Chapter 11
Problem Solutions

11.1
(a)
 −0.7 − ( −3)
                = 0.1 ⇒ RE = 23 K
       RE
3 − 1.5
        = 0.05 ⇒ RC = 30 K
  RC
(b)         vCE 2 = 6 − iC 2 ( RC + 2 RE ) = 6 − iC 2 ( 76 )




(c)         vcm ( max ) ⇒ vCB 2 = 0 ⇒ vCE 2 = 0.7 V
So 0.7 = 6 − iC 2 ( 76 ) ⇒ iC 2 = 69.74 μ A
( v ( max ) − 0.7 ) − ( −3) = 2
  CM
                              ( 0.06974 ) ⇒ vCM ( max ) = 0.908 V
               23
vCM    ( min ) ⇒ VS = −3 V ⇒ vCM ( min ) = −2.3 V

11.2
        Ad = 180, C M RRdB = 85 dB
                     Ad    180
C M RR = 17, 783 =       =     ⇒ Acm = 0.01012
                     Acm   Acm
Assume the common-mode gain is negative.
v0 = Ad vd + Acm vcm
   = 180vd − 0.01012vcm
v0 = 180 ( 2sin ω t ) mV − ( 0.01012 )( 2sin ω t ) V
v0 = 0.36sin ω t − 0.02024sin ω t
Ideal Output:          v0 = 0.360sin ω t ( V )
Actual Output:         v0 = 0.340sin ω t ( V )

11.3
a.
10 − 2 ( 0.7 )
I1 =                    ⇒ I1 = 1.01 mA
            8.5
               I1                   1.01
IC 2 =                     =                  ⇒ I C 2 ≅ 1.01 mA
                2                      2
         1+                    1+
            β (1 + β )            (100 )(101)
       ⎛ 100 ⎞ ⎛ 1.01 ⎞
IC 4 = ⎜      ⎟⎜       ⎟ ⇒ I C 4 ≅ 0.50 mA
       ⎝ 101 ⎠ ⎝ 2 ⎠
VCE 2 = ( 0 − 0.7 ) − ( −5 ) ⇒ VCE 2 = 4.3 V
VCE 4 = ⎡5 − ( 0.5 )( 2 ) ⎤ − ( −0.7 ) ⇒ VCE 4 = 4.7 V
        ⎣                 ⎦
b.
For VCE 4 = 2.5 V ⇒ VC 4 = −0.7 + 2.5 = 1.8 V
        5 − 1.8
IC 4 =          ⇒ I C 4 = 1.6 mA
           2
       ⎛ 1+ β ⎞              ⎛ 101 ⎞
IC 2 + ⎜       ⎟ ( 2IC 4 ) = ⎜     ⎟ ( 2 )(1.6 ) ⇒ I C 2 = 3.23 mA
       ⎝   β ⎠               ⎝ 100 ⎠
I1 ≈ I C 2 = 3.23 mA
       10 − 2 ( 0.7 )
R1 =                     ⇒ R1 = 2.66 kΩ
            3.23

11.4
a.         Neglecting base currents
                             30 − 0.7
I1 = I 3 = 400 μ A ⇒ R1 =             ⇒ R1 = 73.25 kΩ
                               0.4
VCE1 = 10 V ⇒ VC1 = 9.3 V
       15 − 9.3
RC =            ⇒ RC = 28.5 kΩ
          0.2
b.
      (100 )( 0.026 )
rπ =                  = 13 kΩ
            0.2
            50
r0 ( Q3 ) =     = 125 kΩ
            0.4
We have
                        β RC   (100 )( 28.5)
          Ad =                   =           ⇒ Ad     = 62
                 2 ( rπ + RB )  2 (13 + 10 )
                          ⎧                  ⎫
                          ⎪                  ⎪
                   β RC ⎪           1        ⎪
         Acm = −          ⎨                  ⎬
                 rπ + RB ⎪      2r0 (1 + β ) ⎪
                           1+
                          ⎪
                          ⎩       rπ + RB ⎪  ⎭
                                ⎧                ⎫
                 (100 )( 28.5 ) ⎪
                                ⎪         1      ⎪
                                                 ⎪
             =−                 ⎨                ⎬ ⇒ Acm = −0.113
                    13 + 10 ⎪ 2 (125 )(101) ⎪
                                 1+
                                ⎪
                                ⎩                ⎪
                                         13 + 10 ⎭
                    ⎛ 62 ⎞
C M RRdB = 20 log10 ⎜       ⎟ ⇒ C M RRdB = 54.8 dB
                    ⎝ 0.113 ⎠
c.
Rid = 2 ( rπ + RB ) = 2 (13 + 10 ) ⇒ Rid = 46 kΩ
        1
Ricm =    ⎡ rπ + RB + 2 (1 + β ) r0 ⎤
        2⎣                          ⎦
        1
       = ⎡13 + 10 + 2 (101)(125 ) ⎤ ⇒ Ricm = 12.6 MΩ
        2⎣                            ⎦

11.5
                                                               IQ                  ( 0.5)
(a)          vCM ( max ) ⇒ VCB = 0 so that vCM ( max ) = 5 −        ( RC ) = 5 −            (8)
                                                               2                     2
vCM ( max ) = 3 V
(b)
            Vd ⎛ I CQ ⎞ Vd ⎛ 0.25 ⎞ ⎛ 0.018 ⎞
ΔI = g m ⋅       =⎜      ⎟⋅   =⎜           ⎟⎜    ⎟ = 0.08654 mA
             2 ⎝ VT ⎠ 2 ⎝ 0.026 ⎠ ⎝ 2 ⎠
 ΔVC 2   = ΔI ⋅ RC = ( 0.08654 ) ( 8 ) = 0.692 V
(c)
     ⎛ 0.25 ⎞ ⎛ 0.010 ⎞
ΔI = ⎜        ⎟⎜         ⎟ = 0.04808 mA
     ⎝ 0.026 ⎠ ⎝ 2 ⎠
ΔVC 2 = ( 0.04808 )( 8 ) = 0.385 V

11.6
P = ( I1 + I C 4 ) (V + − V − )
I1 ≅ I C 4 so 1.2 = 2 I1 ( 6 ) ⇒ I1 = I C 4 = 0.1 mA
         3 − 0.7 − ( −3)
R1 =                       ⇒ R1 = 53 k Ω
              0.1
                                                  3 −1
For vCM = +1V ⇒ VC1 = VC 2 = 1 V ⇒ RC =                ⇒ RC = 40 k Ω
                                                  0.05
One-sided output
     1                   0.05
Ad = g m RC where g m =       = 1.923 mA / V
     2                  0.026
Then
     1
Ad = (1.923)( 40 ) ⇒ Ad = 38.5
     2

11.7
a.
             IE
0 = 0.7 +       ( 2 ) + I E (85) − 5
             2
      5 − 0.7
IE =             ⇒ I E = 0.050 mA
       85 + 1
               ⎛ β ⎞ ⎛ I E ⎞ ⎛ 100 ⎞⎛ 0.050 ⎞
I C1 = I C 2 = ⎜        ⎟⎜ ⎟ = ⎜     ⎟⎜     ⎟
               ⎝ 1 + β ⎠ ⎝ 2 ⎠ ⎝ 101 ⎠⎝ 2 ⎠
Or I C1 = I C 2 = 0.0248 mA
VCE1 = VCE 2 = ⎡5 − I C1 (100 ) ⎤ − ( −0.7 )
               ⎣                ⎦
So VCE1 = VCE 2 = 3.22 V
b.           vcm ( max ) for VCB = 0 and VC = 5 − I C1 (100 ) = 2.52 V
So vcm ( max ) = 2.52 V
vcm ( min ) for Q1 and Q2 at the edge of cutoff ⇒ vcm ( min ) = −4.3 V
(c) Differential-mode half circuits
vd        ⎛V           ⎞
−                          ′
    = Vπ + ⎜ π + g mVπ ⎟ .RE
  2        ⎝ rπ         ⎠
         ⎡ (1 + β ) ⎤
    = Vπ ⎢1 +          ′
                     RE ⎥
         ⎣      rπ       ⎦
Then
                − ( vd / 2 )
 Vπ =
         ⎡ (1 + β ) ⎤
         ⎢1 +       ′
                   RE ⎥
         ⎣    rπ      ⎦
                                   1       β RC
vo = − g mVπ RC ⇒ Ad =               ⋅
                                   2 rπ + (1 + β ) RE
                                                    ′
        β VT         (100 )( 0.026 )              ′
rπ =            =                      = 105 k Ω RE = 2 k Ω
        I CQ            0.0248
Then
         1 (100 )(100 )
 Ad =     ⋅                 ⇒ Ad = 16.3
         2 105 + (101)( 2 )

11.8
a.             For v1 = v2 = 0 and neglecting base currents
        −0.7 − ( −10 )
RE =                           ⇒ RE = 62 kΩ
                0.15
b.
        v02     β RC
Ad =        =
        vd 2 ( rπ + RB )
        β VT         (100 )( 0.026 )
 rπ =            =                     = 34.7 kΩ
         I CQ             0.075
          (100 )( 50 )
Ad =                     ⇒ Ad          = 71.0
        2 ( 34.7 + 0.5 )
                ⎡               ⎤
                ⎢               ⎥
          β RC ⎢       1        ⎥
Acm = −
        rπ + RB ⎢ 2 RE (1 + β ) ⎥
                ⎢1 +            ⎥
                ⎢
                ⎣    rπ + RB ⎥  ⎦
                               ⎡     ⎤
           (100 )( 50 ) ⎢     1      ⎥
    =−               ⎢               ⎥ ⇒ Acm = −0.398
          34.7 + 0.5 ⎢ 2 ( 62 )(101) ⎥
                     ⎢1 + 34.7 + 0.5 ⎥
                     ⎣               ⎦
                         71.0
C M RRdB = 20 log10            ⇒ C M RRdB = 45.0 dB
                        0.398
c.
Rid = 2 ( rπ + RB )
Rid = 2 ( 34.7 + 0.5 ) ⇒ Rid = 70.4 kΩ
Common-mode input resistance
      1
Ricm = ⎡ rπ + RB + 2 (1 + β ) RE ⎤
      2⎣                         ⎦
      1
     = ⎡34.7 + 0.5 + 2 (101)( 62 ) ⎤ ⇒ Ricm = 6.28 MΩ
      2⎣                           ⎦

11.9
(a)
 v1 = v2 = 1 V ⇒ VE = 1.6
       9 − 1.6
IE =           ⇒ 18.97 μ A
        390
 IE
     = 9.49 μ A I C1 = I C 2 = 9.39 μ A
  2
 vC1 = vC 2 = ( 9.39 )( 0.51) − 9 = −4.21 V
(b)
        9.39
 gm =          ⇒ 0.361 mA/V
       0.026
 ΔI = g m d = ( 0.361× 10−3 ) ( 0.005 ) = 1.805 μ A
           V
            2
 ΔvC = (1.805 × 10−6 )( 510 × 103 ) = 0.921 V ⇒ vC 2 = −4.21 + 0.921 ⇒ −3.29 V
vC1 = −4.21 − 0.921 ⇒ −5.13 V

11.10
(a)
 v1 = v2 = 0
 I E1 = I E 2 ≅ 6 μ A
 β = 60
 I C1 = I C 2 = 5.90 μ A
  vC1 = vC 2 = ( 5.90 )( 0.360 ) − 3
      = −0.875 V
VEC1 = VEC 2 = +0.6 − ( −0.875 )
      = 1.475 V
(b)
(i)
        5.90
 gm =         ⇒ 0.227 mA/V
       0.026
 Ad = g m RC = ( 0.227 )( 360 ) = 81.7
 Acm = 0
(ii)
       g R                    ( 60 )( 0.026 )
 Ad = m C = 40.8 rπ =
         2                        0.0059
                            = 264 K
         − ( 0.227 )( 360 )
Acm =                        = −0.0442
             2 ( 61)( 4000 )
        1+
                   264

11.11
For v1 = v2 = 0.20 V
I C1 = I C 2 = 0.1 mA
vC1 = vC 2 = ( 0.1)( 30 ) − 10
    = −7 V
       0.1
gm =          = 3.846 mA/V
      0.026
          v
ΔI = g m d = ( 3.846 )( 0.008 ) ⇒ 30.77 μ A
           2
ΔvC = ΔI ⋅ RC = ( 30.77 × 10−6 )( 30 × 103 ) = 0.923 V
v2 ↑⇒ I C 2 ↓⇒ vC 2 ↓⇒ vC1       = −7 + 0.923
                                 = −6.077 V
vC 2 = −7 − 0.923
     = −7.923 V

