) 2 + (VIt − VTN ) − 5 = 0 −1 ± 1 + 4(0.05)(20)(5) VIt − VTN = = 1.79 V So VIt = 2.59 V 2(0.05)(20) V0t = 1.79 V Output voltage for vI = 5 V is determined from Equation (16.12): v0 = 5 − (0.05)(20) ⎡ 2(5 − 0.8)v0 − v0 ⎤ ⎣ 2 ⎦ 2 v0 − 9.4v0 + 5 = 0 9.4 ± (9.4) 2 − 4(1)(5) So v0 = = 0.566 V 2(1) b. For RD = 200 kΩ, −1 ± 1 + 4(0.05)(200)(5) (VIt − VTN ) = = 0.659 V So VIt = 1.46 V 2(0.05)(200) V0t = 0.659 V v0 = 5 − (0.05)(200) ⎡ 2 ( 5 − 0.8 ) v0 − v0 ⎤ ⎣ 2 ⎦ 2 or 10v0 − 85v0 + 5 = 0 (85 ) − 4 (10 )( 5 ) 2 85 ± v0 = = 0.0592 V 2 (10 ) 16.4 (a) P = IV
  • 3. 0.25 = I (33) ⇒ I = 75.76 μA 3.3 − 0.15 R= ⇒ R = 41.6 K 0.07576 ⎛ k ′ ⎞⎛ W ⎞ I = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN ) 2 ⎝ 2 ⎠⎝ L ⎠ ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ 75.76 = ⎜ ⎟ ⎜ ⎟ ( 3.3 − 0.8 ) ⇒ ⎜ ⎟ = 0.303 2 ⎝ 2 ⎠⎝ L ⎠ ⎝L⎠ (b) VDS (sat) = VGS − VTN V − VDS (sat) I D = K n (VGS − VTN ) = DD 2 R ⎛ 0.08 ⎞ 3.3 − (VGS − 0.8 ) ⎟ ( 0.303) (VGS − 1.6VGS + 0.64 ) = 2 ⎜ ⎝ 2 ⎠ 41.6 0.504 (VGS − 1.6VGS + 0.64 ) = 4.1 − VGS 2 2 0.504VGS + 0.1936VGS − 3.777 = 0 −0.1936 ± 0.03748 + 4(0.504)(3.777) VGS = 2(0.504) VGS = 2.55 V For 0.8 ≤ VGS ≤ 2.55 V Transistor biased in saturation region 16.5 (a) P = I ⋅ VDD 0.25 = I (3.3) ⇒ I = 75.76 μA For Sat Load ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ I = 75.76 = ⎜ ⎟ ⎜ ⎟ ( 3.3 − 0.15 − 0.8 ) ⇒ ⎜ ⎟ = 0.343 2 ⎝ 2 ⎠ ⎝ L ⎠L ⎝ L ⎠L ⎛ 80 ⎞ ⎛ 80 ⎞ ⎛ W ⎞ ⎜ ⎟ ( 0.343)( 3.3 − 0.15 − 0.8 ) = I = 75.76 = ⎜ ⎟ ⎜ ⎟ ⎡ 2 ( 2.5 − 0.8 )( 0.15 ) − ( 0.15 ) ⎤ 2 2 ⎝ 2⎠ ⎝ 2 ⎠ ⎝ L ⎠D ⎣ ⎦ ⎛W ⎞ ⎜ ⎟ = 3.89 ⎝ L ⎠D Eq 16.21 ⎛ 3.89 ⎞ 3.3 − 0.8 + 0.8 ⎜1 + ⎜ ⎟ ⎝ 0.343 ⎟ 5.994 ⎠= VIt = 3.89 4.3677 1+ 0.343 0.8 ≤ VGS ≤ 1.372 V 16.6 (a) From Equation (16.23) KD ⎡ K 2 3 − 0.5 )( 0.25 ) − ( 0.25 ) ⎤ = ( 3 − 0.25 − 0.5 ) ⇒ D = 4.26 ⎣ ( 2 2 KL ⎦ KL
  • 4. KD ⎡ K 2 2.5 − 0.5 )( 0.25 ) − ( 0.25 ) ⎤ = ( 3 − 0.25 − 0.5 ) ⇒ D = 5.4 ⎣ ( 2 2 (b) KL ⎦ KL iD = K L (VGSL − VTNL ) = K L (VDD − vO − VTNL ) 2 2 (c) ⎛ 0.080 ⎞ ⎟ (1)(3 − 0.25 − 0.5) ⇒ iD = 0.203 mA 2 =⎜ ⎝ 2 ⎠ P = iD ⋅ VDD = (0.203)(3) ⇒ P = 0.608 mW for both parts (a) and (b). 16.7 P = 0.4 mW = iD ⋅ VDD = iD (3) ⇒ iD = 0.1333 mA iD = K L (VDD − vO − VTNL ) 2 ⎛ 0.080 ⎞ ⎛ W ⎞ ⎛W ⎞ ⎟ ⎜ ⎟ ( 3 − 0.1 − 0.5 ) = ( 0.2304 ) ⎜ ⎟ 2 0.1333 = ⎜ ⎝ 2 ⎠ ⎝ L ⎠L ⎝ L ⎠L ⎛W ⎞ So ⎜ ⎟ = 0.579 ⎝ L ⎠L KD ⎡ 2 2.5 − 0.5 )( 0.1) − ( 0.1) ⎤ = ( 3 − 0.1 − 0.5 ) ⎣ ( 2 2 KL ⎦ KD ⎛W ⎞ ⇒ = 14.8 so that ⎜ ⎟ = 8.55 KL ⎝ L ⎠D VIt = ( 3 − 0.5 + 0.5 1 + 14.8 ) 1 + 14.8 or VIt = 1.02 V , VOt = 0.52 V 16.8 We have KD ⎣ 2 ( vI − VTND ) vO − vO ⎦ = (VDD − vO − VTNL ) 2 ⎡ 2 ⎤ KL (W / L )D ⎡ 2 V − V − VTN )( 0.08VDD ) − ( 0.08VDD ) ⎤ = (VDD − 0.08VDD − VTN ) ⎣ ( DD TN 2 2 (W / L )L ⎦ (W / L )D ⎡ ⎣ 2 (VDD − 2 ( 0.2 )VDD ) ( 0.08VDD ) − 0.0064VDD ⎤ = ⎡( 0.92 − 0.2 )VDD ⎤ = 0.5184VDD 2 2 2 (W / L )L ⎦ ⎣ ⎦ (W / L )D (W / L )D [0.096] = 0.5184 ⇒ = 5.4 (W / L )L (W / L )L 16.9 VOH = VB − VTN = Logic 1 So (a) VB = 4 V ⇒ VOH = 3V (b) VB = 5 V ⇒ VOH = 4V (c) VB = 6 V ⇒ VOH = 5V (d) VB = 7 V ⇒ VOH = 5 V ,since VDS = 0 For vI = VOH
  • 5. K D ⎡ 2 ( vI − VT ) vO − vO ⎤ = K L [VB − vO − VT ] 2 2 ⎣ ⎦ Then (1) ⎡ 2 ( 3 − 1)VOL − VOL ⎤ = ( 0.4 ) [ 4 − VOL − 1] 2 (a) ⎣ 2 ⎦ ⇒ VOL = 0.657 V (1) ⎣ 2 ( 4 − 1)VOL − V ⎦ = ( 0.4 ) [5 − VOL − 1] ⇒ VOL = 0.791 V 2 (b) ⎡ 2 OL ⎤ (1) ⎡ 2 ( 5 − 1)VOL − VOL ⎤ = ( 0.4 ) [6 − VOL − 1] 2 (c) ⎣ 2 ⎦ ⇒ VOL = 0.935 V (d) Load in non-sat region iDD = iOL (1) ⎡ 2 ( 5 − 1) VOL − VOL ⎤ = ( 0.4 ) ⎡ 2 ( 7 − VOL − 1)( 5 − VOL ) − ( 5 − VOL ) ⎤ 2 2 ⎣ ⎦ ⎣ ⎦ 8VOL − VOL = ( 0.4 ) ⎡ 2 ( 6 − VOL )( 5 − VOL ) − ( 25 − 10VOL + VOL ) ⎤ 2 ⎣ 2 ⎦ = ( 0.4 ) ⎡ 2 ( 30 − 11VOL + VOL ) − 25 + 10VOL − VOL ⎤ ⎣ 2 2 ⎦ = ( 0.4 ) ⎡60 − 22VOL + 2VOL − 25 + 10VOL − VOL ⎤ ⎣ 2 2 ⎦ 2 2 8VOL − VOL = 14 − 4.8VOL + 0.4VOL 2 1.4VOL − 12.8VOL + 14 = 0 12.8 ± 163.84 − 4 (1.4 )(14 ) VOL = 2 (1.4 ) VOL = 1.27V For load VDS ( sat ) = 7 − 1.27 − 1 = 4.73V VDS = 5 − 1.27 = 3.73 non-sat 16.10 a. For load VOt = VDD + VTNL = 5 − 2 = 3 V KD ⋅ (VIt − VTND ) = −VTNL KL 500 (VIt − 0.8 ) = − ( −2 ) 100 ⇒ VIt = 1.69 V ⎫ ⎬ Load VOt = 3 V ⎭ Driver: VOt = VIt − VTND = 1.69 − 0.8 = 0.89 V VIt = 1.69 V ⎫ ⎬ Driver V0t = 0.89 V ⎭ b. From Equation (16.29(b)): 500 2 ⋅ ⎣ 2(5 − 0.8)v0 − v0 ⎦ = ⎡ − ( −2 ) ⎤ ⎡ 2 ⎤ ⎣ ⎦ 100 2 5v0 − 42v0 + 4 = 0 ( 42 ) − 4 ( 5)( 4 ) 2 42 ± v0 = ⇒ v0 = 0.0963 V 2 (5) 2 iD = K L ( −VTNL ) = 100 ⎣ − ( −2 ) ⎦ ⇒ iD = 400 μ A 2 c. ⎡ ⎤
