SlideShare a Scribd company logo
Chapter 16
Exercise Solutions

EX16.1
         ( 3.9 ) (8.85 ×10−14 )
COX =                              = 1.726 ×10−7 F / cm 2
              200 × 10−8
        2 (1.6 × 10−19 ) (11.7 ) ( 8.85 ×10 −14 )(1015 )              1
γ =                                                        = 0.1055 V 2
                          1.726 × 10−7
ΔVTN = r ⎡ 0.576 + VSB − 0.576 ⎤ = ( 0.1055 ) ⎡ 0.576 + 5 + 0.576 ⎤
         ⎣                     ⎦              ⎣                   ⎦
ΔVTN = 0.169 V

EX16.2
(a)
 vo = VDD − I D RD
         ⎛ k′ ⎞⎛ W       ⎞
vo = 3 − ⎜ n ⎟ ⎜         ⎟ ⎣ 2 ( 3 − 0.5 ) vo − vo ⎦ RD
                           ⎡                       ⎤
                                                 2

         ⎝ 2 ⎠⎝ L        ⎠
vo = 0.1
          ⎛ 0.06 ⎞ ⎡
                 ⎟ ( 5 ) ⎣( 5 )( 0.1) − ( 0.1) ⎤ RD
                                              2
0.1 = 3 − ⎜
          ⎝ 2 ⎠                                 ⎦
0.1 = 3 − 0.0735RD
 RD = 39.5 K
(b)
⎛ 0.06 ⎞
       ⎟ ( 5 )( 39.5 )(VIt − 0.5 ) + (VIt − 0.5 ) − 3 = 0
                                  2
⎜
⎝   2 ⎠
5.925 (VIt − 0.5 ) + (VIt − 0.5 ) − 3 = 0
                     2



                         −1 ± 1 + 4 ( 5.925 )( 3)
(VIt − 0.5 ) = VOt   =
                                  2 ( 5.925 )
VOt = 0.632 V
VIt = 1.132 V

EX16.3
(a)
(i)
 vo = VDD − VTNL = 3 − 0.4
 vo = 2.6 V
(ii)
⎛W ⎞                             ⎛W ⎞
⎜ ⎟ ⎡ 2 ( vI − 0.4 ) vo − vo ⎤ = ⎜ ⎟ [VDD − vo − 0.4]
                           2                         2
        ⎣                    ⎦
⎝ L ⎠D                           ⎝ L ⎠L
16 ⎡ 2 ( 2.6 − 0.4 ) vo − vo ⎤ = 2 [3 − vo − 0.4]
                           2                          2
   ⎣                         ⎦
35.2vo − 8vo = 6.76 − 5.2vo + vo
           2                   2


9vo − 40.4vo + 6.76 = 0
  2


       40.4 ± 1632.16 − 4 ( 9 )( 6.76 )
vo =
                         2 (9)
vo = 0.174 V
(b)
     ⎛ 60 ⎞
iD = ⎜ ⎟ (2) [3 − 0.174 − 0.4]
                              2

     ⎝ 2 ⎠
iD = 353.1 μ A
P = iD ⋅ VDD = 1.06 mW

EX16.4
(a)
⎛W ⎞                             ⎛W ⎞
⎜ ⎟ ⎡ 2 ( vI − 0.4 ) vo − vo ⎤ = ⎜ ⎟ ( − ( −0.8 ) )
                           2                        2

⎝ L ⎠D ⎣                     ⎦
                                 ⎝ L ⎠L
6 ⎡ 2 ( 3 − 0.4 ) vo − vo ⎤ = 2 ( 0.64 )
  ⎣
                        2
                          ⎦
6vo − 31.2vo + 1.28 = 0
  2


       31.2 ± 973.44 − 4 ( 6 )(1.28 )
vo =
                        2(6)
 vo = 41.4 mV
(b)
⎛W ⎞                ⎛W ⎞
⎜ ⎟ ( vIt − 0.4 ) = ⎜ ⎟ ( −(−0.8) )
                 2                  2

⎝  L ⎠D             ⎝ L ⎠L
6 ( vIt − 0.4 ) = 2 ( 0.64 )
                2


⇒ vIt = 0.862 V               ⎫
                              ⎬ Driver
 vOt = 0.862 − 0.4 = 0.462 V ⎭
 vIt = 0.862 V                      ⎫
                                    ⎬ Load
 vOt = VDD + VTNL = 3 − 0.8 = 2.2 V ⎭
(c)
      ⎛ 60 ⎞
iD = ⎜ ⎟ (2) ( − ( −0.8 ) ) = 38.4 μ A
                           2

      ⎝ 2 ⎠
 P = iD ⋅ VDD = 115.2 μ W

EX16.5
We have
                    {
VOH = VDD − VTNLO + r ⎡ 2φ fP + VSB − 2φ fP ⎤
                      ⎣                     ⎦     }
            {
VOH = 5 − 0.8 + 0.35 ⎡ 0.73 + VOH −
                     ⎣                     0.73 ⎤}
                                                ⎦
VOH − 4.499 = −0.35 0.73 + VOH
Squaring both sides
VOH − 8.998VOH + 20.241 = 0.1225(0.73 + VOH )
  2


VOH − 9.1205VOH + 20.15 = 0
  2


         9.1205 ± 83.1835 − 4(20.15)
VOH =
                     2
VOH    = 3.76 V

EX16.6
a.
i.     A = logic 1 = 10 V, B = logic 0 “A” driver in nonsaturation. “B” driver off
′
⎛ kn ⎞ ⎛ W ⎞            ⎛ k′ ⎞⎛ W ⎞
⎜ 2 ⎟ ⎜ L ⎟ ( −VTNL ) = ⎜ 2 ⎟ ⎜ L ⎟ ⎡ 2 ( vI − vTND ) VOL − VOL ⎤
                     2                                        2
                                    ⎣                           ⎦
⎝ ⎠ ⎝ ⎠L                ⎝ ⎠ ⎝ ⎠D
2 ( 3) = (10 ) ⎡ 2 (10 − 1.5 ) V0 L − V02L ⎤
      2
               ⎣                           ⎦
9 = 5 (17V0 L − V02L )
5V02L − 85V0 L + 9 = 0