11.12
RC = 50 K
For v1 = v2 = 0
        −0.7 − ( −10 )
 IE =
              75
     = 0.124 mA
I C1 = I C 2 = 0.0615 mA
        0.0615
gm =             = 2.365 mA/V
        0.026
       (120 )( 0.026 )
  rπ =                 = 50.7 K
            0.0615
Differential Input
      v            V
v1 = d v2 = − d
       2            2
Half-circuit.
             V                  ⎛ ΔR ⎞
ΔI = + g m d ⇒ ΔvC1 = −ΔI ⎜ RC +     ⎟
              2                 ⎝  2 ⎠
                                  ⎛      ΔR ⎞
                     ΔvC 2 = +ΔI ⎜ RC −      ⎟
                                  ⎝       2 ⎠
                           ⎛       ΔR ⎞      ⎛      ΔR ⎞
 vo = ΔvC1 − ΔvC 2   = −ΔI ⎜ RC +     ⎟ − ΔI ⎜ RC −    ⎟
                           ⎝        2 ⎠      ⎝       2 ⎠
    = −2ΔIRC
        ⎛ V ⎞
   = −2 ⎜ g m d ⎟ RC
        ⎝     2⎠
Ad = − g m RC = − ( 2.365 )( 50 ) = −118.25
Common-mode input.
⎛V           ⎞
     vcm = Vπ + ⎜ π + g mVπ ⎟ ( 2 RE )
                 ⎝ rπ         ⎠
                    vcm
     Vπ =
               ⎛ β⎞
           1 + ⎜ 1 + ⎟ ( 2 RE )
               ⎝ rπ ⎠
                           g m vcm                    β vcm
      ΔI = g mVπ =                          =
                         ⎛1+ β ⎞              rπ + (1 + β )( 2 RE )
                      1+ ⎜       ⎟ ( 2 RE )
                         ⎝ rπ ⎠
                       ⎛       ΔR ⎞
                   − β ⎜ RC +      ⎟ ⋅ vcm
    ΔvC1 = −ΔIR1 =     ⎝        2 ⎠
                    rπ + (1 + β )( 2 RE )
                         ⎛      ΔR ⎞
                     − β ⎜ RC −      ⎟ vcm
                         ⎝        2 ⎠
   ΔvC 2   = −ΔIR2 =
                     rπ + (1 + β )( 2 RE )
                                   ⎛      ΔR ⎞         ⎛      ΔR ⎞
                               − β ⎜ RC +    ⎟ vcm + β ⎜ RC −    ⎟ vcm
      vo = ΔvC1 − ΔvC 2      =     ⎝       2 ⎠         ⎝       2 ⎠
                                       [ ]                  [ ]
                     ⎛ ΔR ⎞
               −2 β ⎜     ⎟ vcm
           =         ⎝ 2 ⎠
             rπ + (1 + β )( 2 RE )
                    − βΔR              − (120 )( 0.5 )
     Acm =                        =
             rπ + (1 + β )( 2 RE ) 50.7 + (121)( 2 )( 75 )
       = −0.0032966
           118.25
C M RR =           = 35,870.5
         0.0032966
C M R R ∫ = 91.1 dB
            dB



11.13
   v1 = v2 = 0
          −0.7 − ( −10 )
  IE =
                75
       = 0.124 mA
  I C1 = I C 2 = 0.0615 mA
         0.0615
  gm =             = 2.365 mA/V
          0.026
Δg m
       = 0.01
 gm
 g m1 = 2.377 mA/V
 g m 2 = 2.353 mA/V
          (120 )( 0.026 )
   rπ =                     = 50.7 K
             0.0615
Vd
  ΔI = g m
                2
                 V
ΔvC1     = − g m1 d Rc
                  2
                  Vd
ΔvC 2    = + gm2     Rc
                   2
                                   Vd           V
      vo = ΔvC1 − ΔvC 2 = − g m1      RC − g m 2 d RC
                                    2            2
        Vd
         =−  RC ( g m1 + g m 2 )
         2
         R                      −50
  Ad = − C ( g m1 + g m 2 ) =        ( 2.377 + 2.353) ⇒ Ad = −118.25
          2                      2
Common-Mode
          − g m1 RC vcm                     − g m 2 RC vcm
ΔvC1 =                          ΔvC 2 =
          ⎛ 1+ β ⎞                          ⎛ 1+ β ⎞
       1+ ⎜       ⎟ ( 2 RE )             1+ ⎜        ⎟ ( 2 RE )
          ⎝ rπ ⎠                            ⎝ rπ ⎠
vo          − ( g m1 − g m 2 ) RC    − ( 2.377 − 2.353) ( 50 )
    = Acm =                        =
vcm            ⎛ 1+ β ⎞                    ⎛ 121 ⎞
            1+ ⎜        ⎟ ( 2 RE )    1+ ⎜        ⎟ ( 2 )( 75 )
               ⎝ rπ ⎠                      ⎝ 50.7 ⎠
       −1.2
    =        ⇒ Acm = −0.003343
      358.99
        C M R R ∫ = 91 dB
                   dB


11.14
(a)
  v1 = v2 = 0
 vE = +0.7 V
       5 − 0.7
 IE =           = 4.3 mA
            1
I C1 = I C 2 = 2.132 mA
 vC1 = vC 2 = ( 2.132 )(1) − 5
     = −2.87 V
(b)        v1 = 0.5, v2 = 0 Q2 on
                               Q1 off
                      ⎛ 120 ⎞
I C1 = 0, I C 2 = 4.3 ⎜     ⎟ mA = 4.264 mA
                      ⎝ 121 ⎠
vC1 = −5 V vC 2 = ( 4.264 ) (1) − 5
                        vC 2 = −0.736 V
                          2.132
(c)           vE ≈ 0.7 V    gm == 82.0 mA/V
                          0.026
        v                     V         (82.0 )
ΔI = g m d ΔvC = ΔI ⋅ RC = g m d ⋅ RC =         ⋅ Vd (1) = 41.0Vd
         2                     2          2
Vd = 0.015 ⇒ Δvc = 0.615 V
vC 2 ↓ vC1 ↑
vC1 = −2.87 + 0.615 = −2.255 V
vC 2 = −2.87 − 0.615 = −3.485 V

11.15
(a)
        IC   1
gm =       =     = 38.46 mA/V
        VT 0.026
        vo   1
Ad =       =    = 100
        vd 0.01
Ad = g m RC
100 = 38.46 RC
Rc = 2.6 K
(b)
With v1 = v2 = 0
vC1 = vC 2 = 10 − (1)( 2.6 ) = 7.4 V ⇒ vcm ( max ) = 7.4 V

11.16
a.
i.          ( v01 − v02 ) = 0
ii.
 I C1 = I C 2 = 1 mA
v01 − v02 = ⎡V + − I C1 RC1 ⎤ − ⎡V + − I C 2 RC 2 ⎤
            ⎣               ⎦ ⎣                   ⎦
          = I C ( RC 2 − RC1 ) = (1)( 7.9 − 8 ) ⇒ v01 − v02 = −0.1 V
b.
                            ⎛v ⎞
I 0 = ( I S 1 + I S 2 ) exp ⎜ BE ⎟
                            ⎝ VT ⎠
       ⎛v ⎞         2 × 10−3
So exp ⎜ BE ⎟ = −13          −13
       ⎝ VT ⎠ 10 + 1.1× 10
              = 9.524 × 109
                 ⎛v     ⎞
                        ⎟ = (10 )( 9.524 × 10 ) ⇒ I C1 = 0.952 mA
                               −13           9
I C1 = I S 1 exp ⎜ BE
                 ⎝ VT   ⎠
I C 2 = (1.1× 10−13 )( 9.524 × 109 ) ⇒ I C 2 = 1.048 mA
i.
 v01 − v02 = I C 2 RC 2 − I C1 RC1 ⇒ v01 − v02 = (1.048 − 0.952 )( 8 ) ⇒ v01 − v02 = 0.768 V
ii.
 v01 − v02 = (1.048 )( 7.9 ) − ( 0.952 )( 8 )
 v01 − v02 = 8.279 − 7.616 ⇒ v01 − v02 = 0.663 V

11.17
From Equation (11.12(b))
             IQ
  iC 2 =
         1 + evd / VT
              1
0.90 =
         1 + evd / VT
                 1
So evd / VT =         − 1 = 0.111
               0.90
vd = VT ln ( 0.111) = ( 0.026 ) ln ( 0.111) ⇒ vd = −0.0571 V

11.18
From Example 11.2, we have
vd ( max )             1
0.5 +               −
        4 ( 0.026 ) 1 + e − vd ( max ) / 0.026
                                               = 0.02
                   v ( max )
             0.5 + d
                  4 ( 0.026 )
      ⎡      v ( max ) ⎤              1
 0.98 ⎢ 0.5 + d          ⎥=
      ⎢
      ⎣      4 ( 0.026 ) ⎥ 1 + e
                         ⎦
                                 − vd ( max ) / 0.026


                                            1
0.490 + 9.423vd ( max ) =               − vd ( max ) / 0.026
                                 1+ e
By trial and error
vd ( max ) = 23.7 mV

11.19
a.
For I1 = 1 mA, VBE3 = 0.7 V
       20 − 0.7
R1 =            ⇒ R1 = 19.3 kΩ
          1
       V      ⎛ I ⎞ 0.026 ⎛ 1 ⎞
R2 = T ⋅ ln ⎜ 1 ⎟ =
              ⎜I ⎟
                               ⋅ ln ⎜     ⎟ ⇒ R2 = 0.599 kΩ
       IQ     ⎝ Q⎠      0.1         ⎝ 0.1 ⎠
b.
       (180 )( 0.026 )
rπ 4 =                 = 46.8 kΩ
             0.1
         0.1
 gm =          = 3.846 mA/V
       0.026
       100
 r04 =      ⇒ 1 MΩ
        0.1
From Chapter 10
R0 = r04 ⎡1 + g m ( RE rπ 4 ) ⎤
          ⎣                   ⎦
RE rπ 4 = 0.599 46.8 = 0.591
R0 = (1) ⎡1 + ( 3.846 )( 0.591) ⎤ = 3.27 MΩ
         ⎣                      ⎦
        100
r01 =        ⇒ 2 MΩ
        0.05
                       ⎡        ⎛ r ⎞⎤
Ricm ≅ ⎡(1 + β ) R0 ⎤ ⎢(1 + β ) ⎜ 01 ⎟⎥
       ⎣            ⎦
                       ⎣        ⎝ 2 ⎠⎦
     = ⎣(181)( 3.27 ) ⎦ ⎣(181)(1) ⎤
       ⎡              ⎤ ⎡           ⎦
        = 592 181 ⇒ Ricm = 139 MΩ
(c)     From Eq. (11.32(b))
         − g m RC
Acm =
         2 (1 + β ) Ro
      1+
            rπ + RB
       0.05
 gm =        = 1.923 mA / V
      0.026
      (180 )( 0.026 )
 rπ =                 = 93.6 k Ω
           0.05
 RB = 0
Then
           − (1.923)( 50 )
 Acm =                      ⇒ Acm = −0.00760
            2 (181)( 3270 )
         1+
                 93.6
11.19
For vCM = 3.5 V and a maximum peak-to-peak swing in the output voltage of 2 V, we need the
quiescent collector voltage to be
VC = 3.5 + 1 = 4.5 V
Assume the bias is ±10 V , and I Q = 0.5 mA.
Then I C = 0.25 mA
             10 − 4.5
Now RC =               ⇒ RC = 22 k Ω
               0.25
                     (100 )( 0.026 )
In this case, rπ =                   = 10.4 k Ω
                          0.25
Then
        (100 )( 22 )
 Ad =                  = 101 So gain specification is met.
       2 (10.4 + 0.5 )
For CMRRdB = 80 dB ⇒
                  1 ⎡ (1 + β ) I Q Ro ⎤ 1 ⎡ (101)( 0.5 ) Ro ⎤
CMRR = 104 =        ⎢1 +              ⎥ = ⎢1 +              ⎥ ⇒ Ro = 1.03 M Ω
                   2⎣         VT β    ⎦ 2 ⎢ ( 0.026 )(100 ) ⎥
                                          ⎣                 ⎦
Need to use a Modified Widlar current source.
Ro = ro ⎡1 + g m ( RE1 rπ ) ⎤
        ⎣                   ⎦
                                100
If VA = 100V , then ro =            = 200 k Ω
                                0.5
       (100 )( 0.026 )
rπ =                = 5.2 k Ω
          0.5
       0.5
gm =         = 19.23 mA / V
      0.026
Then 1030 = 200 ⎡1 + (19.23)( RE1 rπ ) ⎤ ⇒ RE1 rπ = 0.216 k Ω = RE1 5.2 ⇒ RE1 = 225 Ω
                  ⎣                    ⎦
Also let RE 2 = 225 Ω and I REF ≅ 0.5 mA

11.20
                  −0.7 − ( −10 )
(a)        RE =                    ⇒ RE = 37.2 k Ω
                         0.25