  • 6. 16.11 ⎛ 500 ⎞ ⎡ ⎟ ⎣ 2 ( 3 − 0.5 )( 0.1) − ( 0.1) ⎤ = ( −VTNL ) 2 2 ⎜ ⎦ ⎝ 50 ⎠ So ( −VTNL ) 2 = 4.9 ⇒ VTNL = −2.21 V 16.12 (a) P = iD ⋅ VDD 150 = iD ⋅ ( 3) ⇒ iD = 50 μ A iD = K L (−VTNL ) 2 ⎛ 80 ⎞ ⎛ W ⎞ 2 ⎛W ⎞ 50 = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 1.25 ⎝ 2 ⎠ ⎝ L ⎠L ⎣ ⎦ ⎝ L ⎠L KD ⎡ 2 ( 3 − 0.5 )( 0.1) − ( 0.1) ⎤ = ⎡ − ( −1) ⎤ 2 2 KL ⎣ ⎦ ⎣ ⎦ K D (W / L ) D ⎛W ⎞ = = 2.04 ⇒ ⎜ ⎟ = 2.55 K L (W / L ) L ⎝ L ⎠D For the Load: VOt = VDD + VTNL = 3 − 1 ⇒ VOt = 2 V 2.04 (VIt − 0.5 ) = ⎡ − ( −1) ⎤ ⇒ VIt = 1.20 V ⎣ ⎦ For the Driver: VOt = VIt − VTND = 1.20 − 0.5 ⇒ VOt = 0.70 V VIt = 1.20 V (b) NM L = VIL − VOLU NM H = VOHU − VIH ⎡ − ( −1) ⎤ ⎣ ⎦ VIL = 0.5 + = 0.902 V ( 2.04 )(1 + 2.04 ) 2 ⎡ − ( −1) ⎤ VIH = 0.5 + ⎣ ⎦ = 1.31 V 3 ( 2.04 ) Then VOHU = ( 3 − 1) + ( 2.04 )( 0.902 − 0.5 ) = 2.82 V (1.31 − 0.5) VOLU = = 0.405 V 2 NM L = 0.902 − 0.405 ⇒ NM L = 0.497 V NM H = 2.82 − 1.31 ⇒ NM H = 1.51 V 16.13 a. From Equation (16.29(b)): ⎛W ⎞ ⎡ ⎛W ⎞ ⎜ ⎟ ⎣ 2 ( 2.5 − 0.5 )( 0.05 ) − ( 0.05 ) ⎤ = ⎜ ⎟ [− ( −1)] 2 2 ⎝ L ⎠D ⎦ ⎝ L ⎠L ⎛W ⎞ ⎜ ⎟ =1 ⎝ L ⎠L
  • 7. ⎛W ⎞ Then ⎜ ⎟ = 5.06 ⎝ L ⎠D ⎛ 80 ⎞ 2 b. iD = ⎜ ⎟ (1) ⎡ − ( −1) ⎤ ⎣ ⎦ ⎝ 2⎠ or iD = 40 μ A P = iD ⋅ VDD = ( 40 )( 2.5 ) ⇒ P = 100 μ W 16.14 a. i. vI = 0.5 V ⇒ iD = 0 ⇒ P = 0 ii. vI = 5 V, From Equation (16.12), v0 = 5 − ( 0.1)( 20 ) ⎡ 2 ( 5 − 1.5 ) v0 − v0 ⎤ ⎣ 2 ⎦ 2 2v0 − 15v0 + 5 = 0 (15 ) − 4 ( 2 )( 5 ) 2 15 ± v0 = ⇒ v0 = 0.35 V 2 ( 2) 5 − 0.35 iD = = 0.2325 mA 20 P = iD ⋅ VDD = ( 0.2325 )( 5 ) ⇒ P = 1.16 mW b. i. vI = 0.25 V ⇒ iD = 0 ⇒ P = 0 ii. vI = 4.3 V, From Equation (16.23), 100 ⎣ 2 ( 4.3 − 0.7 ) v0 − v0 ⎦ = 10 [5 − v0 − 0.7 ] 2 ⎡ 2 ⎤ 10 ⎡7.2v0 − v0 ⎤ = 18.49 − 8.6v0 + v0 ⎣ 2 ⎦ 2 Then 2 11v0 − 80.6v0 + 18.49 = 0 (80.6 ) − 4 (11)(18.49 ) 2 80.6 ± v0 = ⇒ v0 = 0.237 V 2 (11) Then iD = 10 [5 − 0.237 − 0.7 ] = 165 μ A 2 P = iD ⋅ VDD = (165 )( 5 ) ⇒ P = 825 μ W c. i. vI = 0.03 V ⇒ iD = 0 ⇒ P = 0 ii. vI = 5 V 2 iD = K L ( −VTNL ) = (10 ) ⎡ − ( −2 ) ⎤ = 40 μ A 2 ⎣ ⎦ P = iD ⋅ VDD = ( 40 )( 5 ) ⇒ P = 200 μ W 16.15 vo1 = 3.8V Load & Driver in Sat, region, ML1, MD1
  • 8. iDL = iDD ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ ( vGSL − VTNL ) = ⎜ ⎟ ( vGSD − VTND ) 2 2 ⎝ L ⎠L ⎝ L ⎠D (1) ( 5 − vo1 − 0.8 ) = (10 )( vI − 0.8 ) 2 2 0.16 = 10 ( vI − 0.8 ) 2 vI = 0.9265V Now MD2: Non Sat and ML2: Sat iDL = iDD ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ ( vGSL − VTNL ) = ⎜ ⎟ ⎡ 2 ( vo1 − VTND ) vo 2 − vo 2 ⎤ 2 2 ⎣ ⎦ ⎝ L ⎠L ⎝ L ⎠D (1)( 5 − vo 2 − 0.8 ) = (10 ) ⎡ 2 ( 3.8 − 0.8 ) vo 2 − vo 2 ⎤ 2 2 ⎣ ⎦ ( 4.2 − vo 2 ) 2 = 10 ⎡ 6vo 2 − vo 2 ⎤ ⎣ 2 ⎦ 2 2 17.64 − 8.4vo 2 + vo 2 = 60vo 2 − 10vo 2 2 11vo 2 − 68.4vo 2 + 17.64 = 0 68.4 ± 4678.56 − 4 (11)(17.64 ) vo 2 = 2 (11) vo 2 = 0.270 V 16.16 a. From Equation (16.41), 2 ⎡ − ( −2 ) ⎤ VIH = 0.8 + ⎣ ⎦ ⇒ V = 1.95 V = v 01 3( 4) IH M D 2 in non-saturation and M L 2 in saturation. K D ⎡ 2 ( v01 − VTND ) v02 − v02 ⎤ = K L ( −VTNL ) 2 2 ⎣ ⎦ 2 4 ⎣ 2 (1.95 − 0.8 ) v02 − v02 ⎦ = (1) ⎡ − ( −2 ) ⎤ ⎡ 2 ⎤ ⎣ ⎦ 2 4v02 − 9.2v02 + 4 = 0 ( 9.2 ) − 4 ( 4 )( 4 ) 2 9.2 ± v02 = ⇒ v02 = 0.582 V 2 ( 4) Both M D1 and M L1 in saturation region. From Equation (16.28(b)). 4 ⋅ ( vI − 0.8 ) = − ( −2 ) or vI = 1.8 V ( +2 ) b. VIL = 0.8 + = 1.25 V = v01 4 (1 + 4 ) M D 2 in saturation, M L 2 in non-saturation
  • 9. K D [ vO1 − VTND ] = K L ⎡ 2 ( −VTNL )( 5 − vO 2 ) − ( 5 − vO 2 ) ⎤ 2 2 ⎣ ⎦ 4 (1.25 − 0.8 ) = 2 ( 2 )( 5 − v02 ) − ( 5 − v02 ) 2 2 ( 5 − v02 ) − 4 ( 5 − v02 ) + 0.81 = 0 2 ( 4) − 4 (1)( 0.81) 2 4± 5 − v02 = = 0.214 V 2 (1) so v02 = 4.786 V To find vI : 4 ( v01 − 0.8 ) = (1) ( − ( −2 ) ) 2 2 v01 − 0.8 = 1 v01 − 1.8 = V c. VIH = 1.95 V, VIL = 1.25 V 16.17 a. i. Neglecting the body effect, v0 = VDD − VTN Assume VDD = 5 V, then v0 = 4.2 V ii. Taking the body effect into account: From Problem 16.1. VTN = VTN 0 + 0.671 ⎡ 0.686 + VSB − 0.686 ⎤ ⎣ ⎦ and VSB = v0 Then ( v0 = 5 − ⎡ 0.8 + 0.671 0.686 + v0 − 0.686 ⎤ ⎣ ⎦ ) v0 = 4.756 − 0.671 0.686 + v0 0.671 0.686 + v0 = 4.756 − v0 0.450 ( 0.686 + v0 ) = 22.62 − 9.51v0 + v0 2 2 v0 − 9.96v0 + 22.3 = 0 ( 9.96 ) − 4 ( 22.3) 2 9.96 ± v0 = ⇒ v0 = 3.40 V 2 b. PSpice results similar to Figure 16.13(a). 16.18 Results similar to Figure 16.13(b). 16.19 a. M X on, M Y cutoff. From Equation (16.29(b)): KD ⎡ 2 5 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ = ⎡ − ( −2 ) ⎤ 2 ⎣ ( 2 KL ⎦ ⎣ ⎦ KD or = 2.44 KL b. For v X = vY = .5 V
  • 10. 2 2 ( 2.44 ) ⎣ 2 ( 5 − 0.8 ) v0 − v0 ⎤ = ⎡ − ( −2 ) ⎤ ⎡ 2 ⎦ ⎣ ⎦ 2 4.88v0 − 41.0v0 + 4 = 0 ( 41) − 4 ( 4.88 )( 4 ) 2 41 ± v0 = 2 ( 4.88 ) or v0 = 0.0987 V c. ⎛ 80 ⎞ 2 iD = ⎜ ⎟ (1) ⎡ − ( −2 ) ⎤ = 160 μ A ⎝ 2⎠ ⎣ ⎦ P = (160 )( 5 ) ⇒ P = 800 μ W for both parts (a) and (b). 16.20 (a) Maximum value of vO in low state- when only one input is high, then, KD ⎡ 2 ( 3 − 0.5 )( 0.1) − ( 0.1) ⎤ = ⎡ − ( −1) ⎤ 2 2 KL ⎣ ⎦ ⎣ ⎦ KD = 2.04 KL (b) P = iD ⋅ VDD 0.1 = iD (3) ⇒ iD = 33.3 μ A ⎛ k′ ⎞⎛ W ⎞ iD = ⎜ n ⎟ ⎜ ⎟ ( −VTNL ) 2 ⎝ 2 ⎠ ⎝ L ⎠L ⎛ 80 ⎞⎛ W ⎞ 2 ⎛W ⎞ 33.3 = ⎜ ⎟⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 0.8325 ⎣ ⎦ ⎝ 2 ⎠⎝ L ⎠ L ⎝ L ⎠L ⎛W ⎞ Then ⎜ ⎟ = 1.70 ⎝ L ⎠D 2 (c) 3 ( 2.04 ) ⎡ 2 ( 3 − 0.5 ) vO − vO ⎤ = ⎡ − ( −1) ⎤ ⇒ vO = 0.0329 V ⎣ 2 ⎦ ⎣ ⎦ 16.21 (a) One driver in non-sat, I D = K L ( −VTNL ) = K D ⎡ 2 (VGS − VTND ) VDSD − VDSD ⎤ 2 2 ⎣ ⎦ K ⎡ − ( −1) ⎤ = D ⎡ 2 ( 3.3 − 0.5 )( 0.1) − ( 0.1) ⎤ 2 2 ⎣ ⎦ KL ⎣ ⎦ KD = 1.82 KL (b)