                  (85 )       − 4 ( 5 )( 9 )
                          2
          85 ±
V0 L =                          ⇒ V0 L = 0.107 V
                 2(5)
ii.        A = B = logic 1
    ′
 ⎛ kn ⎞ ⎛ W ⎞              ⎛ k′ ⎞⎛ W ⎞
 ⎜ 2 ⎟ ⎜ L ⎟ ( −VTNL ) = 2 ⎜ 2 ⎟ ⎜ L ⎟ ⎣ 2 ( vI − vTND )VOL − VOL ⎤
                                        ⎡
                      2                                         2
                                                                  ⎦
 ⎝ ⎠ ⎝ ⎠L                  ⎝ ⎠ ⎝ ⎠D
2 ( 3) = ( 2 )(10 ) ⎡ 2 (10 − 1.5 ) V0 L − V02L ⎤
      2
                    ⎣                           ⎦
9 = 10 (17V0 L − V02L )
10V02L − 170V0 L + 9 = 0

                   (170 ) − 4 (10 )( 9 )
                               2
          170 ±
V0 L =                                   ⇒ V0 L = 0.0531 V
                     2 (10 )
b.     Both cases.
    35
iD = ⋅ ( 2 )( 3) = 315 μ A ⇒ P = iD ⋅ VDD ⇒ P = 3.15 mW
                2

     2

EX16.7
                  800
P = iD ⋅ VDD ⇒ iD =   = 160 μ A
                    5
          35 ⎛ W ⎞              ⎛W ⎞   ⎛W ⎞
iD = 160 = ⋅ ⎜ ⎟ (1.4 ) = 34.3 ⎜ ⎟ ⇒ ⎜ ⎟ = 4.66
                        2

           2 ⎝ L ⎠L             ⎝ L ⎠L ⎝ L ⎠L
                 35 ⎛ W ⎞ ⎡                                    ⎛W ⎞
                    ⋅ ⎜ ⎟ 2 ( 5 − 0.8 )( 0.12 ) − ( 0.12 ) ⎤ ⇒ ⎜ ⎟ = 9.20
                                                          2
iD = 160 =
                  2 ⎝ L ⎠D ⎣                                ⎦ ⎝ L ⎠D


EX16.8
                   VDD 2.1
(a)         VIt =        =     = 1.05 V
                     2       2
            VOPt   = VIt − VTD = 1.05 − (−0.4) = 1.45 V
            VONt   = VIt − VTN = 1.05 − 0.4 = 0.65 V
                    2.1 + (−0.4) + 0.5(0.4)
(b)         VIt =                                   = 1.16 V
                            1 + 0.5
            VOPt   = 1.16 + 0.4 = 1.56 V
            VONt = 1.16 − 0.4 = 0.76 V
                    2.1 + (−0.4) + 2(0.4)
(c)         VIt =                         = 0.938 V
                           1+ 2
            VOPt   = 0.938 + 0.4 = 1.338 V
            VONt   = 0.538 V

EX16.9
P = f ⋅ CL ⋅ VDD
              2



( 0.10 ×10 ) = f ( 0.5 ×10 ) ( 3)
            −6                −12    2



 f = 2.22 × 104 Hz ⇒ f = 22.2 kHz

EX16.10
a.
                                     10 − 2 + 2.5(2)
K n / K p = 200 / 80 = 2.5 ⇒ VIt =                     ⇒ VIt = 4.32 V
                                         1 + 2.5
                                                        V0 Pt = 6.32 V
                                                        V0 Nt = 2.32 V
b.
            10 − 2 − 2 ⎡   2.5    ⎤
VIL = 2 +             ⋅ ⎢2     − 1⎥ ⇒ VIL = 3.39 V
             2.5 − 1 ⎣ 2.5 + 3 ⎦
          1
V0 HU =     {(1 + 2.5)(3.39) + 10 − (2.5)(2) + 2}
          2
V0 HU   = 9.43 V
            10 − 2 − 2 ⎡ 2(2.5)     ⎤
VIH = 2 +             ⋅⎢         − 1⎥ ⇒ VIH = 4.86 V
             2.5 − 1 ⎢ 3(2.5) + 1 ⎥
                       ⎣            ⎦
          (4.86)(1 + 2.5) − 10 − (2.5)(2) + 2
V0 LU =
                        2(2.5)
V0 LU   = 0.802 V
c.
 NM L = VIL − V0 LU = 3.39 − 0.802 ⇒ NM L = 2.59 V
NM H = V0 HU − VIH = 9.43 − 4.86 ⇒ NM H = 4.57 V

EX16.11
3 PMOS in series and 3 NMOS in parallel.
Worst Case: Only one NMOS is ON in Pull-down mode ⇒ same as the CMOS inverter ⇒ Wn = W .
All 3 PMOS are on during pull-up mode ⇒ W p = 3(2W ) = 6W .

EX16.12
NMOS: Worst Case, M NA , M NB on, Wn = 2(W ) or M NC , M ND or M NC , M NE on ⇒ Wn = 2(W ).
PMOS: M PA and M PC on or M PA and M PB on ⇒ WP = 2(2W ) = 4W
If M PD and M PE on, need WP = 2(4W ) = 8W

EX16.13
a.      vI = φ = 5 V ⇒ v0 = 4 V
b.          vI = 3 V, φ = 5 V ⇒ v0 = 3 V
c.          vI = 4.2 V, φ = 5 V ⇒ v0 = 4 V
d.          vI = 5 V, φ = 3 V ⇒ v0 = 2 V

EX16.14
(a)      vI = 8V , φ = 10V ⇒ vGSD = 8 V
 M D in nonsaturation
K D ⎡ 2(vGSD − VTND )vO − vO ⎤
    ⎣
                           2
                             ⎦
K L [VDD − vO − VTNL ]
                       2


 KD ⎡                                                   K
       2 ( 8 − 2 )( 0.5 ) − ( 0.5 ) ⎤ = [10 − 0.5 − 2] ⇒ D = 9.78
                                   2                  2