(b)
Vπ 1            V               V         ⎛1+ β ⎞                  Ve
     + g mVπ 1 + π 2 + g mVπ 2 = e or (1) ⎜     ⎟ (Vπ 1 + Vπ 2 ) =
 rπ              rπ             RE        ⎝ rπ ⎠                   RE
Vπ 1 V1 − Ve             ⎛ r       ⎞
     =          ⇒ Vπ 1 = ⎜ π ⎟ (V1 − Ve )
 rπ    RB + rπ           ⎝ rπ + RB ⎠
 Vπ 2 = V2 − Ve
Then
      ⎛1+ β
         ⎞ ⎡ rπ                             ⎤ V
(1) ⎜    ⎟⎢          (V1 − Ve ) + (V2 − Ve )⎥ = e
         ⎠ ⎣ rπ + RB
      ⎝ rπ                                  ⎦ RE
From this, we find
                     rπ + RB
              V1 +           ⋅ V2
                        rπ
Ve =
        ⎡ rπ + RB         r + RB ⎤
        ⎢             +1+ π      ⎥
        ⎣ RE (1 + β )       rπ ⎦
Now
Vo = − g mVπ 2 RC = − g m RC (V2 − Ve )
We have
        (120 )( 0.026 )                      0.125
rπ =                      ≅ 25 k Ω,   gm =         = 4.81 mA / V
            0.125                            0.026
(i)
            Vd           V
Set V1 =       and V2 = − d
             2            2
Then
               ⎛ ⎛ 25 + 0.5 ⎞ ⎞
              Vd                       Vd
               ⎜ 1 − ⎜ 25 ⎟ ⎟
               2                          ( −0.02 )
               ⎝     ⎝       ⎠⎠
Ve =                                  = 2
     ⎡ 25 + 0.5            25 + 0.5 ⎤     2.026
     ⎢                 +1+          ⎥
     ⎣ ( 37.2 )(121)         25 ⎦
So
Ve = −0.00494Vd
Now
                     ⎛ V                    ⎞       V
Vo = − ( 4.81)( 50 ) ⎜ − d − ( −0.00494 )Vd ⎟ ⇒ Ad = o = 119
                     ⎝ 2                    ⎠       Vd
(ii)
Set V1 = V2 = Vcm
 Then
                ⎛ 25 + 0.5 ⎞
            Vcm ⎜ 1 +        ⎟
                ⎝       25 ⎠          V ( −2.02 )
Ve =                                 = cm
     ⎡ 25 + 0.5           25 + 0.5 ⎤   2.02567
     ⎢                +1+          ⎥
     ⎣ ( 37.2 )(121)        25 ⎦
Ve = Vcm ( 0.9972 )
Then
Vo = − ( 4.81)( 50 ) ⎡Vcm − Vcm ( 0.9972 ) ⎤
                     ⎣                     ⎦
            Vo
or Acm =        = −0.673
            Vcm

11.21
From Equation (11.18)
v0 = vC 2 − vC1 = g m RC vd
       I CQ
gm =
        VT
For I Q = 2 mA, I CQ = 1 mA
             1
Then g m =        = 38.46 mA/V
           0.026
Now 2 = ( 38.46 ) RC ( 0.015 )
So RC = 3.47 kΩ
Now VC = V + − I C RC         = 10 − (1)( 3.47 )
                              = 6.53 V
For VCB = 0 ⇒ vcm ( max ) = 6.53 V

11.22
The small-signal equivalent circuit is




A KVL equation: v1 = Vπ 1 − Vπ 2 + v2
                       v1 − v2 = Vπ 1 − Vπ 2
A KCL equation
Vπ 1            V
     + g mVπ 1 + π 2 + g mVπ 2 = 0
 rπ              rπ
              ⎛1         ⎞
(Vπ 1 + Vπ 2 ) ⎜   + g m ⎟ = 0 ⇒ Vπ 1 = −Vπ 2
              ⎝ rπ       ⎠
                                   1                         1
Then v1 − v2 = 2Vπ 1 ⇒ Vπ 1 =        ( v1 − v2 ) and Vπ 2 = − ( v1 − v2 )
                                   2                         2
At the v01 node:
v01 v01 − v02
   +          + g mVπ 1 = 0
RC     RL
    ⎛ 1    1 ⎞       ⎛ 1      ⎞ 1
v01 ⎜   +    ⎟ − v02 ⎜        ⎟ = g m ( v2 − v1 )    (1)
    ⎝ RC RL ⎠        ⎝ RL     ⎠ 2
At the v02 node:
v02 v02 − v01
   +          + g mVπ 2 = 0
RC     RL
    ⎛ 1   1 ⎞       ⎛ 1 ⎞ 1
v02 ⎜   +   ⎟ − v01 ⎜ ⎟ = g m ( v1 − v2 )            (2)
    ⎝ RC RL ⎠       ⎝ RL ⎠ 2
From (1):
⎛ R ⎞ 1
v02 = v01 ⎜ 1 + L ⎟ − g m RL ( v2 − v1 )
          ⎝ RC ⎠ 2
Substituting into (2)
    ⎛ R ⎞⎛ 1         1 ⎞ 1                     ⎛ 1   1 ⎞       ⎛ 1    ⎞ 1
v01 ⎜1 + L ⎟ ⎜     +   ⎟ − g m RL ( v2 − v1/ ) ⎜   +   ⎟ − v01 ⎜      ⎟ = g m ( v1 − v2 )
    ⎝    RC ⎠ ⎝ RC RL ⎠ 2                      ⎝ RC RL ⎠       ⎝ RL   ⎠ 2
    ⎛ 1 RL    1 ⎞ 1                 ⎡ ⎛ RL    ⎞⎤
v01 ⎜   + 2 +   ⎟ = g m ( v1 − v2 ) ⎢1 − ⎜ + 1⎟ ⎥
    ⎝ RC RC RC ⎠ 2                  ⎣ ⎝ RC    ⎠⎦
v01 ⎛     RL ⎞    1 ⎛ RL ⎞
    ⎜2+      ⎟ = − gm ⎜  ⎟ ( v1 − v2 )
RC ⎝     RC ⎠     2 ⎝ RC ⎠
For v1 − v2 = vd
             1
           − g m RL
      v01
Av1 =     = 2
      vd ⎛     RL ⎞
           ⎜2+    ⎟
           ⎝   RC ⎠
                             1
                               g m RL
                      v02
From symmetry: Av 2 =     = 2
                      vd ⎛        RL ⎞
                           ⎜2+        ⎟
                           ⎝      RC ⎠
            v02 − v01     g m RL
Then Av =             =
               vd       ⎛     RL ⎞
                        ⎜2+      ⎟
                        ⎝     RC ⎠

11.23
The small-signal equivalent circuit is




KVL equation: v1 = Vπ 1 − Vπ 2 + v2 or v1 − v2 = Vπ 1 − Vπ 2
KCL equation:
Vπ 1                      V
     + g mVπ 1 + g mVπ 2 + π 2 = 0
 rπ                        rπ
              ⎛1         ⎞
(Vπ 1 + Vπ 2 ) ⎜   + g m ⎟ = 0 ⇒ Vπ 1 = −Vπ 2
              ⎝ rπ       ⎠
                                        1
Then v1 − v2 = −2Vπ 2 or Vπ 2 = −         ( v1 − v2 )
                                        2
Now       v0 = − g mVπ 2 ( RC    RL )
               1
              = g m ( RC      RL )( v1 − v2 )
               2
                                v0 1
For v1 − v2 ≡ vd ⇒ Ad =           = g m ( RC       RL )
                                vd 2

11.23
a.
      10 − 7
RD =            ⇒ RD = 6 kΩ
         0.5
I Q = I D1 + I D 2 ⇒ I Q = 1 mA
b.
10 = I D ( 6 ) + VDS − VGS
                   ID
and VGS =             + VTN
                   Kn
                                 0.5
For I D = 0.5 mA, VGS =              + 2 = 3.12 V
                                 0.4
and VDS = 10.12




Load line is actually nonlinear.
c.       Maximum common-mode voltage when M 1 and M 2 reach the transition point, or
VDS ( sat ) = VGS − VTN = 3.12 = 2 = 1.12V
Then
vcm = v02 − vDS ( sat ) + VGS = 7 − 1.12 + 3.12
Or vcm ( max ) = 9 V
Minimum common-mode voltage, voltage across I Q becomes zero.
So vcm ( min ) = −10 + 3.12
⇒ vcm ( min ) = −6.88 V

11.24
We have VC 2 = − g mVπ 2 RC = − g m (Vb 2 − Ve ) RC
and
VC1 = − g mVπ 1 RC = − g m (Vb1 − Ve ) RC
Then
V0 = VC 2 − VC1
   = − g m (Vb 2 − Ve ) RC − ⎡ − g m (Vb1 − Ve ) RC ⎤
                             ⎣                      ⎦
   = g m RC (Vb1 − Vb 2 )
                               V0
Differential gain Ad =                 = g m RC
                            Vb1 − Vb 2
Common-mode gain Acm = 0

11.25
(a)
 vcm = 3 V ⇒ VC1 = VC 2 = 3 V
           10 − 3
 Then RC =        ⇒ RC = 70 k Ω
             0.1
(b)
CMRRdB = 75 dB ⇒ CMRR = 5623
 Now
           1 ⎡ (1 + β ) I Q Ro ⎤
CMRR =       ⎢1 +              ⎥
           2⎣       β VT       ⎦
         1 ⎡ (151)( 0.2 ) Ro ⎤
5623 =     ⎢1 +              ⎥ ⇒ Ro = 1.45 M Ω
         2 ⎢ (150 )( 0.026 ) ⎥
           ⎣                 ⎦
Use a Widlar current source.
Ro = ro [1 + g m RE ]
                  ′
Let VA of current source transistor be 100 V.
           100                      0.2
Then ro =       = 500 k Ω, g m =         = 7.69 mA / V
           0.2                     0.026
     (150 )( 0.026 )
rπ =                 = 19.5 k Ω
          0.2
So 1450 = 500 ⎡1 + ( 7.69 ) RE ⎤ ⇒ RE = 0.247 k Ω
                ⎣             ′⎦     ′
     ′
Now RE = RE rπ ⇒ 0.247 = RE 19.5 ⇒ RE = 250Ω
                    ⎛I        ⎞
Then I Q RE = VT ln ⎜ REF     ⎟
                    ⎜ I       ⎟
                    ⎝ Q       ⎠
                               ⎛ I REF ⎞
( 0.2 )( 0.250 ) = ( 0.026 ) ln ⎜
                                ⎜        ⎟ ⇒ I REF = 1.37 mA
                                         ⎟
                               ⎝ ( 0.2 ) ⎠
             10 − 0.7 − ( −10 )
Then R1 =                           ⇒ R1 = 14.1 k Ω
                    1.37

11.26
At terminal A.
                     R (1 + δ ) ⋅ R       R (1 + δ )       R
RTHA = RA R =                         =                ≅     = 5 kΩ
                    R (1 + δ ) + R         2+δ             2
Variation in RTH is not significant
       ⎛ RA ⎞ + R (1 + δ )( 5 ) 5 (1 + δ )
VTHA = ⎜        ⎟V =                =
       ⎝ RA + R ⎠    R (1 + δ ) + R   2+δ
At terminal B.
                 R
RTHB = R R =        = 5 kΩ
                 2
       ⎛ R ⎞ +
VTHB = ⎜        ⎟ V = 2.5 V
       ⎝R+R⎠
From Eq. (11.27)
     − β RC (V2 − V1 )
VO =                    where V2 = VTHB and V1 = VTHA
       2 ( rπ + RB )
                      (120 )( 0.026 )
RB = 5 k Ω, rπ =                        = 12.5 k Ω
                           0.25
            − (120 )( 3)(V2 − V1 )
So VO =                              = −10.3 (V2 − V1 )
                2 (12.5 + 5 )
We can find V2 − V1 = VTHB − VTHA
                       ⎡ 5 (1 + δ ) ⎤
VTHB − VTHA = 2.5 − ⎢               ⎥
                       ⎣ 2+δ ⎦
  2.5 ( 2 + δ ) − 5 (1 + δ ) 2.5δ − 5δ
=                             =
            2+δ                     2+δ
  −2.5δ
≅          = −1.25δ
     2
Then VO = − (10.3)( −1.25 ) δ = 12.9δ
So for −0.01 ≤ δ ≤ 0.01
We have −0.129 ≤ VO 2 ≤ 0.129 V

11.27
a.
Rid = 2rπ
        (180 )( 0.026 )
 rπ =                     = 23.4 kΩ
           0.2
So Rid = 46.8 kΩ
b.          Assuming rμ → ∞, then
Ricm ≅ ⎡(1 + β ) R0 ⎤
       ⎣            ⎦
Ricm = ⎡(181)(1) ⎤
       ⎣          ⎦
      = 181 ⇒ Ricm = 181 MΩ

11.28
(a)
      10 − 0.7 − ( −10 )
 I1 =                    = 0.5 ⇒ R1 = 38.6 K
             R1
        0.026 ⎛ 0.5 ⎞
R2 =         ln ⎜    ⎟ ⇒ R2 = 236 Ω
         0.14 ⎝ 0.14 ⎠
(b)
Ricm ≈ (1 + β ) Ro
                                         0.14
Ro = ro 4 (1 + g m 4 RE ) g m 4 =
                      ′                        = 5.385 mA/V
                                        0.026
                                        (180 )( 0.026 )
                                 rπ 4 =                 = 33.4 K
                                             0.14
                                    ′
                                 RE = 33.4 0.236 = 0.234 K
                                100
                                  ro 4 =
                                     = 714 K
                               0.14
  Ro = 714 ⎡1 + ( 5.385 )( 0.234 ) ⎤
           ⎣                       ⎦
      = 1614 K
Ricm = (181)(1614 ) ≈ 292 MΩ
(c)
            − g m1 RC                          0.07
Acm =                                g m1 =          = 2.692 mA/V
            2 (1 + β ) Ro                      0.026
         1+
                 rπ 1
                                              (180 )( 0.026 )
                                     rπ 1 =                     = 66.86 K
                                                    0.07
       − ( 2.692 )( 40 )
Acm =
         2 (181)(1614 )
      1+
              66.86
Acm = −0.0123