  • 11. P = ± VDD 0.1 = ± ( 3.3) ⇒ I = 30.3 μ A ⎛ 80 ⎞ ⎛ W ⎞ 2 ⎛W ⎞ 30.3 = I = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 0.7575 ⎣ ⎦ ⎝ 2 ⎠ ⎝ L ⎠L ⎝ L ⎠L ⎛W ⎞ ⎜ ⎟ = 1.38 ⎝ L ⎠D (c) 0.1 (i) Two inputs High, vo ≈ = 0.05 V 2 0.1 (ii) Three inputs High, vo ≈ = 0.0333 V 3 0.1 (iii) Four inputs High, vo ≈ = 0.025 V 4 16.22 a. P = iD ⋅ VDD 250 = iD ( 5 ) ⇒ iD = 50 μΑ ⎛ k' ⎞⎛W ⎞ iD = ⎜ n ⎟ ⎜ ⎟ [ −VTNL1 ] 2 ⎝ 2 ⎠ ⎝ L ⎠ ML1 ⎛ 60 ⎞ ⎛ W ⎞ 2 50 = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −2 ) ⎤ ⎣ ⎦ ⎝ 2 ⎠ ⎝ L ⎠ ML1 ⎛W ⎞ So that ⎜ ⎟ = 0.417 ⎝ L ⎠ ML1 KD ⎡ 2 ( vI − VTND ) vO − vO ⎤ = [ −VTNL ] 2 2 KL ⎣ ⎦ KD ⎡ 2 5 − 0.8 )( 0.15 ) − ( 0.15 ) ⎤ = ⎡ − ( −2 ) ⎤ 2 ⎣ ( 2 KL ⎦ ⎣ ⎦ KD ⎛W ⎞ or = 3.23 ⇒ ⎜ ⎟ = 1.35 KL ⎝ L ⎠ MD1 b. For v X = vY = 0 ⇒ v01 = 5 and v03 = 4.2 Then K D 2 ⎡ 2 ( vO1 − VTND ) vO 2 − vO 2 ⎤ + K D 3 ⎡ 2 ( vO 3 − VTND ) vO 2 − vO 2 ⎤ = K L 2 [ −VTNL 2 ] 2 2 2 ⎣ ⎦ ⎣ ⎦ K D 2 ∝ 8, K D 3 ∝ 8, K L 2 ∝ 1 2 8 ⎡ 2 ( 5 − 0.8 ) v02 − v02 ⎤ + 8 ⎡ 2 ( 4.2 − 0.8 ) v02 − v02 ⎤ = (1) ⎡ − ( −2 ) ⎤ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ ⎦ 2 2 67.2v02 − 8v02 + 54.4v02 − 8v02 = 4 Then 2 16v0 − 121.6v0 + 4 = 0 (121.6 ) − 4 (16 )( 4 ) 2 121.6 ± v02 = 2 (16 ) So v02 = 0.0330 V 16.23
  • 12. a. We can write K x ⎡ 2 ( v X − VTN ) vDSX − vDSX ⎤ = K y ⎡ 2 ( vY − vDSX − VTN ) vDSY − vDSY ⎤ = K L [VDD − vO − VTN ] 2 2 2 ⎣ ⎦ ⎣ ⎦ where v0 = vDSX + vDSY We have v X = vY = 9.2 V , VDD = 10 V , VTN = 0.8 V 2 2 As a good first approximation, neglect the vDSX and vDSY terms. Let v0 ≈ 2vDSX . Then from the first and third terms in the above equation. 9 ⎡ 2 ( 9.2 − 0.8 ) vDSX ⎤ ≅ (1)(10 − 2vDSX − 0.8 ) 2 ⎣ ⎦ (151.2 ) vDSX ≅ 84.64 − 36.8vDSX So that vDSX = 0.450 V From the first and second terms of the above equation. 9 ⎡ 2 ( 9.2 − 0.8 ) vDSX ⎤ ≅ 9 ⎡ 2 ( 9.2 − vDSX − 0.8 ) vDSY ⎤ ⎣ ⎦ ⎣ ⎦ or (16.8)( 0.45) = 2 ( 9.2 − 0.45 − 0.8) vDSY which yields vDSY = 0.475 V Then v0 = vDSX + vDSY = 0.450 + 0.475 or v0 = 0.925 V We have vGSX = 9.2 V and vGSY = 9.2 − vDSX = 9.2 − 0.45 or vGSY = 8.75 V b. Since v0 is close to ground potential, the body effect will have minimal effect on the results. From a PSpice analysis: For part (a): vDSX = 0.462 V, vDSY = 0.491 V, v0 = 0.9536 V, vGSX = 9.2 V, and vGSY = 8.738 V For part (b): vDSX = 0.441 V, vDSY = 0.475 V, v0 = 0.9154 V, vGSX = 9.2 V, and vGSY = 8.759 V 16.24 a. We can write K x ⎡ 2 ( v X − VTNX ) vDSX − vDSX ⎤ = K y ⎡ 2 ( vY − vDSX − VTNY ) vDSY − vDSY ⎤ = K L [ −VTNL ] 2 2 2 ⎣ ⎦ ⎣ ⎦ 2 From the first and third terms, (neglect vDSX ), 2 4 ⎡ 2 ( 5 − 0.8 ) vDSX ⎤ = (1) ⎡ − ( −1.5 ) ⎤ ⎣ ⎦ ⎣ ⎦ or vDSX = 0.067 V 2 From the second and third terms, (neglect vDSY ), 2 4 ⎡ 2 ( 5 − 0.067 − 0.8 ) vDSY ⎤ = (1) ⎡ − ( −1.5 ) ⎤ ⎣ ⎦ ⎣ ⎦ or vDSY = 0.068 V Now vGSX = 5, vGSY = 5 − 0.067 ⇒ vGSY = 4.933 V and v0 = vDSX + vDSY ⇒ v0 = 0.135 V Since v0 is close to ground potential, the body-effect has little effect on the results. 16.25
  • 13. 0.2 (a) We have VDS of each driver ≈ = 0.05 V 4 K L [ −VTNL ] = K D ⎡ 2 (VGSD − VTN ) VDSD 2 ⎣ − VDSD ⎤ 2 ⎦ K ⎡ − ( −1) ⎤ = D ⎡ 2 ( 3.3 − 0.4 )( 0.05 ) − ( 0.05 ) ⎤ 2 2 ⎣ ⎦ KL ⎣ ⎦ KD = 3.478 KL (b) P = I VDD 0.15 = I ( 3.3) ⇒ I = 45.45 μ A ⎛ 80 ⎞ ⎛ W ⎞ 2 ⎛W ⎞ 45.45 = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 1.14 ⎣ ⎦ ⎝ 2 ⎠ ⎝ L ⎠L ⎝ L ⎠L ⎛W ⎞ ⎜ ⎟ = 3.95 ⎝ L ⎠D 16.26 Complement of (B AND C) OR A ⇒ ( B ⋅ C ) + A 16.27 Considering a truth table, we find A B Y 0 0 0 0 1 1 1 0 1 1 1 0 which shows that the circuit performs the exclusive-OR function. 16.28 ( A + B )(C + D) 16.29 (a) Carry-out = A • ( B + C ) + B • C
  • 14. (b) For vO1 = Low = 0.2 V KD ⎡ 2 ( 5 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ = ⎡ − ( −1.5 ) ⎤ ⇒ 2 2 KL ⎣ ⎦ ⎣ ⎦ ⎛W ⎞ ⎛W ⎞ For ⎜ ⎟ = 1, then ⎜ ⎟ = 1.37 ⎝ L ⎠L ⎝ L ⎠D ⎛W ⎞ So, for M 6 : ⎜ ⎟ = 1.37 ⎝ L ⎠6 To achieve the required composite conduction parameter, ⎛W ⎞ For M 1 − M 5 : ⎜ ⎟ = 2.74 ⎝ L ⎠1− 5 16.30 AE: VDS ≈ 0.075 ⎛W ⎞ (1) ⎡ − ( −1) ⎤ ≅ ⎜ ⎟ ⎡ 2 ( 3.3 − 0.4 )( 0.075 ) − ( 0.075 ) ⎤ 2 2 ⎣ ⎦ L ⎠D ⎣ ⎦ ⎝ ⎛W ⎞ ⎛W ⎞ ⎛W ⎞ ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ = ⎜ ⎟ = 2.33 ⇒ ⎜ ⎟ = ⎜ ⎟ = ⎜ ⎟ = 4.66 ⎝ L ⎠ A ⎝ L ⎠E ⎝ L ⎠ B ⎝ L ⎠C ⎝ L ⎠ D 16.31 Not given