 KL ⎣                                ⎦                  KL
(b)
 vI = φ = 8V ⇒ vGSD = 6 V
KD ⎡                                                K
     2 6 − 2 )( 0.5 ) − ( 0.5 ) ⎤ = [10 − 0.5 − 2] ⇒ D = 15
   ⎣ (
                               2                  2

KL                               ⎦                  KL

EX16.15
16 K ⇒ 16384 cells
Total Power = 125 mW = (2.5) IT ⇒ IT = 50 mA
                        50 mA
Then, for each cell, I =       ⇒ I = 3.05 μ A
                        16384
           VDD         V      2.5
Now, I ≅         or R = DD =      ⇒ R = 0.82 M Ω
            R            I   3.05

TYU16.1
                       750
P = iD ⋅ VDD ⇒ iD =        = 150 μ A
                        5
      35 ⎛ W ⎞
150 =    ⎜ ⎟ (5 − 0.2 − 0.8)
                             2

       2 ⎝ L ⎠L
          ⎛W ⎞    ⎛W ⎞
150 = 280 ⎜ ⎟ ⇒ ⎜ ⎟ = 0.536
          ⎝ L ⎠L  ⎝ L ⎠L
     ⎛ k′ ⎞⎛ W ⎞
iD = ⎜ n ⎟ ⎜ ⎟ ⎡ 2(vI − VTND )vO − vO ⎤
                                    2

     ⎝ 2 ⎠ ⎝ L ⎠D ⎣                   ⎦
       35 ⎛ W ⎞
150 = ⎜ ⎟ ⎡ 2(4.2 − 0.8)(0.2) − (0.2) 2 ⎤
        2 ⎝ L ⎠D ⎣                      ⎦

             ⎛W ⎞   ⎛W ⎞
150 = 23.1 ⋅ ⎜ ⎟ ⇒ ⎜ ⎟ = 6.49
             ⎝ L ⎠D ⎝ L ⎠D

TYU16.2
                         350
P = iD ⋅ VDD ⇒ I D =         = 70 μ A
                          5
     ⎛ k′ ⎞⎛ W ⎞
iD = ⎜ n ⎟ ⎜ ⎟ ( −VTNL )
                         2

     ⎝ 2 ⎠ ⎝ L ⎠L
      35 ⎛ W ⎞         ⎛W ⎞
70 = ⋅ ⎜ ⎟ ( 2 ) ⇒ ⎜ ⎟ = 1
                  2

       2 ⎝ L ⎠L        ⎝ L ⎠L
     35 ⎛ W ⎞ ⎡
        ⋅ ⎜ ⎟ 2 ( 5 − 0.8 )( 0.05 ) − ( 0.05 ) ⎤
                                              2
iD =
      2 ⎝ L ⎠D ⎣                                ⎦
            ⎛W ⎞    ⎛W ⎞
70 = 7.31 ⋅ ⎜ ⎟ ⇒ ⎜ ⎟ = 9.58
            ⎝ L ⎠D  ⎝ L ⎠D

TYU16.3
800
P = iD ⋅ VDD ⇒ iD =   = 160 μ A
                    5
          35 ⎛ W ⎞          ⎛W ⎞
iD = 160 = ⋅ ⎜ ⎟ (1.4 ) ⇒ ⎜ ⎟ = 4.66
                        2

           2 ⎝ L ⎠L         ⎝ L ⎠L
                  35 1 ⎛ W ⎞ ⎡                                   ⎛W ⎞
iD = 160 μ A =      ⋅ ⋅ ⎜ ⎟ 2 ( 5 − 0.8 )( 0.12 ) − ( 0.12 ) ⎤ ⇒ ⎜ ⎟ = 27.6
                                                            2

                   2 3 ⎝ L ⎠D ⎣                               ⎦ ⎝ L ⎠D


TYU16.4
a.        From the load transistor:
       ⎛ ′
         kn ⎞ ⎛ W ⎞                 35
I DL = ⎜ ⎟ ⎜ ⎟ (VGSL − VTNL ) = ( 0.5 )( 5 − 0.15 − 0.7 )
                                2                         2

       ⎝ 2 ⎠ ⎝ L ⎠L                  2
or
I DL = 150.7 μ A
Maximum v0 occurs when either A or B is high and C is high. For the two NMOS is series, the effective
k N is cut in half, so
         1 ⎡⎛ k n ⎞ ⎛ W ⎞ ⎤
                ′
I DL =     ⎢⎜ ⎟ ⎜ ⎟ ⎥ ⎡ 2 (VGSD − VTND ) VDS − VDS ⎤
                                                2

         2 ⎣⎝ 2 ⎠ ⎝ L ⎠ D ⎦ ⎣                      ⎦
or
        1 ⎡ 35 ⎛ W ⎞ ⎤ ⎡
          ⎢ ⋅ ⎜ ⎟ ⎥ 2 ( 5 − 0.7 )( 0.15 ) − ( 0.15 ) ⎤
                                                    2
150.7 =
        2 ⎣ 2 ⎝ L ⎠D ⎦ ⎣                              ⎦
which yields
⎛W ⎞
⎜ ⎟ = 13.6
⎝ L ⎠D
b.          P = iD ⋅ VDD = (150.7 )( 5 ) ⇒ P = 753 μ W

TYU16.5
a.     v0 (max) occurs when A = B = 1 and C = D = 0 or A = B = 0 and C = D = 1
⎛W ⎞             1 ⎛W ⎞
⎜ ⎟ (−VTNL ) = ⋅ ⎜ ⎟ ⎡ 2(vI − VTND )vO − vO ⎤
              2                              2

⎝ L ⎠L           2 ⎝ L ⎠D ⎣                    ⎦
             1 ⎛W ⎞
                      ⎡                           ⎤
(0.5)(1.2)2 = ⋅ ⎜ ⎟ ⎣ 2(5 − 0.7)(0.15) − (0.15) 2 ⎦
             2 ⎝ L ⎠D
               ⎛W ⎞   ⎛W ⎞
0.72 = (0.634) ⎜ ⎟ ⇒ ⎜ ⎟ = 1.14
               ⎝ L ⎠D ⎝ L ⎠D
b.
     ⎛ k′ ⎞⎛ W ⎞            ⎛ 35 ⎞
iD = ⎜ n ⎟ ⎜ ⎟ (−VTNL ) 2 = ⎜ ⎟ (0.5) [ −(−1.2) ]
                                                 2