11.29
 Ad 1 = g m1 ( R1 rπ 3 )
         I Q1 / 2
g m1 =              = 19.23I Q1
           VT
          β VT          2 (100 )( 0.026 )          5.2
rπ 3 =              =                          =
         IQ2 / 2              IQ 2                 IQ 2
          g m 3 R2          IQ 2 / 2
Ad 2 =             , g m3 =          = 19.23I Q 2
             2                VT
                 (19.23) I Q 2
Then 30 =             ⋅ R2 ⇒ I Q 2 R2 = 3.12 V
              2
Maximum vo 2 − vo1 = ±18 mV for linearity
vo3 ( max ) = ( ±18 )( 30 ) mV ⇒ ±0.54 V
so I Q 2 R2 = 3.12 V is OK.
From Ad 1 :
⎛    ⎛ 5.2 ⎞ ⎞
                                       ⎜ R1 ⎜
                                            ⎜I ⎟ ⎟⎟
                                       ⎜    ⎝ Q2 ⎠ ⎟
20 = 19.23I Q1 ( R1 rπ 3 ) = 19.23I Q1 ⎜              ⎟
                                       ⎜ R + ⎛ 5.2 ⎞ ⎟
                                       ⎜ 1 ⎜ IQ 2 ⎟ ⎟
                                              ⎜     ⎟
                                       ⎝      ⎝     ⎠⎠
     19.23I Q1 R1 ( 5.2 )
20 =
        I Q 2 R1 + 5.2
       I Q1
Let           ⋅ R1 = 5V ⇒ I Q1 R1 = 10 V
        2
                 19.23 (10 )( 5.2 )
Then 20 =                                 ⇒ I Q 2 R1 = 44.8 V
                   I Q 2 R1 + 5.2
                                       10
Now I Q1 R1 = 10 ⇒ R1 =
                                       I Q1
         ⎛ 10 ⎞          ⎛ IQ2 ⎞
So I Q 2 ⎜
         ⎜I ⎟ ⎟ = 44.8 ⇒ ⎜
                         ⎜I ⎟  ⎟
                                 = 4.48
         ⎝ Q1 ⎠          ⎝ Q1 ⎠
Let I Q1 = 100 μ A, I Q 2 = 448 μ A
Then
I Q 2 R2 = 3.12 ⇒ R2 = 6.96 k Ω
I Q1 R1 = 10 ⇒ R1 = 100 k Ω

11.30
a.
     20 − VGS 3
                = 0.25 (VGS 3 − 2 )
                                    2
I1 =
         50
20 − VGS 3 = 12.5 (VGS 3 − 4VGS 3 + 4 )
                     2

      2
12.5VGS 3 − 49VGS 3 + 30 = 0

                   ( 49 )       − 4 (12.5 )( 30 )
                            2
            49 ±
VGS 3 =                                             ⇒ VGS 3 = 3.16 V
                       2 (12.5 )
        20 − 3.16
I1 =              ⇒ I1 = I Q = 0.337 mA
            50
         IQ
I D1   =     ⇒ I D1 = 0.168 mA
          2
0.168 = 0.25 (VGS 1 − 2 ) ⇒ VGS1 = 2.82 V
                                   2


VDS 4 = −2.82 − ( −10 ) ⇒ VDS 4 = 7.18 V
VD1 = 10 − ( 0.168 )( 24 ) = 5.97 V
VDS1 = 5.97 − ( −2.82 ) ⇒ VDS 1 = 8.79 V
(b)




(c)
Max vCM ⇒ VDS 1 = VDS 2 = VDS ( sat ) = VGS1 − VTN
                                     2.82 − 2 = 0.82 V
Now VD1 = 10 − ( 0.168 )( 24 ) = 5.97 V
VS ( max ) = 5.97 − VDS1 ( sat ) = 5.97 − 0.82
VS ( max ) = 5.15 V
vCM ( max ) = VS ( max ) + VGS1 = 5.15 + 2.82
vCM ( max ) = 7.97 V
vCM ( min ) = V − + VDS 4 ( sat ) + VGS 1
VDS 4 ( sat ) = VGS 4 − VTN = 3.16 − 2 = 1.16 V
Then vCM ( min ) = −10 + 1.16 + 2.82 ⇒ vCM ( min ) = −6.02 V

11.31
a.
I D1 = I D 2 = 120 μ A = 100 ( VGS1 − 1.2 ) ⇒ VGS 1 = VGS 2 = 2.30 V
                                               2


For v1 = v2 = −5.4 V and VDS1 = VDS 2 = 12 V ⇒ −5.4 − 2.30 + 12 = 4.3 V = VD
      10 − 4.3
RD =               ⇒ RD = 47.5 kΩ
         0.12
I Q = I D1 + I D 2 ⇒ I Q = I1 = 240 μ A

I1 = 240 = 200 (VGS 3 − 1.2 ) ⇒ VGS 3 = 2.30 V
                                     2


        20 − 2.3
R1 =             ⇒ R1 = 73.75 kΩ
         0.24
b.
         1               1
r04 =          =                     = 416.7 kΩ
        λ IQ       ( 0.01)( 0.24 )
          1            5.4
ΔI Q =       ⋅ ΔVDS =       ⇒ ΔI Q ≅ 13 μ A
         r04          416.7

11.32
(a)
  I Q = 160 μ A
        k′ ⎛ W ⎞
  I D = n ⎜ ⎟ (VGS − VTN )
                           2

         2⎝L⎠
        80
 80 = ( 4 )(VOS − 0.5 )
                        2

         2
 80 = 160 (Vo5 − 0.5 )
                             2



          80
VGS =          + 0.5 = 1.207 V
         160
       5−2
 RD =         = 37.5 K VDS = 2 − ( −1.207 ) = 3.21 V
       0.08
(c)
VDS ( sat ) = VGS − VTN = 1.207 − 0.5 = 0.707 V
Then VS = VO 2 − VDS ( sat ) = 2 − 0.707 = +1.29 V
And v1 = v2 = vcm = VGS + VS = 1.207 + 1.29
                      vcm = 2.50 V
(b)
11.33
 vD = 5 − ( 0.2 )( 8 ) = 3.4 V
          ID
VGS =        + VTN
          Kn
        0.2
      =      + 0.8 = 1.694 V
        0.25
          VDS ( sat ) = VGS − VTN = 1.694 − 0.8
                      = 0.894 V
VS = VD − VDS ( sat ) = 3.4 − 0.894
                      = 2.506
vCM = VS + VGS = 2.506 + 1.694 ⇒ vCM = 4.2 V
(b)
                                    Vd
ΔvD = ΔI D ⋅ RD      ΔI D = g m ⋅        gm = 2 Kn I D
                                     2
                                             =2     ( 0.25)( 0.2 ) = 0.4472 mA/V
ΔI D = ( 0.4472 )( 0.05 ) ⇒ 22.36 μ A
ΔvD = ( 22.36 × 10−6 )( 8 × 103 ) = 0.179 V
 vD 2 = 3.4 + ΔvD
  vD 2 = 3.4 + 0.179 ⇒ vD 2 = 3.58 V
(c)
 vd = −50 mV
ΔI D = − ( 0.4472 )( 0.025 ) ⇒ −11.18 μ A
ΔvD = − (11.18 × 10−6 )( 8 × 103 ) = −0.0894 V
vD 2 = 3.4 − 0.0894 ⇒ vD 2 = 3.31 V

11.34
a.
I D1 = I D 2 = 0.5 mA
v01 − v02 = ⎡V + − I D1 RD1 ⎤ − ⎡V + − I D 2 RD 2 ⎤
            ⎣                 ⎦ ⎣                 ⎦
v01 − v02 = I D 2 RD 2 − I D1 RD1 = I D ( RD 2 − RD1 )
i.         RD1 − RD 2 = 6 kΩ, v01 − v02 = 0
ii.        RD1 = 6 kΩ, RD 2 = 5.9 kΩ
v01 − v02 = ( 0.5 )( 5.9 − 6 ) ⇒ v01 − v02 = −0.05 V
b.
K n1 = 0.4 mA / V 2 , K n 2 = 0.44 mA / V 2
VGS1 = VGS 2
I Q = ( K n1 + K n 2 )(VGS − VTN )
                                            2



1 = ( 0.4 + 0.44 )(VGS − VTN ) ⇒ (VGS − VTN ) = 1.19
                                        2                   2


 I D1 = ( 0.4 )(1.19 ) = 0.476 mA
 I D 2 = ( 0.44 )(1.19 ) = 0.524 mA
i.
 RD1 = RD 2 = 6 kΩ
v01 − v02 = ( 0.524 − 0.476 )( 6 ) ⇒ v01 − v02 = 0.288 V
ii.
 RD1 = 6 kΩ,              RD 2 = 5.9 kΩ
v01 − v02 = ( 0.524 )( 5.9 ) − ( 0.476 )( 6 )
             = 3.0916 − 2.856 ⇒ v01 − v02 = 0.236 V

11.35
(a)          From Equation (11.69)
iD 2 1  Kn           ⎛ K                        ⎞ 2
    = −     ⋅ vd 1 − ⎜ n                        ⎟ vd
 IQ 2   2IQ          ⎜ 2IQ                      ⎟
                     ⎝                          ⎠
                               0.1             ⎡ 0.1 ⎤ 2
0.90 = 0.50 −                         ⋅ vd 1 − ⎢            ⎥ vd
                           2 ( 0.25 )          ⎢ 2 ( 0.25 ) ⎥
                                               ⎣            ⎦
+0.40 = − ( 0.4472 ) vd 1 − ( 0.2 ) vd
                                     2



0.8945 = −vd 1 − ( 0.2 ) vd
                          2


Square both sides
0.80 = vd (1 − [ 0.2] vd )
        2              2



( 0.2 ) ( vd2 )
                  2      2
                      − vd + 0.80 = 0

 2
       1 ± 1 − 4 ( 0.2 )( 0.80 )
vd =                                     = 4V 2 or 1V 2
                       2 ( 0.2 )
Then vd = ± 2 V or ± 1 V
                           IQ       0.25
But vd      max
                      =         =        = 1.58
                           kn        0.1
So vd = ±1V, ⇒ vd = −1V
b.           From part (a), vd ,max = 1.58 V

11.36
⎛i ⎞
d ⎜ D1 ⎟
  ⎜I ⎟                   ⎛ K         ⎞ 2
  ⎝ Q⎠=         Kn
                    ⋅ 1− ⎜ n
                         ⎜ 2I        ⎟ vd + (
                                     ⎟          ) vd   vd =0
  dvd           2IQ      ⎝ Q         ⎠
                Kn
           =
                2IQ
               iD1 1  Kn
So linear         = +      ⋅ vd
               IQ 2   2 IQ

     1   Kn                 ⎡1    Kn                      ⎛K ⎞ 2          ⎤
       +     ⋅ vd ( max ) − ⎢ +        ⋅ vd ( max ) ⋅ 1 − ⎜ n ⎟vd ( max ) ⎥
     2   2IQ                ⎢2   2 IQ                     ⎝ 2I n ⎠        ⎥
Then                        ⎣                                             ⎦ = 0.02
                             1   Kn
                               +      ⋅v
                             2   2 I Q d ( max )

     ⎡1  Kn               ⎤ ⎡1    Kn                     ⎛K                  ⎞ 2          ⎤
0.98 ⎢ +     ⋅ vd ( max ) ⎥ = ⎢ +     ⋅ vd ( max ) ⋅ 1 − ⎜ n                 ⎟ vd ( max ) ⎥
     ⎢2  2IQ              ⎥ ⎢2    2IQ                    ⎜ 2I                ⎟            ⎥
     ⎣                    ⎦ ⎣                            ⎝ Q                 ⎠            ⎦
                  0.15                    ⎡1   0.15                        ⎛ 0.15 ⎞ 2               ⎤
0.49 + 0.98                ⋅ vd ( max ) = ⎢ +           ⋅ vd ( max ) ⋅ 1 − ⎜           ⎟ vd ( max ) ⎥
                                                                           ⎜ 2 ( 0.2 ) ⎟
                 2 ( 0.2 )                ⎢2  2 ( 0.2 )                    ⎝           ⎠            ⎥
                                          ⎣                                                         ⎦
0.49 + 0.600 vd ( max ) = 0.50 + 0.6124 vd ( max ) ⋅ 1 − ( 0.6124 ) vd ( max )
                                                                     2



0.600 vd ( max ) = 0.010 + 0.6124 vd ( max ) ⋅ 1 − ( 0.6124 ) vd ( max )
                                                               2



By trial and error vd ( max ) ≈ 0.429 V

11.37
(b)
gm = 2 K p I D = 2        ( 0.05 )( 0.008696 )
      = 0.0417 mA/V
         Vd
ΔI = g m    = ( 0.0417 )( 0.05 ) = 0.002085 mA
          2
ΔvD = ( 0.002085 )( 510 ) = 1.063
vD 2 ↑⇒ vD 2 = 1.063 − 4.565 = −3.502 V
vD1 = −1.063 − 4.565 = −5.628 V
9 = I S RS + VSG + 1
I S = 2I D
8 = 2 K P RS (VSG + VTP ) + VSG
                             2



8 = ( 2 )( 0.05 )( 390 )(VSG − 0.8 ) + VSG
                                         2


8 = 39 (VSG − 1.6VSG + 0.64 ) + VSG
          2


    2
39VSG − 61.4VSG + 16.96 = 0
        61.4 ± 3769.96 − 4 ( 39 )(16.96 )
VSG =
                         2 ( 39 )
      = 1.217 V VS = 2.217
I S = 0.01739 mA          I D1 = I D 2 ⇒ 8.696 μ A
vD1 = vD 2 = ( 8.696 )( 0.510 ) − 9 = −4.565 V
(b)
g m = 2 K P I DQ = 2        ( 0.05 )( 0.008696 ) = 0.0417 mA/V
                                  Vd
        ΔvD = ΔI D ⋅ RD              = ( 0.0417 )( 0.05 ) = 0.002085 mA
                             ΔI D = g m ⋅
                                   2
ΔvD = ( 0.002085 )( 510 ) = 1.063 V
v1 ↑, I D1 ↓, vD1 ↓
vD1 = −4.565 − 1.063 = −5.628 V
vD 2 = −4.565 + 1.063 = −3.502 V