  • 15. 16.32 a. From Equation (16.43), 5 − 0.8 + 0.8 vI = VIt = = VIt = 2.5 V 1+1 p − channel, V0 Pt = 2.5 − ( −0.8 ) ⇒ V0 Pt = 3.3 V n − channel, V0 Nt = 2.5 − 0.8 ⇒ V0 Nt = 1.7 V c For vI = 2 V, NMOS in saturation and PMOS in nonsaturation. From Equation (16.49), ( 2 − 0.8)= ⎡ 2 ( 5 − 2 − 0.8 )( 5 − v0 ) − ( 5 − v0 ) ⎤ 2 2 ⎣ ⎦ 1.44 = 4.4(5 − v0 ) − (5 − v0 ) 2 So ( 5 − v0 ) − 4.4 ( 5 − v0 ) + 1.44 = 0 2 ( 4.4 ) − 4 (1)(1.44 ) 2 4.4 ± ( 5 − v0 ) = 2 or 5 − v0 = 0.356 ⇒ v0 = 4.64 V By symmetry, for vI = 3 V, v0 = 0.356 V 16.33 ⎛ 80 ⎞ (a) K n = ⎜ ⎟ ( 2 ) = 80 μ A / V 2 ⎝ 2⎠ ⎛ 40 ⎞ K p = ⎜ ⎟ ( 4 ) = 80 μ A / V 2 ⎝ 2 ⎠ Kn VDD + VTP + ⋅ VTN Kp 3.3 − 0.4 + (1)(0.4) (i) VIt = = Kn 1+1 1+ Kp VIt = 1.65 V PMOS: VOt = VIt − VTP = 1.65 − ( −0.4 ) ⇒ VOt = 2.05 V NMOS: VOt = VIt − VTN = 1.65 − ( 0.4 ) ⇒ VOt = 1.25 V (iii) For vO = 0.4 V : NMOS: Non-sat: PMOS:Sat K n ⎡ 2 (VGSN − VTN )VDS − VDS ⎤ = K p [VSGP + VTP ] 2 2 ⎣ ⎦ 2 ( vI − 0.4 )( 0.4 ) − ( 0.4 ) = ( 3.3 − vI − 0.4 ) ⇒ vI = 1.89 V 2 2 For vO = 2.9 V , By symmetry vI = 1.65 − (1.89 − 1.65 ) ⇒ vI = 1.41 V ⎛ 80 ⎞ (b) K n = ⎜ ⎟ ( 2 ) = 80 μ A/V 2 ⎝ 2⎠ ⎛ 40 ⎞ K p = ⎜ ⎟ ( 2 ) = 40 μ A/V 2 ⎝ 2 ⎠
  • 16. 80 3.3 − 0.4 + ⋅ ( 0.4 ) (i) VIt = 40 ⇒ VIt = 1.44 V 80 1+ 40 PMOS: VOt = 1.44 − ( −0.4 ) ⇒ VOt = 1.84 V NMOS: VOt = 1.44 − 0.4 ⇒ VOt = 1.04 V (iii) For vO = 0.4 V ⎦ ( )[ ⎡ ⎤ = 40 3.3 − vI − 0.4]2 ⇒ vI = 1.62 V (80 ) ⎣ 2 ( vI − 0.4 )( 0.4 ) − ( 0.4 ) 2 For vO = 2.9 V : NMOS: Sat, PMOS: Non-sat (80 ) [vI − 0.4] = ( 40 ) ⎡ 2 ( 3.3 − vI − 0.4 )( 0.4 ) − ( 0.4 ) ⎤ ⇒ vI = 1.18 V 2 2 ⎣ ⎦ 16.34 (a) From Eq. (16.43), switching voltage (i) VDD + VTP + Kn ⋅ VTN 2 ( 4) Kp 3.3 + ( −0.4 ) + ( 0.4 ) 3.2266 vI t = = 12 = ⇒ vIt = 1.776 V Kn 2 ( 4) 1.8165 1+ 1+ Kp 12 (ii) v0 = 3.1 V , PMOS, non-sat; NMOS, sat ′ ⎛ kp ⎞⎛ W ⎞ ′ ⎛ kn ⎞ ⎛ W ⎞ ⎜ ⎟ ⎜ ⎟ ⎣ 2 (VSG + VTP ) VSD − VSD ⎦ = ⎜ ⎟ ⎜ ⎟ (VGS − VTN ) 2 ⎡ 2 ⎤ ⎝ 2 ⎠⎝ L ⎠p ⎝ 2 ⎠ ⎝ L ⎠n ⎛ 40 ⎞ ⎛ 80 ⎞ ⎜ ⎟ (12 ) ⎡ 2 ( 3.3 − vI − 0.4 )( 3.3 − 3.1) − ( 3.3 − 3.1) ⎤ = ⎜ ⎟ ( 4 ) [ vI − 0.4] 2 2 ⎝ 2 ⎠ ⎣ ⎦ ⎝ 2⎠ 12 [1.16 − 0.4vI − 0.04] = 8 ⎣ vI2 − 0.8vI + 0.16 ⎤ ⎡ ⎦ 8vI2 − 1.6vI − 12.16 = 0 1.6 ± 2.56 + 4 ( 8 ) (12.16 ) vI = ⇒ vI = 1.337 V 2 (8) (iii) v0 = 0.2 V PMOS: sat, NMOS, non-sat. ⎛ 40 ⎞ ⎛ 80 ⎞ ⎜ ⎟ (12 ) [3.3 − vI − 0.4] = ⎜ ⎟ ( 4 ) ⎡ 2 ( vI − 0.4 )( 0.2 ) − ( 0.2 ) ⎤ 2 2 ⎝ 2 ⎠ ⎝ 2⎠ ⎣ ⎦ 12 ⎡8.41 − 5.8vI + vI2 ⎤ = 8 [ 0.4vI − 0.2] ⎣ ⎦ 12vI2 − 72.8vI + 102.52 = 0 72.8 ± 5299.84 − 4 (12 )(102.52 ) vI = 2 (12 ) vI = 2.222 V (b)
  • 17. 2 ( 6) 3.3 + ( −0.4 ) + ( 0.4 ) 3.5928 (i) vIt = 4 = 2 (6) 2.732 1+ 4 vIt = 1.315 V (ii) From (a), (ii) 4 [1.16 − 0.4vI − 0.04] = 12 ⎡vI2 − 0.8vI + 0.16 ⎤ ⎣ ⎦ 12vI2 − 8vI − 2.56 = 0 8 ± 64 + 4 (12 )( 2.56 ) vI = ⇒ vI = 0.903 V 2 (12 ) (iii) From (a), (iii) 4⎣⎡8.41 − 5.8vI + vI2 ⎤ = 12 [ 0.4vI − 0.2] ⎦ 4vI2 − 28vI + 36.04 = 0 28 ± 784 − 4 ( 4 )( 36.04 ) vI = ⇒ vI = 1.70 V 2 ( 4) 16.35 a. For vO1 = 0.6 < VTN ⇒ vO 2 = 5 V N1 in nonsaturation and P in saturation. From Equation (16.45), 1 ⎡ 2 ( vI − 0.8 )( 0.6 ) − ( 0.6 )2 ⎤ = [5 − vI − 0.8]2 ⎣ ⎦ 1.2vI − 1.32 = 17.64 − 8.4vI + vI2 or vI2 − 9.6vI + 18.96 = 0 ( 9.6 ) − 4 (1)(18.96 ) 2 9.6 ± vI = 2 or vI = 2.78 V b. V0 Nt ≤ v02 ≤ V0 Pt From symmetry, VIt = 2.5 V V0 Pt = 2.5 + 0.8 = 3.3 V and V0 Nt = 2.5 − 0.8 = 1.7 V So 1.7 ≤ v02 ≤ 3.3 V 16.36 a. V0 Nt ≤ v01 ≤ V0 Pt By symmetry, VIt = 2.5 V V0 Pt = 2.5 + 0.8 = 3.3 V and V0 Nt = 2.5 − 0.8 = 1.7 V So 1.7 ≤ v01 ≤ 3.3 V b. For vO 2 = 0.6 < VTN ⇒ vO 3 = 5 V N 2 in nonsaturation and P2 in saturation. From Equation (16.57),
  • 18. ⎡ 2 ( vI 2 − 0.8 )( 0.6 ) − ( 0.6 )2 ⎤ = [5 − vI 2 − 0.8]2 ⎣ ⎦ 1.2vI 2 − 1.32 = 17.64 − 8.4vI 2 + vI22 or vI22 − 9.6vI 2 + 18.96 = 0 So vI 2 = v01 = 2.78 V For v01 = 2.78, both N1 and P in saturation. Then 1 vI = 2.5 V 16.37 a. iPeak = K n ( vI − VTN ) iPeak = 0.1 ⋅ ( 2.5 − 0.8 ) = 0.538 ( mA ) 1/ 2 iPeak = 0.1 ⋅ (1.65 − 0.8 ) = 0.269 ( mA ) 1/ 2 b. 16.38 ⎛ 50 ⎞ (a) K n = ⎜ ⎟ ( 2 ) = 50 μ A / V 2 ⎝ 2⎠ ⎛ 25 ⎞ K p = ⎜ ⎟ ( 4 ) = 50 μ A / V 2 ⎝ 2 ⎠ I D , peak = K n ( v1 − VTN ) = 50 ( 2.5 − 0.8 ) 2 2 or I D , peak = 144.5 μ A (b) K n = 50 μ A / V 2 , K p = 25 μ A/V 2 From Equation (16.55), 50 5 − 0.8 + (0.8) vIt = 25 = 2.21 V 50 1+ 25 Then I D , peak = K n (VIt − VTN ) 2 = 50 ( 2.21 − 0.8 ) 2 or I D , peak = 99.4 μ A 16.39
  • 19. (a) Switching Voltage, Eq. (16.43) 2 ( 4) 3.3 − 0.4 + ( 0.4 ) vIt = 8 = 1.65 V = vIt 2 ( 4) 1+ 8 ⎛ 80 ⎞ iD, peak = ⎜ ⎟ ( 4 )(1.65 − 0.4 ) ⇒ iD , peak = 250 μA 2 ⎝ 2⎠ (b) 2 ( 4) 3.3 − 0.4 + ( 0.4 ) vIt = 4 = 1.436 V = vIt 2 ( 4) 1+ 4 ⎛ 80 ⎞ iD , peak = ⎜ ⎟ ( 4 )(1.436 − 0.4 ) ⇒ iD , peak = 172 μA 2 ⎝ 2⎠ (c) 2 ( 4) 3.3 − 0.4 + ( 0.4 ) vIt = 12 ⇒ vIt = 1.776 V 2 ( 4) 1+ 12 ⎛ 80 ⎞ iD , peak = ⎜ ⎟ ( 4 )(1.776 − 0.4 ) ⇒ iD , peak = 303 μA 2 ⎝ 2⎠ 16.40 2 a. P = fCLVDD For VDD = 5 V, P = (10 × 106 )(0.2 ×10−12 )(5) 2 or P = 50 μ W For VDD = 15 V, P = (10 × 106 )(0.2 × 10−12 )(15) 2 or P = 450 μ W b. For VDD = 5 V, P = (10 × 106 )(0.2 ×10−12 )(5) 2 or P = 50 μ W 16.41 (a) P = fCLVDD = (150 × 106 )( 0.4 ×10−12 ) ( 5 ) = 1.5 × 10 −3 W / inverter 2 2 Total power: PT = ( 2 × 106 )(1.5 × 10−3 ) ⇒ PT = 3000 W !!!! (b) For f = 300 MHz 1.5 ×10 = ( 300 ×106 )( 0.4 × 10−12 ) VDD ⇒ VDD = 3.54 V −3 2 16.42 3 (a) P= 7 = 3 × 10−7 W 10 P (b) P = fCLVDD ⇒ CL = 2 2 fVDD