     ⎝ 2 ⎠ ⎝ L ⎠L           ⎝ 2⎠
iD = 12.6 μ A
P = iD ⋅ VDD = (12.6)(5) ⇒ P = 63 μ W

TYU16.6
a.
K n = K p = 50 μ A / V 2
VIt = 2.5 V
iD (max) = K n (VIt − VTN ) 2 = 50(2.5 − 0.8) 2 ⇒ iD (max) = 145 μ A
b.
K n = K p = 200 μ A / V 2
VIt = 2.5 V
iD (max) = (200)(2.5 − 0.8) 2 ⇒ iD (max) = 578 μ A

TYU16.7
a.
      5 − 2 + (1)(0.8)
VIt =
            1+1
VIt = 1.9 V
V0 Pt = 3.9 V
V0 Nt = 1.1 V
b.
             3
VIL = 0.8 + ⋅ [5 − 2 − 0.8] ⇒ VIL = 1.63 V
             8
         1
V0 HU = {2(1.63) + 5 − 0.8 + 2}
         2
V0 HU = 4.73 V
            5
VIH = 0.8 + (5 − 2 − 0.8) ⇒ VIH = 2.18 V
            8
        1
V0 LU = {2(2.18) − 5 − 0.8 + 2}
        2
V0 LU = 0.275 V
c.
 NM L = VIL − V0 LU = 1.63 − 0.275 ⇒ NM L = 1.35 V
NM H = V0 HU − VIH = 4.73 − 2.18 ⇒ NM H = 2.55 V

TYU16.8
TYU16.9
NMOS − 2 transistors in series
Wn = 2 (W ) = 2W
PMOS − 2 transistors in series
W p = 2 ( 2W ) = 4W

TYU16.10
The NMOS part of the circuit is:
TYU16.11
The NMOS part of the circuit is:




TYU16.12
Exclusive-OR

A       B         f
0       0         0
1       0         1
0       1         1
1       1         0
TYU16.13




NMOS conducting for 0 ≤ vI ≤ 4.2 V
⇒ NMOS Conducting: 0 ≤ t ≤ 8.4 s
NMOS Cutoff: 8.4 ≤ t ≤ 10 s
PMOS cutoff for 0 ≤ vI ≤ 1.2 V
⇒ PMOS Cutoff: 0 ≤ t ≤ 2.4 s
PMOS Conducting: 2.4 ≤ t ≤ 10 s




TYU16.14
(a)       1 K ⇒ 32 × 32 array
Each row and column requires a 5-bit word ⇒ 6 transistors per row and column, ⇒ 32 × 6 + 32 × 6 = 384
transistors plus buffer transistors.
(b)       4 K ⇒ 64 × 64 array
Each row and column requires a 6-bit word ⇒ 7 transistors per row and column ⇒ 64 × 7 + 64 × 7 = 896
transistors plus buffer transistors.
(c)       16 K ⇒ 128 × 128 array
Each row and column requires a 7-bit word ⇒ 8 transistors per row and column
 ⇒ 128 × 8 + 128 × 8 = 2048 transistors plus buffer transistors.

TYU16.15
From Equation (16.84)
(W / L )nA 2 (VDDVTN ) − 3VTN 2(2.5)(0.4) − 3(0.4) 2
                              2

            =                   =                    = 0.526
 (W / L )n1   (VDD − 2VTN )
                            2
                                  ( 2.5 − 2(0.4) )
                                                   2


From Equation (16.86)
(W / L ) p       kn 2 (VDDVTN ) − 3VTN
                  ′                   2
                                                ⎡ 2(2.5)(0.4) − 3(0.4) 2 ⎤
             =      ⋅                   = (2.5) ⎢                        ⎥ = 0.862
(W / L )nB       k′
                  p    (VDD + VTP )
                                    2
                                                ⎣     (2.5 − 0.4) 2      ⎦
   ⎛W ⎞                                                       ⎛W ⎞
So ⎜ ⎟ of transmission gate device must be < 0.526 times the ⎜ ⎟ of the NMOS transistors in the
   ⎝  L⎠                                                      ⎝L⎠
                   ⎛W ⎞                                                  ⎛W ⎞
inverter cell. The ⎜ ⎟ of the PMOS transistors must be < 0.862 times the ⎜ ⎟ of the transmission gate
                   ⎝L⎠                                                   ⎝L⎠
                   ⎛ W⎞                                            ⎛ W⎞
devices. Then the ⎜ ⎟ of the PMOS devices must be < 0.453 times ⎜ ⎟ of NMOS devices in cell.
                   ⎝L⎠                                             ⎝L⎠

TYU16.16
Initial voltage across the storage capacitor = VDD − VTN = 3 − 0.5 = 2.5 V .
Now
         dV               I
 −I = C       or V = − ⋅ t + K
          dt             C
                                      2.5
where K = 2.5 V , t = 1.5 ms, V =         = 1.25 V , and C = 0.05 pF . Then
                                       2
               I (1.5 × 10−3 )
1.25 = 2.5 −                   ⇒
              (0.05 × 10−12 )
I = 4.17 × 10−11 A ⇒ I = 41.7 pA

More Related Content

PDF
PDF
Ch17p 3rd Naemen
PDF
PDF
PDF
PPTX
Presentation1 yash maths
PDF
bai tap va phuong phap giai bai tap dien xoay chieu
PDF
Ch17p 3rd Naemen
Presentation1 yash maths
bai tap va phuong phap giai bai tap dien xoay chieu

What's hot (11)

PDF
Integrales
PDF
PDF
Chapt03 pp 110626
DOCX
Task compilation - Differential Equation II
PPTX
PDF
Kanodia murolia previousyears
PDF
PPTX
Research: Automatic Diabetic Retinopathy Detection
PDF
PDF
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
PDF
Sol mat haeussler_by_priale
Integrales
Chapt03 pp 110626
Task compilation - Differential Equation II
Kanodia murolia previousyears
Research: Automatic Diabetic Retinopathy Detection
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
Sol mat haeussler_by_priale
Ad