11.38
(a)
 v1 = v2 = 0
I D = K n (VSG + VTP )
                         2


ID = 6 μA
   6
     + 0.4 = VSG
  30
VSG = 0.847 V
 VS = +0.847 V
 vD = I D RD − 3
    = ( 6 )( 0.36 ) − 3 = −0.84 V
VSD = VS − vD = 0.847 − ( −0.84 )
 vSD = 1.69 V
(b)
(i)
 Ad = g m RD g m = 2 K n I D
                      =2     ( 30 )( 6 ) = 26.83 μ A/V
 Ad = ( 26.83)( 0.36 ) ⇒ Ad = 9.66
 Acm = 0
(ii)
        g R       ( 26.83)( 0.36 )
  Ad = m D =                       ⇒ Ad = 4.83
          2               2
         − g m RD      − ( 26.83)( 0.36 )
 Acm =               =                    = −0.0448
       1 + 2 g m RO 1 + 2 ( 26.83)( 4 )

11.39
For v1 = v2 = −0.30 V
I D1 = I D 2 = 0.1 mA
           ID
VSG =         − VTP
           KP
          0.1
      =        +1 = 2 V
          0.1
vD1   = vD 2 = ( 0.1)( 30 ) − 10
      = −7 V
 gm = 2 K p I D = 2       ( 0.1)( 0.1) = 0.2 mA/V
           ⎛V ⎞
ΔI D = g m ⎜ d ⎟ = ( 0.2 )( 0.1) = 0.02 mA
           ⎝ 2⎠
ΔvD = ( ΔI D ) RD = ( 0.02 )( 30 ) = 0.6 V
vD 2 ↑⇒ vD 2 = −7 + 0.6 ⇒ vD 2 = −6.4 V
 vD1 = −7 − 0.6 ⇒ vD1 = −7.6 V

11.40
For v1 = v2 = 0
     0 = VGS + 2 I D RS − 10
      10 = VGS + 2 K n RS (VGS − VTN )
                                         2



          = VGS + 2 ( 0.15 )( 75 )(VGS − 1)
                                              2


      2
22.5VGS − 44VGS + 12.5 = 0
So VGS = 1.61 V and I D = ( 0.15 )(1.61 − 1) ⇒ 55.9 μ A
                                                  2



      gm = 2 Kn I D = 2      ( 0.15 )( 0.0559 )
     g m = 0.1831 mA/V
Use Half-circuits – Differential gain
            ⎛V ⎞⎛        ΔR ⎞
vD1 = − g m ⎜ d ⎟ ⎜ RD +      ⎟
            ⎝ 2 ⎠⎝         2 ⎠
           ⎛V ⎞⎛        ΔR ⎞
vo 2 = g m ⎜ d ⎟ ⎜ RD −     ⎟
           ⎝ 2 ⎠⎝        2 ⎠
 vo = vD1 − vD 2 = − g mVd RD
        v
 Ad = o = − g m RD
       Vd
Now – Common-Mode Gain
Vi = Vgs + g mVgs ( 2 RS ) = Vcm
           Vcm
Vgs =
      1 + g m ( 2 RS )
               ⎛       ΔR ⎞
         − g m ⎜ RD + D ⎟ Vcm
               ⎝          2 ⎠
vD1    =
              1 + g m ( 2 RS )
              ⎛        ΔR ⎞
         − gm ⎜ RD − D ⎟ Vcm
              ⎝          2 ⎠
vD 2   =
             1 + g m ( 2 RS )
vO = vD1 − vD 2
           − g m ( ΔRD ) Vcm
So vo =
            1 + g m ( 2 RD )
          vo   − g m ( ΔRD )
Acm =        =
         Vcm 1 + g m ( 2 RS )
Then
Ad = − ( 0.1831)( 50 ) = −9.16
           − ( 0.1831)( 0.5 )
Acm =                               = −0.003216
         1 + ( 0.1831)( 2 )( 75 )
C M R R ∫ = 69.1 dB
             bB



11.41
a.
 Ad = g m ( r02 r04 )
         VA 2 150
 r02 =        =    = 375 kΩ
         I C 2 0.4
         VA 4 100
 r04 =        =    = 250 kΩ
         I C 4 0.4
         IC 2    0.4
gm =          =       = 15.38 mA/V
         VT     0.026
Ad = (15.38 ) ( 375 250 ) ⇒ Ad = 2307
b.
RL = r02 r04 = 375 250 ⇒ RL = 150 kΩ

11.41
From 11.40
I D1 = I D 2 = 55.9 μ A
 g m = 0.183 mA/V
Vd                    ⎛ +V ⎞
Ad : ΔvD1 = − g m1            ⋅ RD
                                 ΔvD 2 = + g m 2 ⎜ d ⎟ RD
                            2                    ⎝ 2 ⎠
                           V               V
vO = ΔvD1 − ΔvD 2 = − g m1 d RD − g m 2 d RD
                             2              2
     −V                         −V        ⎛        Δg   ⎛ Δg ⎞ ⎞
vO = d ⋅ RD ( g m 2 + g m1 ) = d ⋅ RD ⎜ g m − m + ⎜ g m − m ⎟ ⎟
      2                           2       ⎝         2   ⎝  2 ⎠⎠
Ad = − g m RD = − ( 0.183) ( 50 ) = −9.15
                                           ⎛       Δg ⎞          ⎛     Δg ⎞
                                         − ⎜ g m + M ⎟ RD vcm ⎜ g m − M ⎟ RD vCM
                                           ⎝         2 ⎠         ⎝       2 ⎠
ACM : vO = ΔvD1 − ΔvD 2                =                       +
                                              1 + g m ( 2 RS )     1 + g m ( 2 RS )
          vO    −Δg m RD
Acm =        =                          Δg m = ( 0.01) ( 0.183) = 0.00183
          vcm 1 + g m ( 2 RS )
           − ( 0.00183) ( 50 )
Acm =                                  = −0.003216
        1 + ( 0.183)( 2 ) ( 75 )
 C M R R ∫ = 69.1 dB
              dB


11.42
(a)
 v1 = v2 = 0
5 = 2 I D RS + VSG
5 = 2 K p RS (VSG + VTP ) + VSG
                               2


5 = 2 ( 0.5 )( 2 ) (VSG − 1.6VSG + 0.64 ) + VSG
                      2

       2
5 = 2VSG − 2.2VSG + 1.28
   2
2VSG − 2.2VSG − 3.72 = 0
        2.2 ± 4.84 + 4 ( 2 )( 3.72 )
VSG =
                     2 ( 2)
VSG = 2.02 V
                            5 − 2.02
vS = 2.02 V,         IS =              = 1.49 mA
                                 2
                   I D1   = I D 2 = 0.745 mA
vD1 = vD 2 = ( 0.745 (1) − 5 ) ⇒ vD1 = vD 2 = −4.26 V
(b)
5 = I S RS + VSG 2
5 = ( I D1 + I D 2 ) RS + VSG 2
5 = ⎡ K p (VSG1 + VTP ) + K p (VSG 2 + VTP ) ⎤ RS + VSG 2
                       2                    2
    ⎣                                         ⎦
VSG1 = VSG 2 − 1
5 = ( 0.5 )( 2 ) ⎡(VSG 2 − 1.8 ) + (VSG 2 − 0.8 ) ⎤ + VSG 2
                                   2                 2
                 ⎣                                ⎦
5 = ⎡VSG 2 − 3.6VSG 2 + 3.24 + VSG 2 − 1.6VSG 2 + 0.64 ⎤ + VSG 2
    ⎣
        2                           2
                                                          ⎦
        2
5 = 2VSG 2 − 4.2VSG 2 + 3.88
   2
2VSG 2 − 4.2VSG 2 − 1.12 = 0
          4.2 ± 17.64 + 4 ( 2 ) (1.12 )
VSG 2 =
                          2 ( 2)
VSG 2 = 2.339 V VSG1 = 1.339 V
vS = 2.339 V
       = 0.5 (1.339 − 0.8 )              = 0.5 ( 2.339 − 0.8 )
                              2                                  2
I D1                              I D2
I D1   = 0.1453 mA                I D2   = 1.184 mA
vD1    = ( 0.1453)(1) − 5         vD 2   = (1.184 ) (1) − 5
vD1    = −4.855 V                 vD 2   = −3.816 V
(c)
            Vd
ΔI = g m           gm = 2 K p I D
             2
vS ≈ 2.02 V = 2          ( 0.5 )( 0.745 )
                   g m = 1.22 mA/V
ΔI = (1.22 )( 0.1) = 0.122 mA
ΔvD = ( ΔI ) RD = ( 0.122 )(1) = 0.122 V
vD 2 ↓ vD1 ↑
vD1 = −4.26 + 0.122 vD 2 = −4.26 − 0.122
vD1 = −4.138 V          vD 2 = −4.382 V

11.43




                    IQ
a.          gf =         ⇒ I Q = g f ( 4VT ) = ( 8 )( 4 )( 0.026 )
                   4VT
⇒ I Q = 0.832 mA
Neglecting base currents.
     30 − 0.7
R1 =          ⇒ R1 = 35.2 kΩ
      0.832
                    V     100
b.       r04 = r02 = A =       = 240 kΩ
                    I CQ 0.416
I CQ       0.416
gm =           =         = 16 mA / V
         VT        0.026
Ad = g m ( r02 || r04 ) = 16 ( 240 || 240 )
⇒ Ad = 1920
                      (180 )( 0.026 )
Rid = 2rπ , rπ =                        = 11.25 kΩ
                           0.416
⇒ Rid = 22.5 kΩ
R0 = r02 || r04 ⇒ R0 = 120 kΩ
c.       Max. common-mode voltage when
VCB = 0 for Q1 and Q2 .
Therefore
vcm ( max ) = V + − VEB ( Q3 ) = 15 − 0.7
vcm ( max ) = 14.3 V
          Min. common-mode voltage when
VCB = 0 for Q5 .
Therefore
vcm ( min ) = 0.7 + 0.7 + ( −15 ) = −13.6 V
So −13.6 ≤ vcm ≤ 14.3 V
      1
Ricm ≅  (1 + β )( 2 R0 )
      2
    V       100
R0 = A =           = 120 kΩ
    I Q 0.832
Ricm = (181)(120 ) ⇒ Ricm = 21.7 MΩ

11.43
(a)
 gm = 2 Kn I D
    =2        ( 0.4 )(1)
g m = 1.265 mA/V
      v     1
Ad = o =      = 10
      vd 0.1
Ad = g m RD
10 = (1.265 ) RD
RD = 7.91 K
(b)
 Quiescent v1 = v2 = 0
vD1 = vD 2 = 10 − (1)( 7.91) = 2.09 V
          ID          1
VGS =        + VTN =     + 0.8 = 2.38 V
          Kn         0.4
VDS ( sat ) = 2.38 − 0.8 = 1.58
So vcm = vD − VDS ( sat ) + VGS
       = 2.09 − 1.58 + 2.38
vcm = 2.89 V

11.44
g m RD
Ad =
          2
For vCM = 2.5 V
               IQ
I D1 = I D 2 =    = 0.25 mA
                2
                                             10 − 3
Let VD1 = VD 2 = 3 V , then RD =                    ⇒ RD = 28 k Ω
                                              0.25
               g m ( 28 )
Then 100 =                    ⇒ g m = 7.14 mA / V
              2
            k′ ⎛ W            ⎞
And g m = 2 n ⎜               ⎟ ID
            2⎝L               ⎠
         ⎛ 0.080 ⎞ ⎛ W ⎞
7.14 = 2 ⎜       ⎟ ⎜ ⎟ ( 0.25 ) ⇒
         ⎝ 2 ⎠⎝ L ⎠
⎛W ⎞ ⎛W ⎞
⎜ ⎟ = ⎜ ⎟ = 1274 (Extremely large transistors to meet the gain requirement.)
⎝ L ⎠1 ⎝ L ⎠ 2
Need ACM = 0.10
From Eq. (11.64(b))
          g m RD
 ACM =
       1 + 2 g m Ro
             ( 7.14 )( 28)
So 0.10 =                   ⇒ Ro = 140 k Ω
          1 + 2 ( 7.14 ) Ro
For the basic 2-transistor current source
            1            1
Ro = ro =        =             = 200 k Ω
          λ I Q ( 0.01)( 0.5 )
This current source is adequate to meet common-mode gain requirement.