  • 20. 3 × 10−7 (i) CL = ⇒ CL = 0.0024 pF ( 5 ×10 ) ( 5) 6 2 3 × 10−7 (ii) CL = ⇒ CL = 0.00551pF ( 5 ×10 ) ( 3.3) 6 2 3 × 10−7 (iii) CL = ⇒ CL = 0.0267 pF ( 5 ×10 ) (1.5) 6 2 16.43 10 (a) P= = 2 × 10−6 W 5 × 106 P (b) CL = 2 fVDD 2 × 10−6 (i) CL = ⇒ CL = 0.01 pF (8 ×10 ) ( 5) 6 2 2 × 10−6 (ii) CL = ⇒ CL = 0.023 pF (8 ×10 ) ( 3.3) 6 2 2 × 10−6 (iii) CL = ⇒ CL = 0.111 pF (8 ×10 ) (1.5) 6 2 16.44 (a) For vI ≅ VDD , NMOS in nonsaturation iD = K n ⎡ 2 ( vI − VTN ) vDS − vDS ⎤ and vDS ≅ 0 ⎣ 2 ⎦ 1 di So = D ≅ K n ⎡ 2 (VDD − VTN ) ⎤ ⎣ ⎦ rds dvDS Or 1 rds = ′ ⎛ kn ⎞ ⎛ W ⎞ ⎜ 2 ⎟ ⎜ L ⎟ ⋅ 2 (VDD − VTN ) ⎝ ⎠ ⎝ ⎠n or 1 rds = ′⎛ ⎞ W kn ⎜ ⎟ ⋅ (VDD − VTN ) ⎝L ⎠n For vI ≅ 0, PMOS in nonsaturation iD = K p ⎡ 2 (VDD − vI + VTP ) vSD − vSD ⎤ ⎣ 2 ⎦ and vSD ≅ 0 for vI ≅ 0. So 1 di ⎛ k′ ⎞⎛ W ⎞ = D ≅ ⎜ ⎟ ⎜ ⎟ ⋅ 2 (VDD + VTP ) p rsd dvSD ⎝ 2 ⎠ ⎝ L ⎠ p or 1 rsd = 1 ⎛W ⎞ ⎜ ⎜ Lp ⎟ ⋅ (VDD + VTP ) ⎟ k′ p ⎝ ⎠
  • 21. ⎛W ⎞ ⎛W ⎞ (b) For ⎜ ⎟ = 2, ⎜ ⎟ = 4 ⎝ L ⎠n ⎝ L ⎠p 1 rds = ⇒ rds = 2.38 k Ω ( 50 )( 2 )( 5 − 0.8 ) 1 rsd = ⇒ rsd = 2.38 k Ω ( 25 )( 4 )( 5 − 0.8 ) ⎛W ⎞ For ⎜ ⎟ = 2,. ⎝ L ⎠p 1 rsd = ⇒ rsd = 4.76 k Ω ( 25 )( 2 )( 5 − 0.8 ) Now, for NMOS: vds 0.5 vds = id rds or id = = ⇒ id = 0.21 mA rds 2.38 For PMOS: For rsd = 2.38 k Ω, vsd 0.5 id = = ⇒ id = 0.21 mA rsd 2.38 For rsd = 4.76 k Ω , vsd 0.5 id = = ⇒ id = 0.105 mA rsd 4.76 16.45 From Equation (16.63) 3 VIL = 1.5 + ⋅ (10 − 1.5 − 1.5 ) ⇒ VIL = 4.125 V 8 and Equation (16.62) 1 V0 HU = ⋅ ⎡ 2 ( 4.125 ) + 10 − 1.5 + 1.5⎤ 2 ⎣ ⎦ or V0 HU = 9.125 V From Equation (16.69) 5 VIH = 1.5 + ⋅ (10 − 1.5 − 1.5 ) ⇒ VIH = 5.875 V 8 and Equation (16.68) 1 V0 LU = ⋅ ⎡ 2 ( 5.875 ) − 10 − 1.5 + 1.5⎤ 2 ⎣ ⎦ or V0 LU = 0.875 V Now NM L = VIL − V0 LU = 4.125 − 0.875 ⇒ NM L = 3.25 V NM H = V0 HU − VTH = 9.125 − 5.875 ⇒ NM H = 3.25 V 16.46 From Equation (16.71) ⎡ 100 ⎤ (10 − 1.5 − 1.5 ) ⎢ ⎢ ⎥ 50 − 1 ⎥ = 1.5 + 7 ⎡ 2 ( 0.632 ) − 1⎤ VIL = 1.5 + 2 ⎣ ⎦ ⎛ 100 ⎞ − 1⎟ ⎢ 100 + 3 ⎥ ⎜ ⎢ 50 ⎥ ⎝ 50 ⎠ ⎣ ⎦
  • 22. or VIL = 3.348 V From Equation (16.70) 1 ⎧⎛ 100 ⎞ ⎛ 100 ⎞ ⎫ V0 HU = ⋅ ⎨⎜1 + ⎟ ( 3.348 ) + 10 − ⎜ ⎟ (1.5 ) + 1.5⎬ 2 ⎩⎝ 50 ⎠ ⎝ 50 ⎠ ⎭ or V0 HU = 9.272 V From Equation (16.77) ⎡ ⎛ 100 ⎞ ⎤ ⎢ 2⎜ ⎟ ⎥ (10 − 1.5 − 1.5 ) ⎢ ⎝ 50 ⎠ VIH = 1.5 + − 1⎥ = 1.5 + 7 [1.51 − 1] ⎛ 100 ⎞ ⎢ ⎛ 100 ⎞ ⎥ ⎜ − 1⎟ ⎢ 3 ⎜ ⎟ +1 ⎥ ⎝ 50 ⎠ ⎢ ⎝ 50 ⎠ ⎣ ⎥ ⎦ or VIH = 5.07 V From Equation (16.76) ( 5.07 ) ⎛1 + ⎞ − 10 − ⎛ ⎞ (1.5 ) + 1.5 100 100 ⎜ ⎟ ⎜ ⎟ V0 LU = ⎝ 50 ⎠ ⎝ 50 ⎠ ⎛ 100 ⎞ 2⎜ ⎟ ⎝ 50 ⎠ or V0 LU = 0.9275 V Now NM L = VIL − V0 LU = 3.348 − 0.9275 or NM L = 2.42 V NM H = V0 HU − VIH = 9.272 − 5.07 or NM H = 4.20 V 16.47 (a) Kn = KP 3 VIL = VTN + (VDD + VTP − VTN ) 8 3 = 0.4 + ( 3.3 − 0.4 − 0.4 ) ⇒ VIL = 1.3375 V 8 1 VOHu = {2 (1.3375 ) + 3.3 − 0.4 + 0.4} 2 VOHu = 2.9875 V 5 VIH = 0.4 + ( 3.3 − 0.4 − 0.4 ) ⇒ VIH = 1.9625 V 8 1 VOLu = 2 {2 (1.9625) − 3.3 − 0.4 + 0.4} VOLu = 0.3125 V NM H = VOHu − VIH = 2.9875 − 1.9625 ⇒ NM H = 1.025 V NM L = VIL − VOLu = 1.3375 − 0.3125 ⇒ NM L = 1.025 V (b)
  • 23. 2 ( 4) ⎤ ⎢ ( 3.3 − 0.4 − 0.4 ) ⎢ ⎥ 12 2.5 VIL = 0.4 + 2 − 1⎥ = 0.4 + ⎡( −0.147 ) ⎤ ⎛ ( 2 )( 4 ) ⎞ ⎢ 2 ( 4) +3 ⎥ ⎥ ( −0.333) ⎣ ⎦ ⎜ − 1⎟ ⎢ ⎝ 12 ⎠ ⎣ 12 ⎦ VIL = 1.505 V 1 ⎧⎛ ( 2 )( 4 ) ⎞ ⎪ ⎛ 2 ( 4) ⎞ ⎫ ⎪ 1 VOHu = ⎨⎜1 + ⎟ (1.505 ) + 3.3 − ⎜ ⎟ ( 0.4 ) + 0.4 ⎬ = {2.5083 + 3.3 − 0.2667 + 0.4} 2 ⎪⎝ ⎩ 12 ⎠ ⎝ 12 ⎠ ⎪ 2 ⎭ VOHu = 2.9708 V ⎡ ⎛ 2 ( 4) ⎞ ⎤ ⎢ 2⎜ ⎟ ⎥ ( 3.3 − 0.4 − 0.4 ) ⎢ ⎝ 12 ⎠ 2.5 VIH = 0.4 + − 1⎥ = 0.4 + [ −0.2302] ⇒ VIH = 2.1282 V ⎛ 2 ( 4) ⎞ ⎢ ⎥ ( −0.333) − 1⎟ ⎢ 3 ( 2 )( 4 ) + 1 ⎥ ⎜ ⎝ 12 ⎠ ⎢ ⎣ 12 ⎥ ⎦ ⎛ 2 ( 4) ⎞ ⎛ 2 ( 4) ⎞ ( 2.1282 ) ⎜1 + ⎟ − 3.3 − ⎜ ⎟ ( 0.4 ) + 0.4 ⎝ 12 ⎠ ⎝ 12 ⎠ 3.547 − 3.3 − 0.2667 + 0.4 VOLu = = ⇒ VOLu = 0.2853 V ⎛ 2 ( 4) ⎞ 1.333 2⎜ ⎟ ⎝ 12 ⎠ NM H = VOHu − VIH = 2.9708 − 2.1282 ⇒ NM H = 0.8426 V NM L = VIL − VOLu = 1.505 − 0.2853 ⇒ NM L = 1.22 V 16.48 a. v A = vB = 5 V N1 and N 2 on, so vDS1 ≈ vDS 2 ≈ 0 V P and P2 off 1 So we have a P3 − N 3 CMOS inverter. By symmetry, vC = 2.5 V (Transition Point). b. For v A = vB = vC ≡ vI Want K n ,eff = K p ,eff ′ kn ⎛ W ⎞ k ′ ⎛ 3W ⎞ ⋅⎜ ⎟ = P ⋅⎜ ⎟ 2 ⎝ 3L ⎠ n 2 ⎝ L ⎠ P ′ ′ With kn = 2k P , then 2 1 ⎛W ⎞ 1 ⎛W ⎞ ⋅ ⋅⎜ ⎟ = ⋅3⋅⎜ ⎟ 2 3 ⎝ L ⎠n 2 ⎝ L ⎠ P ⎛W ⎞ 9 ⎛W ⎞ Or ⎜ ⎟ = ⋅ ⎜ ⎟ ⎝ L ⎠n 2 ⎝ L ⎠ P c. We have ⎛ k ′ ⎞ ⎛ W ⎞ ⎛ 2k ′ ⎞ ⎛ 9 ⎞ ⎛ W ⎞ Kn = ⎜ n ⎟ ⎜ ⎟ = ⎜ p ⎟⎜ ⎟⎜ ⎟ ⎝ 2 ⎠ ⎝ L ⎠n ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ L ⎠ p ⎛ k′ ⎞⎛ W ⎞ Kp = ⎜ ⎟⎜ ⎟ p ⎝ 2 ⎠⎝ L ⎠p Then from Equation (16.55)
  • 24. Kn 5 + ( −0.8 ) + ⋅ ( 0.8 ) Kp VIt = Kn 1+ Kp Now Kn ⎛9⎞ = ( 2) ⎜ ⎟ = 9 Kp ⎝ 2⎠ Then 5 + ( −0.8 ) + 3 ( 0.8 ) VIt = ⇒ VIt = 1.65 V 1+ 3 16.49 By definition, NMOS is on if gate voltage is 5 V and is off if gate voltage is 0 V. State N1 N2 N3 N4 N5 v0 1 off on off on on 0 2 off off on on off 0 3 on on off off on 5 4 on on off on on 0 Logic function ( v X OR vY ) ⊗ ( v X AND vZ ) Exclusive OR of ( vX OR vY ) with ( vX AND vZ ) 16.50 ⎛W ⎞ NMOS in Parallel ⇒ ⎜ ⎟ = 2 ⎝ L ⎠n ⎛W ⎞ 4-PMOS in series ⇒ ⎜ ⎟ = 4 ( 4 ) = 16 ⎝ L ⎠p (b) CL doubles ⇒ current must double to maintain switching speed. ⎛W ⎞ ⇒⎜ ⎟ =4 ⎝ L ⎠n ⎛W ⎞ ⎜ ⎟ = 32 ⎝ L ⎠p 16.51 ⎛W ⎞ 4-NMOS in series ⎜ ⎟ = 4 ( 2 ) = 8 ⎝ L ⎠n ⎛W ⎞ 4-PMOS in parallel ⎜ ⎟ = 4 ⎝ L ⎠p ⎛W ⎞ (b) ⎜ ⎟ = 16 ⎝L ⎠n ⎛W ⎞ ⎜ ⎟ =8 ⎝L ⎠p 16.52