Similar to Ch16p (20)

PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
9789740329480
PDF
PDF
PDF
PDF
PDF
05777828
PDF
PDF
Solutions manual for microelectronic circuits analysis and design 3rd edition...
PDF
9789740329480
05777828
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Ad

More from Bilal Sarwar (9)

DOCX
Rameysoft-ftp client server, and others+
DOCX
Ramey soft
DOCX
Ramey soft
PDF
Ch17s 3rd Naemen
PDF
PDF
PDF
PDF
PDF
Rameysoft-ftp client server, and others+
Ramey soft
Ramey soft
Ch17s 3rd Naemen

Recently uploaded (20)

PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PPTX
Chapter 5: Probability Theory and Statistics
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
A review of recent deep learning applications in wood surface defect identifi...
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PDF
DP Operators-handbook-extract for the Mautical Institute
PPTX
Modernising the Digital Integration Hub
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PPTX
observCloud-Native Containerability and monitoring.pptx
PPTX
The various Industrial Revolutions .pptx
PDF
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
PDF
Five Habits of High-Impact Board Members
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
Getting Started with Data Integration: FME Form 101
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
Hybrid model detection and classification of lung cancer
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Univ-Connecticut-ChatGPT-Presentaion.pdf
Chapter 5: Probability Theory and Statistics
1 - Historical Antecedents, Social Consideration.pdf
A review of recent deep learning applications in wood surface defect identifi...
Hindi spoken digit analysis for native and non-native speakers
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Taming the Chaos: How to Turn Unstructured Data into Decisions
DP Operators-handbook-extract for the Mautical Institute
Modernising the Digital Integration Hub
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
observCloud-Native Containerability and monitoring.pptx
The various Industrial Revolutions .pptx
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
Five Habits of High-Impact Board Members
Developing a website for English-speaking practice to English as a foreign la...
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Getting Started with Data Integration: FME Form 101
WOOl fibre morphology and structure.pdf for textiles
Hybrid model detection and classification of lung cancer
How ambidextrous entrepreneurial leaders react to the artificial intelligence...