11.45
Not in detail, Approximation looks good.
a.
     −V − ( −5 )
                   and I S = 2 I D = 2 K n (VGS 1 − VTN )
                                                          2
I S = GS 1
          RS
5 − VGS 1
          = 2 ( 0.050 )(VGS 1 − 1)
                                   2

   20
5 − VGS 1 = 2 (VGS1 − 2VGS1 + 1)
                 2

   2
2VGS1 − 3VGS 1 − 3 = 0

              ( 3)       + 4 ( 2 )( 3)
                     2
         3±
VGS1 =                                   ⇒ VGS1 = 2.186 V
                 2 ( 2)
      5 − 2.186
IS =             ⇒ I S = 0.141 mA
           20
              I
I D1 = I D 2 = S ⇒ I D1 = I D 2 = 0.0704 mA
               2
v02 = 5 − ( 0.0704 )( 25 ) ⇒ v02 = 3.24 V
b.
g m = 2 K n (VGS − VTN ) = 2 ( 0.05 )( 2.186 − 1)
g m = 0.119 mA/V
       1              1
r0 =         =                    = 710 kΩ
     λ I DQ ( 0.02 )( 0.0704 )
Vgs1 = v1 − VS , Vgs 2 = v2 − VS
v01              v −V
     + g mVgs1 + 01 S = 0
RD                 r0

    ⎛ 1     1⎞                   V
v01 ⎜     + ⎟ + g m ( v1 − VS ) − S = 0              (1)
    ⎝ RD r0 ⎠                     r0
v02              v − VS
     + g mVgs 2 + 02      =0
RD                   r0
    ⎛ 1    1⎞                   V
v02 ⎜    + ⎟ + g m ( v2 − VS ) − S = 0               (2)
    ⎝ RD r0 ⎠                    r0
         v − V v − VS                    V
g mVgs1 + 01 S + 02          + g mVgs 2 = S
            r0         r0                RS
                    v01 v02 2VS                     V
g m ( v1 − VS ) +      +    −    + g m ( v2 − VS ) = S
                    r0   r0   r0                    RS
                    v01 v02        ⎧       2 1 ⎫
g m ( v1 + v2 ) +      +    = VS   ⎨2 g m + + ⎬            (3)
                    r0   r0        ⎩       r0 RS ⎭
From (1)
        ⎛      1⎞
     VS ⎜ g m + ⎟ − g m v1
v01 = ⎝
               r0 ⎠
          ⎛ 1     1⎞
          ⎜    + ⎟
          ⎝ RD r0 ⎠
Then
                    ⎛       1⎞
                 VS ⎜ g m + ⎟ − g m v1
                                                 ⎧       2 1 ⎫
g m ( v1 + v2 ) + ⎝
                            r0 ⎠        v
                                       + 02 = VS ⎨2 g m + + ⎬ (3)
                        ⎛ 1      1⎞      r0      ⎩       r0 RS ⎭
                     r0 ⎜     + ⎟
                        ⎝ RD r0 ⎠
⎛ 1     1⎞       ⎛       1⎞             ⎛ 1     1⎞     ⎧         2 1 ⎫ ⎛ 1        1⎞
g m ( v1 + v2 ) r0 ⎜    + ⎟ + VS ⎜ g m + ⎟ − g m v1 + v02 ⎜      + ⎟ = VS ⎨2 g m + + ⎬ ⋅ r0 ⎜       + ⎟
                   ⎝ RD r0 ⎠        ⎝       r0 ⎠           ⎝ RD r0 ⎠      ⎩        r0 RS ⎭ ⎝ RD r0 ⎠
                ⎛     r ⎞                ⎛ 1     1⎞     ⎧
                                                        ⎪⎛        2 1 ⎞⎛        r0 ⎞ ⎛       1 ⎞⎪ ⎫
g m ( v1 + v2 ) ⎜ 1 + 0 ⎟ − g m v1 + v02 ⎜     + ⎟ = VS ⎨⎜ 2 g m + +    ⎟ ⎜1 +     ⎟ − ⎜ gm + ⎟⎬
                ⎝     RD ⎠               ⎝ RD r0 ⎠      ⎪⎝
                                                        ⎩         r0 RS ⎠ ⎝ RD ⎠ ⎝           r0 ⎠ ⎪
                                                                                                  ⎭
    ⎛      r             r ⎞       ⎛ 1   1⎞       ⎧         2 1             r   2       r           1⎫
g m ⎜ v1 ⋅ 0 + v2 + v2 ⋅ 0 ⎟ + v02 ⎜    + ⎟ = VS ⎨2 g m + +         + 2gm ⋅ 0 +    + 0 − gm − ⎬
    ⎝ RD                RD ⎠       ⎝ RD r0 ⎠      ⎩        r0 RS            RD RD RS RD             r0 ⎭
    ⎛                    r ⎞       ⎛ 1   1⎞       ⎧
                                                  ⎪        1 1 ⎛         r0 ⎞ 2               ⎫
                                                                                 (1 + g m r0 )⎪ (4)
           r
g m ⎜ v1 ⋅ 0 + v2 + v2 ⋅ 0 ⎟ + v02 ⎜    + ⎟ = VS ⎨2 g m + +         ⎜1 +    ⎟+                ⎬
    ⎝ RD                RD ⎠       ⎝ RD r0 ⎠      ⎪
                                                  ⎩        r0 RS ⎝ RD ⎠ RD                    ⎪
                                                                                              ⎭
                                  ⎛ 1    1⎞              ⎛      1⎞
Then substituting into (2), v02 ⎜      + ⎟ + g m v2 = VS ⎜ g m + ⎟
                                  ⎝ RD r0 ⎠              ⎝      r0 ⎠
                              ⎡ 710              710 ⎤       ⎡1       1 ⎤
Substitute numbers: ( 0.119 ) ⎢ v1     + v2 + v2     ⎥ + v02 ⎢ 25 + 710 ⎥                         (4)
                              ⎣ 25                25 ⎦       ⎣          ⎦
                                     ⎧           1     1 ⎛ 710 ⎞ 2                              ⎫
                                = VS ⎨0.119 +       + ⎜1 +          ⎟ + ⎡1 + ( 0.119 )( 710 ) ⎤ ⎬
                                                                          ⎣                   ⎦
                                     ⎩         710 20 ⎝         25 ⎠ 25                         ⎭
( 0.119 ) [ 28.4v1 + 29.4v2 ] + ( 0.0414 ) v02 = VS {0.1204 + 1.470 + 6.8392}
                                               = VS ( 8.4296 )
or VS = 0.4010v1 + 0.4150v2 + 0.00491v02
          ⎛ 1       1 ⎞                       ⎛           1 ⎞
Then v02 ⎜ +            ⎟ + ( 0.119 ) v2 = VS ⎜ 0.119 +     ⎟          (2)
          ⎝ 25 710 ⎠                          ⎝         710 ⎠
v02 ( 0.0414 ) + v2 ( 0.119 ) = ( 0.1204 ) [ 0.401v1 + 0.4150v2 + 0.00491v02 ]
v02 ( 0.0408 ) = ( 0.04828 ) v1 − ( 0.0690 ) v2
v02 = (1.183) v1 − (1.691) v2
                    vd
Now      v1 = vcm +
                     2
                   vd
        v2 = vcm −
                    2
                 ⎛      v ⎞            ⎛      v ⎞
So v02 = (1.183) ⎜ vcm + d ⎟ − (1.691) ⎜ vcm − d ⎟
                 ⎝       2⎠            ⎝       2⎠
Or v02 = 1.437vd − 0.508vcm ⇒ Ad = 1.437, Acm = −0.508
                     ⎛ 1.437 ⎞
C M R RdB = 20 log10 ⎜       ⎟ ⇒ C M R RdB = 9.03 dB
                     ⎝ 0.508 ⎠

11.46




KVL:
v1 = Vgs1 − Vgs 2 + v2
So v1 − v2 = Vgs1 − Vgs 2
KCL:
g mVgs1 + g mVgs 2 = 0 ⇒ Vgs1 = −Vgs 2
           1                      1
So Vgs1 = ( v1 − v2 ) , Vgs 2 = − ( v1 − v2 )
           2                      2
Now
v02 v02 − v01
    +             = − g mVgs 2
RD        RL
                                                       (1)
                        ⎛ 1   1 ⎞ v01
                  = v02 ⎜   +   ⎟−
                        ⎝ RD RL ⎠ RL
v01 v01 − v02
   +          = − g mVgs1
RD     RL
                                                       (2)
                     ⎛ 1     1 ⎞ v02
               = v01 ⎜    +    ⎟−
                     ⎝ RD RL ⎠ RL
                    ⎛    R ⎞
From (1): v01 = v02 ⎜ 1 + L ⎟ + g m RLVgs 2
                    ⎝    RD ⎠
Substitute into (2):
                   ⎛     R ⎞⎛ 1       1 ⎞           ⎛ 1      1 ⎞         v02
− g mVgs1 = v02 ⎜1 + L ⎟ ⎜         +     ⎟ + g m RL ⎜     +    ⎟ Vgs 2 −
                   ⎝     RD ⎠ ⎝ RD RL ⎠             ⎝ RD RL ⎠            RL
                          ⎛     R ⎞⎛ 1 ⎞                  ⎛ 1    R        1 ⎞
− g m ⋅ ( v1 − v2 ) + g m ⎜ 1 + L ⎟ ⎜ ⎟ ( v1 − v2 ) = v02 ⎜    + L +
                                                                   2         ⎟
                          ⎝ RD ⎠ ⎝ 2 ⎠                    ⎝ RD RD RD ⎠
                                                 1
                                                   ⋅ g m RL
1 ⎛ RL ⎞              v02 ⎛ RL ⎞          v02
 gm ⎜  ⎟ ( v1 − v2 ) = ⎜ 2 + ⎟ ⇒ Ad 2 =        = 2
2 ⎝ RD ⎠              RD ⎝  RD ⎠        v1 − v2 ⎛      RL ⎞
                                                ⎜2+        ⎟
                                                ⎝      RD ⎠
                               1
                             − ⋅ g m RL
                       v01
From symmetry Ad 1 =        = 2
                     v1 − v2 ⎛    RL ⎞
                             ⎜2+      ⎟
                             ⎝    RD ⎠
              v02 − v01     g m RL
Then Av =               =
               v1 − v2    ⎛     RL ⎞
                          ⎜2+      ⎟
                          ⎝     RD ⎠

11.47
v1 − v2 = Vgs1 − Vgs 2 and g mVgs1 + g mVgs 2 = 0 ⇒ Vgs1 = −Vgs 2
Then v1 − v2 = −2Vgs 2
                   1
Or Vgs 2 = −         ( v1 − v2 )
                   2
                                      gm
v0 = − g mVgs 2 ( RD RL ) =              ( RD RL ) ( v1 − v2 )
                                       2
               gm
Or Ad =
                2
                  ( RD RL )

11.48
                                                  Kn IQ
From Equation (11.64(a)), Ad =                             ⋅ RD
                                                       2
                        2
We need Ad =               = 10
                       0.2
                    K n ( 0.5 )
Then 10 =             ⋅ RD or K n ⋅ RD = 20
                2
If we set RD = 20 k Ω, then K n = 1 mA / V 2
For this case VD = 10 − ( 0.25 )( 20 ) = 5 V
         0.25
VGS =          + 1 = 1.5 V
            1
VDS ( sat ) = VGS − VTN = 1.5 − 1 = 0.5 V
Then vcm ( max ) = VD − VDS ( sat ) + VGS
                        = 5 − 0.5 + 1.5
Or vcm ( max ) = 6 V

11.49
Vd 1 = − g mVgs1 RD = − g m RD (V1 − Vs )
Vd 2 = − g mVgs 2 RD = − g m RD (V2 − Vs )
Now Vo = Vd 2 − Vd 1 = − g m RD (V2 − Vs ) − ( − g m RD (V1 − Vs ) )
Vo = g m RD (V1 − V2 )
Define V1 − V2 ≡ Vd
             V
Then Ad = o = g m RD and Acm = 0
             Vd

11.49
 Ad = g m ( r02 r04 )
g m = 2 kn I DQ          =2        ( 0.12 )( 0.075 )
                  = 0.1897 mA/V
         1            1
r02 =        =                   = 889 kΩ
      λn I DQ ( 0.015 )( 0.075 )
           1                   1
r04 =              =                     = 667 kΩ
        λ p I DQ       ( 0.02 )( 0.075 )
Ad = ( 0.1897 ) ( 889 667 ) ⇒ Ad = 72.3

11.50
(a)
⎛ K′ ⎞⎛W      ⎞ ⎛ 0.080 ⎞
                                       ⎟ (10 ) = 0.40 mA / V
                                                             2
K n1 = K n 2 = ⎜ n ⎟ ⎜       ⎟=⎜
               ⎝ 2 ⎠⎝ L      ⎠ ⎝ 2 ⎠
                   ID         0.1
VGS1 = VGS 2 =        + VTN =     + 1 = 1.5 V
                   Kn         0.4
VDS1 ( sat ) = 1.5 − 1 = 0.5 V
For vCM = +3 V ⇒ VD1 = VD 2 = vCM − VGS 1 + VDS 1 ( sat )
= 3 − 1.5 + 0.5 ⇒ VD1 = VD 2 = 2 V
       10 − 2
RD =          ⇒ RD = 80 k Ω
        0.1
(b)
     1
Ad =   g m RD and g m = 2 ( 0.4 )( 0.1) = 0.4 mA / V
     2
            1
Then Ad = ( 0.4 )( 80 ) = 16
            2
                                         16
C M R RdB = 45 ⇒ C M R R = 177.8 =
                                         Acm
So Acm = 0.090
            g m RD
 Acm =
         1 + 2 g m Ro
            ( 0.4 )(80 )
0.090 =                      ⇒ Ro = 443 k Ω
          1 + 2 ( 0.4 ) Ro
If we assume λ = 0.01 V −1 for the current source transistor, then
       1          1
 ro =      =               = 500 k Ω
      λ I Q ( 0.01)( 0.2 )
So the CMRR specification can be met by a 2-transistor current source.
    ⎛W ⎞ ⎛W ⎞
Let ⎜ ⎟ = ⎜ ⎟ = 1
    ⎝ L ⎠3 ⎝ L ⎠ 4
                     ⎛ 0.080 ⎞                                 IQ             0.2
                             ⎟ (1) = 0.040 mA / V and VGS 3 =
                                                 2
Then K n 3 = K n 4 = ⎜                                             + VTN =         + 1 = 3.24 V
                     ⎝   2 ⎠                                  K n3            0.04
For vCM = −3 V , VD 3 = −3 − VGS1 = −3 − 1.5 = −4.5 V ⇒ VDS 3 ( min ) = −4.5 − ( −10 ) = 5.5 V > VDS 3 ( sat )