  • 25. ⎛W ⎞ (a) NMOS in parallel ⇒ ⎜ ⎟ = 2 ⎝ L ⎠n ⎛W ⎞ 3-PMOS in series ⇒ ⎜ ⎟ = 3 ( 4 ) = 12 ⎝ L ⎠P ⎛W ⎞ (b) ⎜ ⎟ =4 ⎝L ⎠n ⎛W ⎞ ⎜ ⎟ = 24 ⎝L ⎠p 16.53 ⎛W ⎞ (a) 3-NMOS in series ⎜ ⎟ = 3 ( 2 ) = 6 ⎝ L ⎠n ⎛W ⎞ 3-PMOS in parallel ⎜ ⎟ = 4 ⎝ L ⎠p ⎛W ⎞ (b) ⎜ ⎟ = 12 ⎝L ⎠n ⎛W ⎞ ⎜ ⎟ =8 ⎝L ⎠p 16.54 (a) Y = A( B + C )( D + E ) (b) ⎛W ⎞ (c) For NMOS in pull down mode, 3 in series ⇒ ⎜ ⎟ = 3 ( 2 ) = 6 ⎝ L ⎠n For PMOS ⎛W ⎞ ⎜ ⎟ =4 ⎝ L ⎠P, A ⎛W ⎞ ⎜ ⎟ = 2 ( 4) = 8 ⎝ L ⎠ P , B ,C , D , E
  • 26. 16.55 (a) Y = A( BD + CE ) (b) (c) NMOS: 3 transistors in series for pull down mode. ⎛W ⎞ For twice the speed: ⎜ ⎟ = 2 ( 3)( 2 ) = 12 ⎝ L ⎠n ⎛W ⎞ PMOS: ⎜ ⎟ = 2 ( 4 ) = 8 ⎝ L ⎠P, A ⎛W ⎞ ⎜ ⎟ = 2 ( 2 )( 4 ) = 16 ⎝ L ⎠ P , B ,C , D , E 16.56 (a) Y = A + BC + DE (b) ⎛W ⎞ ⎛W ⎞ (c) NMOS: ⎜ ⎟ = 2 ⎜ ⎟ =4 ⎝ L ⎠n, A ⎝ L ⎠ n , B ,C , D , E PMOS: 3 transistors in series for the pull-up mode
  • 27. ⎛W ⎞ ⎜ ⎟ = 3 ( 4 ) = 12 ⎝ L ⎠p 16.57 (a) Y = A + ( B + D)(C + E ) (b) ⎛W ⎞ ⎛W ⎞ (c) NMOS: ⎜ ⎟ = 2 ( 2 ) = 4 ⎜ ⎟ = ( 2 )( 4 ) = 8 ⎝ L ⎠n, A ⎝ L ⎠ n , B ,C , D , E PMOS: ⎛W ⎞ ⎜ ⎟ = ( 2 ) 3 ( 4 ) = 24 ⎝ L ⎠p 16.58 (a) A classic design is shown:
  • 28. A, B, C signals supplied through inverters. ⎛W ⎞ ⎛W ⎞ (b) For Inverters, ⎜ ⎟ = 1 and ⎜ ⎟ = 2 ⎝ L ⎠n ⎝ L ⎠p ⎛W ⎞ ⎛W ⎞ For PMOS in Logic function, let ⎜ ⎟ = 1 , then for NMOS in Logic function, ⎜ ⎟ = 2.25 ⎝ L ⎠p ⎝ L ⎠n 16.59 (a) A classic design is shown:
  • 29. ⎛W ⎞ ⎛W ⎞ (b) ⎜ ⎟ = 1, ⎜ ⎟ =2 ⎝ L ⎠ ND ⎝ L ⎠ NA, NB , NC ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ = 8, ⎜ ⎟ =4 ⎝ L ⎠ PA, PB ⎝ L ⎠ PC , PD 16.60 ( A OR B ) AND C 16.61 ⎛W ⎞ 5-NMOS in series ⇒ ⎜ ⎟ = 5 ( 2 ) = 10 ⎝ L ⎠n ⎛W ⎞ 5-PMOS in parallel ⇒ ⎜ ⎟ = 4 ⎝ L ⎠p 16.62 By definition: NMOS off if gate voltage = 0 NMOS on if gate voltage = 5 V PMOS off if gate voltage = 5 V PMOS on if gate voltage = 0 State N1 P1 NA NB NC v01 N2 P2 v02 1 off on off off off 5 on off 0 2 on off on off off 5 on off 0
  • 30. 3 off on off off off 5 on off 0 4 on off off off on 5 on off 0 5 off on off off off 5 on off 0 6 on off off on on 0 off on 5 Logic function is v02 = ( v A OR vB ) AND vC 16.63 State v01 v02 v03 1 5 5 0 2 0 0 5 3 5 5 0 4 5 0 5 5 5 5 0 6 0 5 0 Logic function: v03 = ( vX OR vZ ) AND vY 16.64
  • 31. 16.65
  • 32. 16.66
  • 33. 16.67 dVC 2 I = −C dt So 1 ΔVC = − ( 2I ) ⋅ t C For ΔVC = −0.5 V
  • 34. 2 ( 2 x 10−12 ) ⋅ t −0.5 = − ⇒ t = 3.125 ms 25 x 10−15 16.68 (a) (i) vO = 0 (ii) vO = 4.2 V (iii) vO = 2.5 V (b) (i) vO = 0 (ii) vO = 3.2 V (iii) vO = 2.5 V 16.69 (a) (i) vo = 0 (ii) vo = 2.9 V (iii) vo = 2.4 V (b) (i) vo = 0 (ii) vo = 2.0 V (iii) vo = 2.0 V 16.70 Neglect the body effect. a. v01 (logic 1) = 4.2 V , v02 (logic 1) = 5 V b. vI = 5 V ⇒ vGS 1 = 4.2 V M 1 in nonsaturation and M 2 in saturation. From Equation (16.23) ⎛W ⎞ ⎛W ⎞ ⎟ ⎡ 2 ( vGS 1 − VTND ) vO1 − vO1 ⎤ = ⎜ ⎟ (VDD − vO1 − VTNL ) 2 2 ⎜ ⎣ ⎦ ⎝L ⎠D ⎝ L ⎠L ⎛W ⎞ ⎡ ⎟ ⎣ 2 ( 4.2 − 0.8 )( 0.1) − ( 0.1) ⎤ = (1) [5 − 0.1 − 0.8] 2 2 ⎜ ⎦ ⎝L ⎠D Or ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ ( 0.67 ) = 16.81 ⇒ ⎜ ⎟ = 25.1 ⎝L ⎠D ⎝ L ⎠D Now v01 = 4.2 V ⇒ vGS 3 = 4.2 V M 3 in nonsaturation and M 4 in saturation. From Equation (16.29(b)). ⎛W ⎞ ⎛W ⎞ ⎟ ⎡ 2 ( vGS 3 − VTND ) vO 2 − vO 2 ⎤ = ⎜ ⎟ [ −VTNL ] 2 2 ⎜ ⎣ ⎦ ⎝L ⎠D ⎝ L ⎠L ⎛W ⎞ ⎟ ⎡ 2 ( 4.2 − 0.8 )( 0.1) − ( 0.1) ⎤ = ( 2 ) ⎡ − ( −1.5 ) ⎤ 2 2 ⎜ ⎣ ⎦ ⎣ ⎦ ⎝L ⎠D ⎛W ⎞ ⎜ ⎟ (0.67) = 2.25 ⎝ L ⎠D
  • 35. ⎛W ⎞ Or ⎜ ⎟ = 3.36 ⎝ L ⎠D 16.71 A B Y 0 0 1 0 1 0 1 0 0 1 1 0.1 ⇒ indeterminate Without the top transistor, the circuit performs the exclusive-NOR function. 16.72 A A B B Y Z 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 Y = A + AB = A + B Z = Y or Z = AB 16.73 16.74 For φ = 1, φ = 0, then Y = B. And for φ = 0, φ = 1, then Y = A . A multiplexer. 16.75 Y = AC + BC 16.76 Y = AB + AB = A ⊗ B 16.77
  • 36. A B Y 0 0 0 1 0 1 0 1 1 1 1 0 Exclusive-OR function. 16.78 This circuit is referred to as a two-phase ratioed circuit. The same width-to-length ratios between the driver and load transistors must be maintained as discussed previously with the enhancement load inverter. When φ1 is high, v01 becomes the complement of vI . When φ2 goes high, then v0 becomes the complement of v01 or is the same as vI . The circuit is a shift register. 16.79 Let Q = 0 and Q = 1 ; as S increases, Q decreases. When Q reaches the transition point of the M 5 − M 6 inverter, the flip-flop with change state. From Equation (16.28(b)), KL VIt = ⋅ ( −VTNL ) + VTND KD where K L = K 6 and K D = K 5 . Then 30 VIt = ⋅ ⎡ − ( −2 ) ⎤ + 1 ⇒ VIt = Q = 2.095 V 100 ⎣ ⎦ This is the region where both M 1 and M 3 are biased in the saturation region. Then K3 30 S= ⋅ ( −VTNL ) + VTND = ⋅ ⎡ − ( −2 ) ⎤ + 1 K1 200 ⎣ ⎦ or S = 1.77 V This analysis neglects the effect of M 2 starting to turn on at the same time. 16.80 Let vY = R, v X = S , v02 = Q, and v01 = Q. Assume VThN = 0.5 V and VThP = −0.5 V. For S = 0, we have the following:
  • 37. If we want the switching to occur for R = 2.5 V, then because of the nonsymmetry between the two circuits, we cannot have Q and Q both equal to 2.5 V. Set R = Q = 2.5 V and assume Q goes low. For the M 1 − M 5 inverter, M 1 in nonsaturation and M 5 in saturation. Then K n ⎡ 2 ( 2.5 − 0.5 ) Q − Q ⎤ = K p [ 2.5 − 0.5] 2 2 ⎢ ⎣ ⎥ ⎦ Or 2 ⎛ Kp ⎞ 4Q − Q = 4 ⎜ ⎟ ⎝ Kn ⎠ For the other circuit, M 2 − M 4 in saturation and M 6 in nonsaturation. Then 2 ⎣ ( ) K n ( 2.5 − 0.5 ) + K n (Q − 0.5) 2 = K p ⎡ 2 5 − Q − 0.5 ( 2.5 ) − ( 2.52 ) ⎤ ⎦ Combining these equations and neglecting the Q 3 term, we find Kp Q = 1.4 V and = 0.9 kn 16.81 3.3 + ( −0.4 ) + 0.5 vIt = = 1.7 V 1+1 vI = 1.5 V NMOS Sat; PMOS Non Sat = ⎡ 2 ( 3.3 − vI − 0.4 )( 3.3 − vo1 ) − ( 3.3 − vo1 ) ⎤ ⇒ vo1 = 2.88 V ( vI − 0.5) 2 2 ⎣ ⎦ vI = 1.6 V vo1 = 2.693 V vI = 1.7 V vo1 = variable (switching region) vI = 1.8 V NMOS Non Sat; PMOS Sat ( 3.3 − VI − 0.4 ) = ⎡ 2 ( vI − 0.5 ) vo1 − vo1 ⎤ ⇒ vo1 = 0.607 V 2 2 ⎣ ⎦ Now vI = 1.5 V, vo1 = 2.88 V ⇒ vo ≈ 0V vI = 1.6 V, vo1 = 2.693 V NMOS Non Sat; PMOS Sat ( 3.3 − vo1 − 0.4 ) = ⎡ 2 ( vo1 − 0.5 ) vo − vo2 ⎤ 2 ⎣ ⎦ vo = 0.00979 V vI = 1.7 V, v o1 = Switching Mode ⇒ v0 = Switching Mode. vI = 1.8 V, vo1 = 0.607 V NMOS Sat; PMOS Non Sat ( v01 − 0.5) = ⎡ 2 ( 3.3 − v01 − 0.4 )( 3.3 − v0 ) − ( 3.3 − v0 ) ⎤ ⇒ v0 = 3.298 V 2 2 ⎣ ⎦ 16.82 For R = φ = VDD and S = 0 ⇒ Q = 0, Q = 1 For S = φ = VDD and R = 0 ⇒ Q = 1, Q = 1 The signal φ is a clock signal. For φ = 0, The output signals will remain in their previous state. 16.83 a. Positive edge triggered flip-flop when CLK = 1, output of first inverter is D and then Q = D = D .
  • 38. b. For example, put a CMOS transmission gate between the output and the gate of M 1 driven by a CLK pulse. 16.84 For J = 1, K = 0, and CLK = 1; this makes Q = 1 and Q = 0 . For J = 0, K = 1, and CLK = 1 , and if Q = 1, then the circuit is driven so that Q = 0 and Q = 1. If initially, Q = 0, then the circuit is driven so that there is no change and Q = 0 and Q = 1. J = 1, K = 1, and CLK = 1, and if Q = 1, then the circuit is driven so that Q = 0. If initially, Q = 0 , then the circuit is driven so that Q = 1. So if J = K = 1, the output changes state. 16.85 For J = v X = 1, K = vY = 0, and CLK = vZ = 1, then v0 = 0. For J = v X = 0, K = vY = 1, and CLK = vZ = 1, then v0 = 1. Now consider J = K = CLK = 1. With v X = vZ = 1, the output is always v0 = 0, So the output does not change state when J = K = CLK = 1. This is not actually a J − K flip-flop. 16.86 64 K ⇒ 65,536 transistors arranged in a 256 × 256 array. (a) Each column and row decoder required 8 inputs. (b) (i) Address = 01011110 so input = a7 a6 a5 a4 a3 a2 a1a0 (ii) Address = 11101111 so input = a7 a6 a5 a4 a3 a2 a1a0 (c) (i) Address = 00100111 so input = a7 a6 a5 a4 a3 a2 a1a0 (ii) Address = 01111011 so input = a7 a6 a5 a4 a3 a2 a1a0 16.87 (a) 1-Megabit memory ⇒ = 1, 048,576 ⇒ 1024 × 1024 Nuclear & input row and column decodes lines necessary = 10 (b) 250K × 4 bits ⇒ 262,144 × 4 bits ⇒ 512 × 512 For 512 lines ⇒ 9 row and column decoder lines necessary. 16.88 Put 128 words in a 8 × 16 array, which means 8 row (or column) address lines and 16 column (or row) address lines. 16.89 Assume the address line is initially uncharged, then dV 1 I I = C C or VC = ∫ Idt = ⋅ t dt C C VC ⋅ C ( 2.7 ) ( 5.8 × 10 ) −12 Then t = = ⇒ I 250 × 10−6 t = 6.26 × 10 −8 s ⇒ 62.6 ns 16.90
  • 39. 5 − 0.1 ⎛ 35 ⎞⎛ W ⎞⎡ ⎟ ⎣ 2 ( 5 − 0.7 )( 0.1) − ( 0.1) ⎤ 2 (a) = ⎜ ⎟⎜ 1 ⎝ 2 ⎠⎝ L ⎠ ⎦ ⎛W ⎞ or ⎜ ⎟ = 0.329 ⎝L ⎠ (b) 16 K ⇒ 16,384 cells 2 iD ≅ = 2 μA 1 Power per cell = (2 μ A)(2 V ) = 4 μW Total Power = PT = (4 μW )(16,384) ⇒ PT = 65.5 mW Standby current = (2 μ A)(16,384) ⇒ IT = 32.8 mA 16.91 16 K ⇒ 16,384 cells 200 PT = 200 mW ⇒ Power per cell = ⇒ 12.2 μW 16,384 P 12.2 V 2.5 iD = = = 4.88 μ A ≅ DD = ⇒ R = 0.512 M Ω VDD 2.5 R R If we want vO = 0.1 V for a logic 0, then ⎛ k′ ⎞⎛ W ⎞ iD = ⎜ n ⎟ ⎜ ⎟ ⎡ 2 (VDD − VTN ) vO − vO ⎤ 2 ⎝ 2 ⎠⎝ L ⎠ ⎣ ⎦ ⎛ 35 ⎞ ⎛ W ⎞ 4.88 = ⎜ ⎟ ⎜ ⎟ ⎡ 2 ( 2.5 − 0.7 )( 0.1) − ( 0.1) ⎤ 2 ⎝ 2 ⎠⎝ L ⎠ ⎣ ⎦ ⎛W ⎞ So ⎜ ⎟ = 0.797 ⎝L⎠ 16.92 Q = 0, Q = 1 So D = Logic 1 = 5 V A very short time after the row has been addressed, D remains charged at VDD = 5 V . Then M p 3, M A, and M N 1 begin to conduct and D decreases. In steady-state, all three transistors are biased in the nonsaturation region. Then K p 3 ⎡ 2 (VSG 3 + VTP 3 ) VSD 3 − VSD 3 ⎤ = K nA ⎡ 2 (VGSA − VTNA ) VDSA − VDSA ⎤ = K n1 ⎡ 2 (VGS 1 − VTN 1 ) VDS 1 − VDS 1 ⎤ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ Or K p 3 ⎡ 2 (VDD + VTP 3 )(VDD − D ) − (VDD − D ) ⎤ = K nA ⎡ 2 (VDD − Q − VTNA )( D − Q ) − ( D − Q ) ⎤ 2 2 ⎣ ⎦ ⎣ ⎦ = K n1 ⎡ 2 (VDD − VTN 1 ) Q − Q 2 ⎤ (1) ⎣ ⎦ Equating the first and third terms: ⎛ 20 ⎞ ⎡ ⎤ ⎛ 40 ⎞ ⎜ ⎟ (1) ⎣ 2 ( 5 − 0.8 )( 5 − D ) − ( 5 − D ) ⎦ = ⎜ ⎟ ( 2 ) ⎣ 2 ( 5 − 0.8 ) Q − Q ⎦ (2) 2 ⎡ 2 ⎤ ⎝ 2 ⎠ ⎝ 2 ⎠ As a first approximation, neglect the ( 5 − D ) and Q 2 terms. We find 2 Q = 1.25 − 0.25 D (3) Then, equating the first and second terms of Equation (1): ⎛ 20 ⎞ ⎡ ⎛ 40 ⎞ ⎜ ⎟ (1) ⎣ 2 ( 5 − 0.8 )( 5 − D ) − ( 5 − D ) ⎤ = ⎜ ⎟ (1) ⎡ 2 ( 5 − Q − 0.8 )( D − Q ) − ( D − Q ) ⎤ 2 2 ⎝ 2 ⎠ ⎦ ⎝ 2 ⎠ ⎣ ⎦
  • 40. Substituting Equation (3), we find as a first approximation: D = 2.14 V Substituting this value of D into equation (2), we find 8.4 ( 5 − 2.14 ) − ( 5 − 2.14 ) = 4 ⎡8.4Q − Q 2 ⎤ 2 ⎣ ⎦ We find Q = 0.50 V Using this value of Q, we can find a second approximation for D by equating the second and third terms of equation (1). We have 20 ⎡ 2 ( 4.2 − Q )( D − Q ) − ( D − Q ) ⎤ = 40 ⎡ 2 ( 4.2Q ) − Q 2 ⎤ 2 ⎣ ⎦ ⎣ ⎦ Using Q = 0.50 V , we find D = 1.79 V 16.93 Initially M N 1 and M A turn on. M N 1, Nonsat; M A , sat. K nA [VDD − Q − VTN ] = K n1 ⎡ 2 (VDD − VTN 1 ) Q − Q 2 ⎤ 2 ⎣ ⎦ ⎛ 40 ⎞ ⎛ 40 ⎞ ⎜ ⎟ (1) [5 − Q − 0.8] = ⎜ ⎟ ( 2 ) ⎣ 2 ( 5 − 0.8 ) Q − Q ⎦ 2 ⎡ 2 ⎤ ⎝ 2 ⎠ ⎝ 2 ⎠ which yields Q = 0.771 V Initially M P 2 and M B turn on Both biased in nonsaturation reagion ( ) ( ) K P 2 ⎡ 2 (VDD + VTP 3 ) VDD − Q − VDD − Q ⎤ = K nB ⎡ 2 (VDD − VTNB ) Q − Q ⎤ 2 2 ⎢ ⎣ ⎥ ⎦ ⎢ ⎣ ⎥ ⎦ ⎛ 20 ⎞ ⎤ ⎛ 40 ⎞ ⎡ ⎡ ( ) ( ) ⎤ 2 2 ⎜ ⎟ ( 4 ) ⎢ 2 ( 5 − 0.8 ) 5 − Q − 5 − Q ⎥ = ⎜ ⎟ (1) ⎢ 2 ( 5 − 0.8 ) Q − Q ⎥ ⎣ ⎦ ⎝ 2 ⎠ ⎣ ⎦ ⎝ 2 ⎠ which yields Q = 3.78 V Note: (W / L) ratios do not satisfy Equation (16.86) 16.94 For Logic 1, v1: ( 5 )( 0.05 ) + ( 4 )(1) = (1 + 0.05 ) v1 ⇒ v1 = 4.0476 V v2 : (5)(0.025) + (4)(1) = (1 + 1.025)v2 ⇒ v2 = 4.0244 V For Logic 0, v1: (0)(0.05) + (4)(1) = (1 + 0.05)v1 ⇒ v1 = 3.8095 V v2 : (0)(0.025) + (4)(1) = (1 + 0.025)v2 ⇒ v2 = 3.9024 V 16.95 Not given 16.96 Not given 16.97 Not given
  • 41. 16.98 1 (a) Quantization error = LSB ≤ 1% ≤ 0.05 V 2 Or LSB ≤ 0.10 V 5 For a 6-bit word , LSB = = 0.078125 V 64 5 (b) 1 − LSB = = 0.078125 V 64 3.5424 (c) × 64 = 45.34 ⇒ n = 45 5 Digital Output = 101101 45 × 5 = 3.515625 64 . 1 Δ = 3.5424 − 3.515625 = 0.026775 < LSB. 2 16.99 1 (a) Quantization error = LSB ≤ 0.5% ≤ 0.05 V 2 1 − LSB = 0.10 V 10 For a 7-beit word, LSB = = 0.078125 V 128 (b) 1 − LSB = 0.078125 V 3.5424 (c) ×128 = 45.34272 ⇒ n = 45 10 Digital output = 0101101 45 × 10 Now = 3.515625 128 1 Δ = 3.5424 − 3.515625 = 0.026775 V < LSB 2 16.100 ⎛0 1 0 1 ⎞ (a) vo = ⎜ + + + ⎟ ( 5 ) ⎝ 2 4 8 16 ⎠ vo = 1.5625 V ⎛1 0 1 0 ⎞ (b) vo = ⎜ + + + ⎟ ( 5 ) ⎝ 2 4 8 16 ⎠ vo = 3.125 V 16.101 ⎛1⎞ (a) LSB = ⎜ ⎟ ( 5 ) = 0.3125 V ⎝ 16 ⎠ 1 LSB = 0.15625 V 2 ⎛ 10 ⎞ Now vo = ⎜ ⎟ (5) ⎝ 20 + ΔR1 ⎠
  • 42. For vo = 2.5 + 0.15625 = 2.65625 V (10 )( 5) 20 + ΔR1 = ⇒ ΔR1 = −1.176 K 2.65625 For vo = 2.5 − 0.15625 = 2.34375 V (10 )( 5 ) 20 + ΔR1 = 2.34375 V ΔR1 = +1.333 K For ΔR1 = 1.176 K ⇒ ΔR1 = 5.88% ⎛ 10 ⎞ (b) For R4 : vo = ⎜ ⎟ ( 5) ⎝ 160 + ΔR4 ⎠ vo = 0.3125 + 0.15625 = 0.46875 V (10 )( 5 ) 160 + ΔR4 = ⇒ ΔR4 = −53.33K 0.46875 Or vo = 0.3125 − 0.15625 = 0.15625 V (10 )( 5 ) 160 + ΔR4 = ⇒ ΔR4 = 160 K 0.15625 For ΔR4 = 53.33K ⇒ ΔR4 = 33.33% 16.102 (a) R5 = 320 kΩ R6 = 640 kΩ R7 = 1280 kΩ R8 = 2560 kΩ ⎛ 10 ⎞ (b) vo = ⎜ ⎟ ( 5 ) = 0.01953125 V ⎝ 2560 ⎠ 16.103 (a) V −5 I1 = REF = ⇒ I1 = −0.50 mA 2 R 10 I I 2 = 1 = −0.25 mA 2 I2 I 3 = = −0.125 mA 2 I3 I 4 = = −0.0625 mA 2 I4 I 5 = = −0.03125 mA 2 I I 6 = 5 = −0.015625 mA 2 (b) Δvo = I 6 RF = ( 0.015625 )( 5 ) Δvo = 0.078125 V (c) vo = − [ I 2 + I 5 + I 6 ] RF = [ 0.25 + 0.03125 + 0.015625] ( 5 ) vo = 1.484375 V
  • 43. (d) For 101010; vo = ( 0.50 + 0.125 + 0.03125 )( 5 ) = 3.28125 V For 010101; vo = ( 0.25 + 0.0625 + 0.015625 )( 5 ) = 1.640625 V Δvo = 1.640625 V 16.104 1 ⎛V ⎞⎛ R ⎞ V 5 LSB = ⎜ REF ⎟ ⎜ ⎟ = REF = = 0.3125 V 2 ⎝ 8 R ⎠ ⎝ 2 ⎠ 16 16 Ideal ⎛ 3V ⎞ 3 v A for 011 ⇒ ⎜ REF ⎟ ( R ) = VREF = 1.875 V ⎝ 8R ⎠ 8 1 Range of v A = 1.875 ± LSB 2 or 1.5625 ≤ vA ≤ 2.1875 V 16.105 6-bits ⇒ 26 = 64 resistors 26 − 1 = 63 comparators 16.106 (a) 10- bit output ⇒ 1024 clock periods 1 1 1 clock period = = 6 = 1 μS f 10 May conversion time = 1024 μS = 1.024 mS (b) 1 1⎛ 5 ⎞ LSB = ⎜ ⎟ = 0.002441406 V 2 2 ⎝ 1024 ⎠ ⎛ 5 ⎞ v′ = (128 + 16 + 2 ) ⎜ A ⎟ = 0.712890625 V ⎝ 1024 ⎠ 1 So range of v A = v′ ± LSB A 2 0.710449219 ≤ v A ≤ 0.715332031 V (c) 0100100100 ⇒ 256 + 32 + 4 = 292 clock pulses 16.107 N ×5 (a) 3.125 = ⇒ N = 640 ⇒ 512 + 128 1024 Output = 1010000000 (b) N ×5 1.8613 = ⇒ N = 381.19 ⇒ N = 381 ⇒ 256 + 64 + 32 + 16 + 8 + 4 + 1 1024 Output = 0101111101