Ch16p

  • 1. Chapter 16 Exercise Solutions EX16.1 ( 3.9 ) (8.85 ×10−14 ) COX = = 1.726 ×10−7 F / cm 2 200 × 10−8 2 (1.6 × 10−19 ) (11.7 ) ( 8.85 ×10 −14 )(1015 ) 1 γ = = 0.1055 V 2 1.726 × 10−7 ΔVTN = r ⎡ 0.576 + VSB − 0.576 ⎤ = ( 0.1055 ) ⎡ 0.576 + 5 + 0.576 ⎤ ⎣ ⎦ ⎣ ⎦ ΔVTN = 0.169 V EX16.2 (a) vo = VDD − I D RD ⎛ k′ ⎞⎛ W ⎞ vo = 3 − ⎜ n ⎟ ⎜ ⎟ ⎣ 2 ( 3 − 0.5 ) vo − vo ⎦ RD ⎡ ⎤ 2 ⎝ 2 ⎠⎝ L ⎠ vo = 0.1 ⎛ 0.06 ⎞ ⎡ ⎟ ( 5 ) ⎣( 5 )( 0.1) − ( 0.1) ⎤ RD 2 0.1 = 3 − ⎜ ⎝ 2 ⎠ ⎦ 0.1 = 3 − 0.0735RD RD = 39.5 K (b) ⎛ 0.06 ⎞ ⎟ ( 5 )( 39.5 )(VIt − 0.5 ) + (VIt − 0.5 ) − 3 = 0 2 ⎜ ⎝ 2 ⎠ 5.925 (VIt − 0.5 ) + (VIt − 0.5 ) − 3 = 0 2 −1 ± 1 + 4 ( 5.925 )( 3) (VIt − 0.5 ) = VOt = 2 ( 5.925 ) VOt = 0.632 V VIt = 1.132 V EX16.3 (a) (i) vo = VDD − VTNL = 3 − 0.4 vo = 2.6 V (ii) ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ ⎡ 2 ( vI − 0.4 ) vo − vo ⎤ = ⎜ ⎟ [VDD − vo − 0.4] 2 2 ⎣ ⎦ ⎝ L ⎠D ⎝ L ⎠L 16 ⎡ 2 ( 2.6 − 0.4 ) vo − vo ⎤ = 2 [3 − vo − 0.4] 2 2 ⎣ ⎦ 35.2vo − 8vo = 6.76 − 5.2vo + vo 2 2 9vo − 40.4vo + 6.76 = 0 2 40.4 ± 1632.16 − 4 ( 9 )( 6.76 ) vo = 2 (9) vo = 0.174 V
  • 2. (b) ⎛ 60 ⎞ iD = ⎜ ⎟ (2) [3 − 0.174 − 0.4] 2 ⎝ 2 ⎠ iD = 353.1 μ A P = iD ⋅ VDD = 1.06 mW EX16.4 (a) ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ ⎡ 2 ( vI − 0.4 ) vo − vo ⎤ = ⎜ ⎟ ( − ( −0.8 ) ) 2 2 ⎝ L ⎠D ⎣ ⎦ ⎝ L ⎠L 6 ⎡ 2 ( 3 − 0.4 ) vo − vo ⎤ = 2 ( 0.64 ) ⎣ 2 ⎦ 6vo − 31.2vo + 1.28 = 0 2 31.2 ± 973.44 − 4 ( 6 )(1.28 ) vo = 2(6) vo = 41.4 mV (b) ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ ( vIt − 0.4 ) = ⎜ ⎟ ( −(−0.8) ) 2 2 ⎝ L ⎠D ⎝ L ⎠L 6 ( vIt − 0.4 ) = 2 ( 0.64 ) 2 ⇒ vIt = 0.862 V ⎫ ⎬ Driver vOt = 0.862 − 0.4 = 0.462 V ⎭ vIt = 0.862 V ⎫ ⎬ Load vOt = VDD + VTNL = 3 − 0.8 = 2.2 V ⎭ (c) ⎛ 60 ⎞ iD = ⎜ ⎟ (2) ( − ( −0.8 ) ) = 38.4 μ A 2 ⎝ 2 ⎠ P = iD ⋅ VDD = 115.2 μ W EX16.5 We have { VOH = VDD − VTNLO + r ⎡ 2φ fP + VSB − 2φ fP ⎤ ⎣ ⎦ } { VOH = 5 − 0.8 + 0.35 ⎡ 0.73 + VOH − ⎣ 0.73 ⎤} ⎦ VOH − 4.499 = −0.35 0.73 + VOH Squaring both sides VOH − 8.998VOH + 20.241 = 0.1225(0.73 + VOH ) 2 VOH − 9.1205VOH + 20.15 = 0 2 9.1205 ± 83.1835 − 4(20.15) VOH = 2 VOH = 3.76 V EX16.6 a. i. A = logic 1 = 10 V, B = logic 0 “A” driver in nonsaturation. “B” driver off
  • 3. ′ ⎛ kn ⎞ ⎛ W ⎞ ⎛ k′ ⎞⎛ W ⎞ ⎜ 2 ⎟ ⎜ L ⎟ ( −VTNL ) = ⎜ 2 ⎟ ⎜ L ⎟ ⎡ 2 ( vI − vTND ) VOL − VOL ⎤ 2 2 ⎣ ⎦ ⎝ ⎠ ⎝ ⎠L ⎝ ⎠ ⎝ ⎠D 2 ( 3) = (10 ) ⎡ 2 (10 − 1.5 ) V0 L − V02L ⎤ 2 ⎣ ⎦ 9 = 5 (17V0 L − V02L ) 5V02L − 85V0 L + 9 = 0 (85 ) − 4 ( 5 )( 9 ) 2 85 ± V0 L = ⇒ V0 L = 0.107 V 2(5) ii. A = B = logic 1 ′ ⎛ kn ⎞ ⎛ W ⎞ ⎛ k′ ⎞⎛ W ⎞ ⎜ 2 ⎟ ⎜ L ⎟ ( −VTNL ) = 2 ⎜ 2 ⎟ ⎜ L ⎟ ⎣ 2 ( vI − vTND )VOL − VOL ⎤ ⎡ 2 2 ⎦ ⎝ ⎠ ⎝ ⎠L ⎝ ⎠ ⎝ ⎠D 2 ( 3) = ( 2 )(10 ) ⎡ 2 (10 − 1.5 ) V0 L − V02L ⎤ 2 ⎣ ⎦ 9 = 10 (17V0 L − V02L ) 10V02L − 170V0 L + 9 = 0 (170 ) − 4 (10 )( 9 ) 2 170 ± V0 L = ⇒ V0 L = 0.0531 V 2 (10 ) b. Both cases. 35 iD = ⋅ ( 2 )( 3) = 315 μ A ⇒ P = iD ⋅ VDD ⇒ P = 3.15 mW 2 2 EX16.7 800 P = iD ⋅ VDD ⇒ iD = = 160 μ A 5 35 ⎛ W ⎞ ⎛W ⎞ ⎛W ⎞ iD = 160 = ⋅ ⎜ ⎟ (1.4 ) = 34.3 ⎜ ⎟ ⇒ ⎜ ⎟ = 4.66 2 2 ⎝ L ⎠L ⎝ L ⎠L ⎝ L ⎠L 35 ⎛ W ⎞ ⎡ ⎛W ⎞ ⋅ ⎜ ⎟ 2 ( 5 − 0.8 )( 0.12 ) − ( 0.12 ) ⎤ ⇒ ⎜ ⎟ = 9.20 2 iD = 160 = 2 ⎝ L ⎠D ⎣ ⎦ ⎝ L ⎠D EX16.8 VDD 2.1 (a) VIt = = = 1.05 V 2 2 VOPt = VIt − VTD = 1.05 − (−0.4) = 1.45 V VONt = VIt − VTN = 1.05 − 0.4 = 0.65 V 2.1 + (−0.4) + 0.5(0.4) (b) VIt = = 1.16 V 1 + 0.5 VOPt = 1.16 + 0.4 = 1.56 V VONt = 1.16 − 0.4 = 0.76 V 2.1 + (−0.4) + 2(0.4) (c) VIt = = 0.938 V 1+ 2 VOPt = 0.938 + 0.4 = 1.338 V VONt = 0.538 V EX16.9