So design is OK.
                         ⎛W ⎞
On reference side: For ⎜ ⎟ ≥ 1, VGS ( max ) = 3.24 V
                         ⎝L⎠
20 − VGS 3 = 20 − 3.24 = 16.76 V
       16.67
Then         = 5.17 ⇒ We need six transistors in series.
        3.24
20 − 3.24
VGS =              = 2.793 V
             6
          ⎛ K′ ⎞⎛W ⎞
        = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN )
                                 2
I REF
          ⎝ 2 ⎠⎝ L ⎠
      ⎛ 0.080 ⎞⎛ W ⎞              ⎛W ⎞
              ⎟⎜ ⎟ ( 2.793 − 1) ⇒ ⎜ ⎟ = 1.56 for each of the 6 transistors.
                               2
0.2 = ⎜
      ⎝ 2 ⎠⎝ L ⎠                  ⎝L⎠

11.51




        1
Ad =      g m RD
        2
gm = 2 Kn I D = 2      ( 0.25 )( 0.25) = 0.50 mA / V
     1
Ad =   ( 0.50 )( 3) = 0.75
     2
From Problem 11.26
5 (1 + δ )
V1 = VA =                       , V2 = VB = 2.5 V and V1 − V2 = 1.25δ
                   2+δ
Then
Vo 2 = Ad ⋅ (V1 − V2 ) = ( 0.75 )(1.25δ ) = 0.9375δ
So for −0.01 ≤ δ ≤ 0.01
−9.375 ≤ Vo 2 ≤ 9.375 mV

11.52
From previous results
       v −v
 Ad 1 = o 2 o1 = g m1 R1 = 2 K n1 I Q1 ⋅ R1 = 20
        v1 − v2
                      vo3    1           1
and Ad 2 =                  = g m 3 R2 =   2 K n3 I Q 2 ⋅ R2 = 30
                  vo 2 − vo1 2           2
       I Q1 R1                          I Q 2 R2
Set              = 5 V and                          = 2.5 V
         2                                  2
Let I Q1 = I Q 2 = 0.1 mA
Then R1 = 100 k Ω, R2 = 50 k Ω
                                                               2
       ⎛ 0.06 ⎞ ⎛ W ⎞        ⎛ 20 ⎞    ⎛W ⎞ ⎛W ⎞
Then 2 ⎜      ⎟ ⎜ ⎟ ( 0.1) = ⎜     ⎟ ⇒ ⎜ ⎟ = ⎜ ⎟ = 6.67
       ⎝ 2 ⎠ ⎝ L ⎠1          ⎝ 100 ⎠   ⎝ L ⎠1 ⎝ L ⎠ 2
                                                                     2
      ⎛ 0.060 ⎞ ⎛ W ⎞        ⎛ 2 ( 30 ) ⎞   ⎛W ⎞ ⎛W ⎞
and 2 ⎜       ⎟ ⎜ ⎟ ( 0.1) = ⎜          ⎟ ⇒ ⎜ ⎟ = ⎜ ⎟ = 240
      ⎝ 2 ⎠ ⎝ L ⎠3           ⎝ 50 ⎠         ⎝ L ⎠3 ⎝ L ⎠ 4

11.53
                                                    2
                               ⎛ v ⎞
a.               iD1   = I DSS ⎜ 1 − GS 1 ⎟
                               ⎝     VP ⎠
                                    2
             ⎛ v ⎞
iD 2 = I DSS ⎜ 1 − GS 2 ⎟
             ⎝     VP ⎠
                                ⎛ v ⎞               ⎛ v ⎞
     iD1 − iD 2         = I DSS ⎜1 − GS 1 ⎟ − I DSS ⎜ 1 − GS 2 ⎟
                                ⎝    VP ⎠           ⎝     VP ⎠
                                I DSS
                        =                ( vGS 2 − vGS1 )
                             VP
                                    I DSS                  I DSS
                        =−                   ⋅ vd =                 ⋅ vd
                                    VP                   ( −VP )
iD1 + iD 2 = I Q ⇒ iD 2 = I Q − iD1

(                           )
                                2           I DSS          2
      iD1 − I Q − iD1               =                   ⋅ vd
                                         ( −VP )
                                                    2



iD1 − 2 iD1 ( I Q − iD1 ) + ( I Q − iD1 ) =
                                                                   I DSS          2
                                                                               ⋅ vd
                                                               ( −VP )
                                                                           2



                                          1⎡                  ⎤
Then iD1 ( I Q − iD1 ) =
                                                    I
                                           ⎢ I Q − DSS 2 ⋅ vd ⎥
                                                            2

                                          2⎢
                                           ⎣      ( −VP ) ⎦   ⎥
Square both sides
2
             1⎡        I         ⎤
i − iD1 I Q + ⎢ I Q − DSS 2 ⋅ vd ⎥ = 0
 2
 D1
                               2

             4⎢
              ⎣      ( −VP ) ⎥   ⎦
                                                            2
                    ⎛ 1⎞⎡        I         ⎤
        I Q ± I − 4 ⎜ ⎟ ⎢ I Q − DSS 2 ⋅ vd ⎥
                   2                     2

                               ( −VP ) ⎥
                   Q
                    ⎝ 4⎠⎢
                        ⎣                  ⎦
iD1 =
                                2
                 ⎡                              2
                                                  ⎤
           1 2 ⎢ 2 2 I Q I DSS vd ⎛ I DSS vd ⎞ ⎥
                                 2         2
        IQ
iD1 =    ±   IQ − IQ −             +⎜         ⎟
                 ⎢     ( −VP ) ⎜ ( −VP ) ⎟ ⎥
                               2            2
      2 2                           ⎝         ⎠ ⎦
                 ⎣
Use + sign
                                                                2
        IQ 1 2 I Q I DSS 2                ⎛ I          ⎞
iD1   =  +              ⋅ vd            − ⎜ DSS 2 ⋅ vd ⎟
                                                     2

        2 2 ( −VP )2                      ⎜ ( −V )     ⎟
                                          ⎝     P      ⎠
                                                        2               2
        IQ       1 IQ         2 I DSS ⎛ I DSS          ⎞ ⎛v ⎞
iD1 =        +             vd        −⎜                ⎟ ⎜ d ⎟
        2        2 ( −VP )            ⎜ I              ⎟ V
                                IQ    ⎝ Q              ⎠ ⎝ P⎠
Or
                                                        2               2
iD1 1 ⎛ 1                ⎞      2 I DSS ⎛ I DSS        ⎞ ⎛ vd ⎞
   = +⎜                  ⎟ ⋅ vd        −⎜              ⎟ ⎜ ⎟
I Q 2 ⎝ −2VP                            ⎜ I            ⎟ V
                         ⎠        IQ    ⎝ Q            ⎠ ⎝ P⎠
We had
iD 2 = I Q − iD1
Then
                                                        2               2
iD 2 1 ⎛ 1               ⎞      2 I DSS ⎛ I DSS        ⎞ ⎛ vd ⎞
     = −⎜                ⎟ ⋅ vd        −⎜              ⎟ ⎜ ⎟
 I Q 2 ⎝ −2VP                           ⎜ I            ⎟ V
                         ⎠        IQ    ⎝ Q            ⎠ ⎝ P⎠
b.
If iD1 = I Q , then
                                                   2                2
  1 ⎛ 1                ⎞      2 I DSS ⎛ I DSS     ⎞ ⎛ vd ⎞
1= +⎜                  ⎟ ⋅ vd        −⎜           ⎟ ⎜ ⎟
  2 ⎝ −2VP                            ⎜ I         ⎟ V
                       ⎠        IQ    ⎝ Q         ⎠ ⎝ P⎠
                                    2         2
          2 I DSS ⎛ I DSS        ⎞ ⎛ vd ⎞
VP = vd          −⎜              ⎟ ⎜ ⎟
                  ⎜ I            ⎟ V
            IQ    ⎝ Q            ⎠ ⎝ P⎠
Square both sides
⎡ 2I    ⎛I                      ⎞ ⎛ vd ⎞ ⎤
                                               2      2

          = v ⎢ DSS − ⎜ DSS                   ⎟ ⎜ ⎟ ⎥
     2         2
VP
              ⎢ IQ    ⎜ I                     ⎟ V
                                              ⎠ ⎝ P⎠ ⎥
               d

              ⎣       ⎝ Q                               ⎦
           2           2
⎛ I DSS   ⎞ ⎛ 1 ⎞ 2 2 2 I DSS 2
          ⎟ ⎜ ⎟ ( vd ) −
                                                                2
⎜                            ⋅ vd + VP                              =0
⎜ I       ⎟ V
⎝ Q       ⎠ ⎝ P⎠         IQ
                                          2                 2        2
          2 I DSS   ⎛ 2I                 ⎞     ⎛I       ⎞ ⎛ 1 ⎞
                                                        ⎟ ⎜ ⎟ (VP )
                                                                    2
                  ± ⎜ DSS                ⎟ − 4 ⎜ DSS
                    ⎜ I                  ⎟     ⎜ I      ⎟ V
 2
            IQ      ⎝ Q                  ⎠     ⎝ Q      ⎠ ⎝ P⎠
vd =                                             2          2
                                   ⎛ 2I         ⎞ ⎛ 1 ⎞
                                 2 ⎜ DSS        ⎟ ⎜ ⎟
                                   ⎜ IQ         ⎟ ⎝ VP ⎠
                                   ⎝            ⎠
          2 ⎛ IQ ⎞
vd = (VP ) ⎜
 2
                    ⎟
            ⎝ I DSS ⎠
                                  1/ 2
             ⎛ IQ ⎞
Or vd = VP ⎜         ⎟
             ⎝ I DSS ⎠
c.       For vd small,
       IQ 1 IQ              2 I DSS
 iD1 ≈   + ⋅           ⋅ vd
        2 2 ( −VP )           IQ

          diD1                  1 IQ        2 I DSS
gf =                        =    ⋅        ⋅
                                2 ( −VP )
                   vd → 0
          d vd                                IQ

                   ⎛ 1 ⎞ I Q I DSS
Or ⇒ g f ( max ) = ⎜     ⎟
                   ⎝ −VP ⎠   2

11.53
 Ad = g m ( ro 2 Ro )
Want Ad = 400
From Example 11.15, ro 2 = 1 M Ω
Assuming that g m = 0.283 mA / V for the PMOS from Example 11.15, then Ro = 285 M Ω.
                                                      ⎛ k ′ ⎞⎛ W ⎞
So 400 = g m (1000 285000 ) ⇒ g m = 0.4014 mA / V = 2 ⎜ n ⎟ ⎜ ⎟ I DQ
                                                      ⎝ 2 ⎠ ⎝ L ⎠1
          ⎛ 0.080 ⎞ ⎛ W ⎞        ⎛W ⎞ ⎛W ⎞
0.04028 = ⎜       ⎟ ⎜ ⎟ ( 0.1) ⇒ ⎜ ⎟ = ⎜ ⎟ = 10.1
          ⎝ 2 ⎠ ⎝ L ⎠1           ⎝ L ⎠1 ⎝ L ⎠ 2

11.54
a.
I Q = I D1 + I D 2 ⇒ I Q = 1 mA
v0 = 7 = 10 − ( 0.5 ) RD ⇒ RD = 6 kΩ
b.
              ⎛ 1 ⎞ I Q ⋅ I DSS
g f ( max ) = ⎜     ⎟
              ⎝ −VP ⎠    2

               ⎛ 1 ⎞ (1)( 2 )
 g f ( max ) = ⎜ ⎟            ⇒ g f ( max ) = 0.25 mA/V
               ⎝ 4⎠     2
c.
        g R
 Ad = m D = g f ( max ) ⋅ RD
          2
 Ad = ( 0.25 )( 6 ) ⇒ Ad = 1.5
11.55
a.
       −VGS − ( −5 )
                                                     2
                                        ⎛ V ⎞
IS =                      = ( 2 ) I DSS ⎜ 1 − GS ⎟
             RS                         ⎝    VP ⎠
                                             2
                             ⎛     V ⎞
5 − VGS = ( 2 )( 0.8 )( 20 ) ⎜ 1 − GS ⎟
                             ⎜ ( −2 ) ⎟
                             ⎝         ⎠
                  ⎛              1 2 ⎞
5 − VGS = ( 2 )16 ⎜1 + VGS + VGS ⎟
                  ⎝              4   ⎠
   2
8VGS + 33VGS + 27 = 0
         −33 ± 1089 − 4 ( 8 )( 27 )
VGS =
                      2 (8)
      = −1.125 V
         5 − ( −1.125 )
  IS =
             20
      = 0.306 mA
 I D1 = I D 2 = 0.153 mA
 vo 2 = 1.17 V
(b)