  • 4. P = f ⋅ CL ⋅ VDD 2 ( 0.10 ×10 ) = f ( 0.5 ×10 ) ( 3) −6 −12 2 f = 2.22 × 104 Hz ⇒ f = 22.2 kHz EX16.10 a. 10 − 2 + 2.5(2) K n / K p = 200 / 80 = 2.5 ⇒ VIt = ⇒ VIt = 4.32 V 1 + 2.5 V0 Pt = 6.32 V V0 Nt = 2.32 V b. 10 − 2 − 2 ⎡ 2.5 ⎤ VIL = 2 + ⋅ ⎢2 − 1⎥ ⇒ VIL = 3.39 V 2.5 − 1 ⎣ 2.5 + 3 ⎦ 1 V0 HU = {(1 + 2.5)(3.39) + 10 − (2.5)(2) + 2} 2 V0 HU = 9.43 V 10 − 2 − 2 ⎡ 2(2.5) ⎤ VIH = 2 + ⋅⎢ − 1⎥ ⇒ VIH = 4.86 V 2.5 − 1 ⎢ 3(2.5) + 1 ⎥ ⎣ ⎦ (4.86)(1 + 2.5) − 10 − (2.5)(2) + 2 V0 LU = 2(2.5) V0 LU = 0.802 V c. NM L = VIL − V0 LU = 3.39 − 0.802 ⇒ NM L = 2.59 V NM H = V0 HU − VIH = 9.43 − 4.86 ⇒ NM H = 4.57 V EX16.11 3 PMOS in series and 3 NMOS in parallel. Worst Case: Only one NMOS is ON in Pull-down mode ⇒ same as the CMOS inverter ⇒ Wn = W . All 3 PMOS are on during pull-up mode ⇒ W p = 3(2W ) = 6W . EX16.12 NMOS: Worst Case, M NA , M NB on, Wn = 2(W ) or M NC , M ND or M NC , M NE on ⇒ Wn = 2(W ). PMOS: M PA and M PC on or M PA and M PB on ⇒ WP = 2(2W ) = 4W If M PD and M PE on, need WP = 2(4W ) = 8W EX16.13 a. vI = φ = 5 V ⇒ v0 = 4 V b. vI = 3 V, φ = 5 V ⇒ v0 = 3 V c. vI = 4.2 V, φ = 5 V ⇒ v0 = 4 V d. vI = 5 V, φ = 3 V ⇒ v0 = 2 V EX16.14 (a) vI = 8V , φ = 10V ⇒ vGSD = 8 V M D in nonsaturation
  • 5. K D ⎡ 2(vGSD − VTND )vO − vO ⎤ ⎣ 2 ⎦ K L [VDD − vO − VTNL ] 2 KD ⎡ K 2 ( 8 − 2 )( 0.5 ) − ( 0.5 ) ⎤ = [10 − 0.5 − 2] ⇒ D = 9.78 2 2 KL ⎣ ⎦ KL (b) vI = φ = 8V ⇒ vGSD = 6 V KD ⎡ K 2 6 − 2 )( 0.5 ) − ( 0.5 ) ⎤ = [10 − 0.5 − 2] ⇒ D = 15 ⎣ ( 2 2 KL ⎦ KL EX16.15 16 K ⇒ 16384 cells Total Power = 125 mW = (2.5) IT ⇒ IT = 50 mA 50 mA Then, for each cell, I = ⇒ I = 3.05 μ A 16384 VDD V 2.5 Now, I ≅ or R = DD = ⇒ R = 0.82 M Ω R I 3.05 TYU16.1 750 P = iD ⋅ VDD ⇒ iD = = 150 μ A 5 35 ⎛ W ⎞ 150 = ⎜ ⎟ (5 − 0.2 − 0.8) 2 2 ⎝ L ⎠L ⎛W ⎞ ⎛W ⎞ 150 = 280 ⎜ ⎟ ⇒ ⎜ ⎟ = 0.536 ⎝ L ⎠L ⎝ L ⎠L ⎛ k′ ⎞⎛ W ⎞ iD = ⎜ n ⎟ ⎜ ⎟ ⎡ 2(vI − VTND )vO − vO ⎤ 2 ⎝ 2 ⎠ ⎝ L ⎠D ⎣ ⎦ 35 ⎛ W ⎞ 150 = ⎜ ⎟ ⎡ 2(4.2 − 0.8)(0.2) − (0.2) 2 ⎤ 2 ⎝ L ⎠D ⎣ ⎦ ⎛W ⎞ ⎛W ⎞ 150 = 23.1 ⋅ ⎜ ⎟ ⇒ ⎜ ⎟ = 6.49 ⎝ L ⎠D ⎝ L ⎠D TYU16.2 350 P = iD ⋅ VDD ⇒ I D = = 70 μ A 5 ⎛ k′ ⎞⎛ W ⎞ iD = ⎜ n ⎟ ⎜ ⎟ ( −VTNL ) 2 ⎝ 2 ⎠ ⎝ L ⎠L 35 ⎛ W ⎞ ⎛W ⎞ 70 = ⋅ ⎜ ⎟ ( 2 ) ⇒ ⎜ ⎟ = 1 2 2 ⎝ L ⎠L ⎝ L ⎠L 35 ⎛ W ⎞ ⎡ ⋅ ⎜ ⎟ 2 ( 5 − 0.8 )( 0.05 ) − ( 0.05 ) ⎤ 2 iD = 2 ⎝ L ⎠D ⎣ ⎦ ⎛W ⎞ ⎛W ⎞ 70 = 7.31 ⋅ ⎜ ⎟ ⇒ ⎜ ⎟ = 9.58 ⎝ L ⎠D ⎝ L ⎠D TYU16.3
  • 6. 800 P = iD ⋅ VDD ⇒ iD = = 160 μ A 5 35 ⎛ W ⎞ ⎛W ⎞ iD = 160 = ⋅ ⎜ ⎟ (1.4 ) ⇒ ⎜ ⎟ = 4.66 2 2 ⎝ L ⎠L ⎝ L ⎠L 35 1 ⎛ W ⎞ ⎡ ⎛W ⎞ iD = 160 μ A = ⋅ ⋅ ⎜ ⎟ 2 ( 5 − 0.8 )( 0.12 ) − ( 0.12 ) ⎤ ⇒ ⎜ ⎟ = 27.6 2 2 3 ⎝ L ⎠D ⎣ ⎦ ⎝ L ⎠D TYU16.4 a. From the load transistor: ⎛ ′ kn ⎞ ⎛ W ⎞ 35 I DL = ⎜ ⎟ ⎜ ⎟ (VGSL − VTNL ) = ( 0.5 )( 5 − 0.15 − 0.7 ) 2 2 ⎝ 2 ⎠ ⎝ L ⎠L 2 or I DL = 150.7 μ A Maximum v0 occurs when either A or B is high and C is high. For the two NMOS is series, the effective k N is cut in half, so 1 ⎡⎛ k n ⎞ ⎛ W ⎞ ⎤ ′ I DL = ⎢⎜ ⎟ ⎜ ⎟ ⎥ ⎡ 2 (VGSD − VTND ) VDS − VDS ⎤ 2 2 ⎣⎝ 2 ⎠ ⎝ L ⎠ D ⎦ ⎣ ⎦ or 1 ⎡ 35 ⎛ W ⎞ ⎤ ⎡ ⎢ ⋅ ⎜ ⎟ ⎥ 2 ( 5 − 0.7 )( 0.15 ) − ( 0.15 ) ⎤ 2 150.7 = 2 ⎣ 2 ⎝ L ⎠D ⎦ ⎣ ⎦ which yields ⎛W ⎞ ⎜ ⎟ = 13.6 ⎝ L ⎠D b. P = iD ⋅ VDD = (150.7 )( 5 ) ⇒ P = 753 μ W TYU16.5 a. v0 (max) occurs when A = B = 1 and C = D = 0 or A = B = 0 and C = D = 1 ⎛W ⎞ 1 ⎛W ⎞ ⎜ ⎟ (−VTNL ) = ⋅ ⎜ ⎟ ⎡ 2(vI − VTND )vO − vO ⎤ 2 2 ⎝ L ⎠L 2 ⎝ L ⎠D ⎣ ⎦ 1 ⎛W ⎞ ⎡ ⎤ (0.5)(1.2)2 = ⋅ ⎜ ⎟ ⎣ 2(5 − 0.7)(0.15) − (0.15) 2 ⎦ 2 ⎝ L ⎠D ⎛W ⎞ ⎛W ⎞ 0.72 = (0.634) ⎜ ⎟ ⇒ ⎜ ⎟ = 1.14 ⎝ L ⎠D ⎝ L ⎠D b. ⎛ k′ ⎞⎛ W ⎞ ⎛ 35 ⎞ iD = ⎜ n ⎟ ⎜ ⎟ (−VTNL ) 2 = ⎜ ⎟ (0.5) [ −(−1.2) ] 2 ⎝ 2 ⎠ ⎝ L ⎠L ⎝ 2⎠ iD = 12.6 μ A P = iD ⋅ VDD = (12.6)(5) ⇒ P = 63 μ W TYU16.6 a. K n = K p = 50 μ A / V 2 VIt = 2.5 V iD (max) = K n (VIt − VTN ) 2 = 50(2.5 − 0.8) 2 ⇒ iD (max) = 145 μ A
  • 7. b. K n = K p = 200 μ A / V 2 VIt = 2.5 V iD (max) = (200)(2.5 − 0.8) 2 ⇒ iD (max) = 578 μ A TYU16.7 a. 5 − 2 + (1)(0.8) VIt = 1+1 VIt = 1.9 V V0 Pt = 3.9 V V0 Nt = 1.1 V b. 3 VIL = 0.8 + ⋅ [5 − 2 − 0.8] ⇒ VIL = 1.63 V 8 1 V0 HU = {2(1.63) + 5 − 0.8 + 2} 2 V0 HU = 4.73 V 5 VIH = 0.8 + (5 − 2 − 0.8) ⇒ VIH = 2.18 V 8 1 V0 LU = {2(2.18) − 5 − 0.8 + 2} 2 V0 LU = 0.275 V c. NM L = VIL − V0 LU = 1.63 − 0.275 ⇒ NM L = 1.35 V NM H = V0 HU − VIH = 4.73 − 2.18 ⇒ NM H = 2.55 V TYU16.8
  • 8. TYU16.9 NMOS − 2 transistors in series Wn = 2 (W ) = 2W PMOS − 2 transistors in series W p = 2 ( 2W ) = 4W TYU16.10 The NMOS part of the circuit is:
  • 9. TYU16.11 The NMOS part of the circuit is: TYU16.12 Exclusive-OR A B f 0 0 0 1 0 1 0 1 1 1 1 0
  • 10. TYU16.13 NMOS conducting for 0 ≤ vI ≤ 4.2 V ⇒ NMOS Conducting: 0 ≤ t ≤ 8.4 s NMOS Cutoff: 8.4 ≤ t ≤ 10 s PMOS cutoff for 0 ≤ vI ≤ 1.2 V ⇒ PMOS Cutoff: 0 ≤ t ≤ 2.4 s PMOS Conducting: 2.4 ≤ t ≤ 10 s TYU16.14 (a) 1 K ⇒ 32 × 32 array Each row and column requires a 5-bit word ⇒ 6 transistors per row and column, ⇒ 32 × 6 + 32 × 6 = 384 transistors plus buffer transistors. (b) 4 K ⇒ 64 × 64 array Each row and column requires a 6-bit word ⇒ 7 transistors per row and column ⇒ 64 × 7 + 64 × 7 = 896 transistors plus buffer transistors. (c) 16 K ⇒ 128 × 128 array Each row and column requires a 7-bit word ⇒ 8 transistors per row and column ⇒ 128 × 8 + 128 × 8 = 2048 transistors plus buffer transistors. TYU16.15 From Equation (16.84) (W / L )nA 2 (VDDVTN ) − 3VTN 2(2.5)(0.4) − 3(0.4) 2 2 = = = 0.526 (W / L )n1 (VDD − 2VTN ) 2 ( 2.5 − 2(0.4) ) 2 From Equation (16.86)
  • 11. (W / L ) p kn 2 (VDDVTN ) − 3VTN ′ 2 ⎡ 2(2.5)(0.4) − 3(0.4) 2 ⎤ = ⋅ = (2.5) ⎢ ⎥ = 0.862 (W / L )nB k′ p (VDD + VTP ) 2 ⎣ (2.5 − 0.4) 2 ⎦ ⎛W ⎞ ⎛W ⎞ So ⎜ ⎟ of transmission gate device must be < 0.526 times the ⎜ ⎟ of the NMOS transistors in the ⎝ L⎠ ⎝L⎠ ⎛W ⎞ ⎛W ⎞ inverter cell. The ⎜ ⎟ of the PMOS transistors must be < 0.862 times the ⎜ ⎟ of the transmission gate ⎝L⎠ ⎝L⎠ ⎛ W⎞ ⎛ W⎞ devices. Then the ⎜ ⎟ of the PMOS devices must be < 0.453 times ⎜ ⎟ of NMOS devices in cell. ⎝L⎠ ⎝L⎠ TYU16.16 Initial voltage across the storage capacitor = VDD − VTN = 3 − 0.5 = 2.5 V . Now dV I −I = C or V = − ⋅ t + K dt C 2.5 where K = 2.5 V , t = 1.5 ms, V = = 1.25 V , and C = 0.05 pF . Then 2 I (1.5 × 10−3 ) 1.25 = 2.5 − ⇒ (0.05 × 10−12 ) I = 4.17 × 10−11 A ⇒ I = 41.7 pA