11.56
Equivalent circuit and analysis is identical to that in problem 11.36.
        1
          ⋅ g m RL
 Ad 2 = 2
       ⎛      RL ⎞
       ⎜2+        ⎟
       ⎝      RD ⎠
         1
       − ⋅ g m RL
 Ad 1 = 2
       ⎛    RL ⎞
       ⎜2+      ⎟
       ⎝    RD ⎠
         v02 − v01     g m RL
  Av =             =
            vd       ⎛     RL ⎞
                     ⎜2+      ⎟
                     ⎝     RD ⎠

11.57
(a)
 Ad = g m ( ro 2 ro 4 )
         0.1
gm =           = 3.846 mA/V
       0.026
       120
ro 2 =      = 1200 K
       0.1
       80
ro 4 =     = 800 K
       0.1
Ad = ( 3.846 ) (1200 800 )
Ad = 1846
(b)
For Ad = 923 = ( 3.846 ) (1200 800 RL )
                                  480 RL
      240 = 480 RL =                      ⇒ RL = 480 K
                                 480 + RL

11.58
(a)
                               ⎛       2⎞
 I Q = 250 μ A I REF = I Q ⎜ 1 + ⎟
                               ⎝ β⎠
                                 ⎛       2 ⎞
                           = 250 ⎜1 +       ⎟ = 252.8 μ A
                                 ⎝ 180 ⎠
       5 − ( 0.7 ) − ( −5 )
 R1 =                       ⇒ R1 = 36.8 K
            0.2528
(b)
                                          0.125
 Ad = g m ( ro 2 ro 4 )           gm =           = 4.808 mA/V
                                          0.026
                                          150
                                  ro 2 =        = 1200 K
                                         0.125
                                          100
 Ad = ( 4.808 ) (1200 800 ) ro 4 =              = 800 K
                                         0.125
 Ad = 2308
(c)
                     2 (180 )( 0.026 )
Rid = 2rπ =                              ⇒ Rid = 74.9 K
                          0.125
 Ro = ro 2 ro 4 = 1200 800 = 480 K = Ro
(d)
 vcm ( max ) = 5 − 0.7 = 4.3 V
 vcm ( min ) = 0.7 + 0.7 − 5 = −3.6 V

11.59
a.
                       ⎛ IQ ⎞ ⎛ 1 ⎞
I 0 = I B3 + I B 4 ≈ 2 ⎜ ⎟ ⎜ ⎟
                       ⎝ 2 ⎠⎝ β ⎠
      I Q 0.2
I0 =       =        ⇒ I0 = 2 μ A
       β 100
b.
              V       100
 r02 = r04 = A =            = 1000 kΩ
              I CQ 0.1
        I CQ          0.1
gm =             =         = 3.846 mA/V
        VT           0.026
Ad = g m ( r02 r04 ) = ( 3.846 ) (1000 1000 ) ⇒ Ad = 1923
c.
             (
 Ad = g m r02 r04 RL         )
Ad = ( 3.846 ) (1000 1000 250 ) ⇒ Ad = 641

11.60
a.
Ad = g m ( r02 r04 RL )
         I CQ       IQ
gm =            =
         VT         2VT
     V      125
r02 = A 2 =
     I CQ I CQ
         VA 4 80
r04 =        =
         I CQ I CQ
If I Q = 2 mA, then g m = 38.46 mA/V
r02 = 125 kΩ, r04 = 80 kΩ
So Ad = 38.46 ⎡125 80 200 ⎤
               ⎣             ⎦
Or Ad = 1508
For each gain of 1000. lower the current level
For I Q = 0.60 mA, I CQ = 0.30 mA
        0.3
gm =          = 11.54 mA/V
       0.026
      125
r02 =      = 417 kΩ
      0.3
      80
r04 =     = 267 kΩ
      0.3
Ad = 11.54 ⎡ 417 267 200 ⎤ = 1036
            ⎣             ⎦
So I Q = 0.60 mA is adequate
b.
For V + = 10 V, VBE = VEB = 0.6 V
For VCB = 0, vcm ( max ) = V + − 2VEB = 10 − 2 ( 0.6 )
Or vcm ( max ) = 8.8 V

11.61
a.            From symmetry.
                                      0.1
VGS 3 = VGS 4 = VDS 3 = VDS 4 =           +1
                                      0.1
Or VDS 3 = VDS 4 = 2 V
                    0.1
VSG1 = VSG 2 =          +1 = 2 V
                    0.1
VSD1   = VSD 2 = VSG1 − (VDS 3 − 10 )
       = 2 − ( 2 − 10 )
Or VSD1 = VSD 2 = 10 V
b.
           1                  1
r0 n =              =                 ⇒ 1 MΩ
         λn I DQ        ( 0.01)( 0.1)
            1                1
r0 p =              =                ⇒ 0.667 MΩ
         λP I DQ ( 0.015 )( 0.1)
g m = 2 K p (VSG + VTP )
    = 2 ( 0.1)( 2 − 1) = 0.2 mA / V
Ad = g m ( ron rop ) = ( 0.2 ) (1000 667 ) ⇒ Ad   = 80
(c)
IQ
I D 2 = I D1 =            = 0.1 mA
                     2
            1            1
 ro 4 =           =              = 1000 k Ω
          λn I D 4 ( 0.01)( 0.1)
             1                  1
 ro 2 =              =                     = 667 k Ω
          λP I D 2        ( 0.015)( 0.1)
 Ro = ro 2 ro 4 = 667 1000 = 400 k Ω

11.62
 Ad = g m ( ro 4 ro 2 )

           ⎛ 0.08 ⎞
gm = 2 ⎜           ⎟ ( 2.5 )( 0.05 )
           ⎝ 2 ⎠
     = 0.1414 mA/V
              1
ro 4 =                   = 1000 K
       ( 0.02 )( 0.05 )
                 1
ro 2 =                     = 1333 K
          ( 0.015)( 0.05 )
Ad = ( 0.1414 ) (1000 1333)
Ad = 80.8

11.63
 R04 = r04 ⎡1 + g m 4 ( R rπ 4 ) ⎤
           ⎣                     ⎦
        80
  r04 =     = 800 K
        0.1
         0.1
gm4 =          = 3.846
        0.026
        (100 )( 0.026 )
 rπ 4 =
              0.1
      = 26 K
R rπ 4 = 1 26 = 0.963 K
Assume β = 100
           (100 )( 0.026 )
 rπ 3 =                         = 26 kΩ
                 0.1
        0.1
g m3 =        = 3.846 mA/V
       0.026
 R04 = 800 ⎡1 + ( 3.846 )( 0.963) ⎤ ⇒ 3.763 MΩ
           ⎣                      ⎦
⇒ R0 = 3.763MΩ
 Then
 Av = − g m ( r02 R0 )
      120
 r02 =      = 1200 kΩ
      0.1
       0.1
 gm =         = 3.846 mA/V
      0.026
 Av = − ( 3.846 ) ⎡1200 3763⎤ ⇒ Av = −3499
                  ⎣         ⎦
b.
For
80
 R = 0, r04 =              = 800 kΩ
                     0.1
Av = − g m ( r02     r04 )
      = − ( 3.846 ) ⎡1200 800 ⎤ ⇒ Av = −1846
                    ⎣         ⎦
(c)        For part (a), Ro = ( 3.763 1.2 ) = 0.910 M Ω
For part (b), Ro = (1.2 0.8 ) = 0.48 M Ω

11.64
          IE5  I +I     I +I
I B5 =        = B3 B4 = C 3 C 4
         1+ β   1+ β   β (1 + β )
Now I C 3 + I C 4 ≈ I Q
              IQ
So I B 5 ≈
           β (1 + β )
          IE6     I Q1
I B6 =        =
         1 + β β (1 + β )
For balance, we want I B 6 = I B 5
So that I Q1 = I Q

11.65
Resistance looking into drain of M4.




Vsg 4 ≅ I X R1
                     VX − Vsg 4
I X ± g m 4Vsg 4 =
                         r04
    ⎡              R ⎤ V
I X ⎢1 + g m 4 R1 + 1 ⎥ = X
    ⎣              r04 ⎦ r04
               ⎡           R ⎤
Or R0 = r04 ⎢1 + g m 4 R1 + 1 ⎥
               ⎣           r04 ⎦
a.
Ad = g m 2 ( ro 2 Ro )
g m 2 = 2 K n I DQ = 2       ( 0.080 )( 0.1)
                  = 0.179 mA / V
           1          1
 ro 2 =        =                = 667 k Ω
        λn I DQ ( 0.015 )( 0.1)
g m 4 = 2 K P I DQ = 2       ( 0.080 )( 0.1)
                         = 0.179 mA / V
             1               1
 ro 4 =              =                = 500 k Ω
          λ p I DQ     ( 0.02 )( 0.1)
           ⎡                   1 ⎤
 R0 = 500 ⎢1 + ( 0.179 )(1) +       = 590.5 kΩ
           ⎣                  500 ⎥
                                  ⎦
 Ad = ( 0.179 ) ⎡667 590.5⎤ ⇒ Ad = 56.06
                ⎣           ⎦
b.
When R1 = 0, R0 = r04 = 500 kΩ
 Ad = ( 0.179 ) ⎡667 500 ⎤ ⇒ Ad = 51.15
                ⎣        ⎦
(c)         For part (a), Ro = ro 2 Ro = 667 590.5 ⇒ Ro = 313 k Ω
For part (b), Ro = ro 2 ro 4 = 667 500 ⇒ Ro = 286 kΩ

11.66
Let β = 100, VA = 100 V
VA 100
ro 2 =       =    = 1000 k Ω
         I CQ 0.1
Ro 4 = ro 4 [1 + g m RE ] where RE = rπ RE
                      ′          ′
Now
         (100 )( 0.026 )
rπ =                = 26 k Ω
          0.1
      0.1
gm =         = 3.846 mA / V
     0.026
 ′
RE = 26 1 = 0.963 k Ω
Then Ro 4 = 1000 ⎡1 + ( 3.846 )( 0.963) ⎤ = 4704 k Ω
                  ⎣                     ⎦
Ad = g m ( ro 2 Ro 4 ) = 3.846 (1000 4704 ) ⇒ Ad = 3172

11.67
(a) For Q2, Q4




                    Vx − Vπ 4                          V
(1)          Ix =             + g m 2Vπ 2 + g m 4Vπ 4 + x
                       ro 2                            ro 4
                            Vx − Vπ 4    V
(2)           g m 2Vπ 2 +             = π4
                               ro 2    rπ 4 rπ 2
(3)          Vπ 4 = −Vπ 2
              Vx          ⎡ 1          1         ⎤
From (2)           = Vπ 4 ⎢          +     + gm2 ⎥
              ro 2        ⎢
                          ⎣ rπ 4 rπ 2 ro 2       ⎥
                                                 ⎦
Now
       ⎛ β      ⎞ ⎛ IQ
                     ⎞ ⎛ 120 ⎞
IC 4 = ⎜        ⎟⎜   ⎟=⎜      ⎟ ( 0.5 ) = 0.496 mA
       ⎝ 1+ β   ⎠⎝ 2 ⎠ ⎝ 121 ⎠
         ⎛ IQ ⎞ ⎛ 1 ⎞ ⎛ β ⎞              ⎛ 120 ⎞
IC 2   = ⎜ ⎟⎜        ⎟⎜      ⎟ = ( 0.5 ) ⎜        ⎟ ⇒ I C 2 = 0.0041 mA
                                         ⎜ (121)2 ⎟
         ⎝ 2 ⎠⎝ 1+ β ⎠⎝ 1+ β ⎠           ⎝        ⎠
So
         (120 )( 0.026 )
rπ 2 =                  = 761 k Ω
           0.0041
        0.0041
gm2 =             = 0.158 mA/V
         0.026
        100
ro 2 =          ⇒ 24.4 M Ω
       0.0041
       (120 ) ( 0.026 )
rπ 4 =                  = 6.29 k Ω
           0.496
        0.496
gm4 =            = 19.08 mA / V
        0.026
        100
ro 4 =         = 202 k Ω
       0.496
Now
Vx          ⎡     1      1          ⎤                            Vx
     = Vπ 4 ⎢         +      + 0.158⎥ ⇒ which yields Vπ 4 =
ro 2        ⎢ 6.29 761 24400
            ⎣                       ⎥
                                    ⎦                       ( 0.318) ro 2
From (1),
     V V           ⎛                 1 ⎞
I x = x + x + Vπ 4 ⎜ g m 4 − g m 2 − ⎟
     ro 2 ro 4     ⎝                ro 2 ⎠
    ⎡                 ⎛                   1 ⎞⎤
Ix ⎢ 1                ⎜ 19.08 − 0.158 −       ⎟
                 1                      24400 ⎠ ⎥
                    +⎝
                                                                     V
  =⎢          +                                 ⎥ which yields Ro 2 = x = 135 k Ω
Vx ⎢ 24400 202             ( 0.318)( 24400 ) ⎥                       Ix
    ⎢                                           ⎥
    ⎣                                           ⎦
           80
Now ro 6 =     = 160 k Ω
           0.5
Then Ro = Ro 2 ro 6 = 135 160 ⇒ Ro = 73.2 k Ω
(b)
                            Δi
Ad = g m Ro where g m =
       c            c

                           vd / 2
vd
Δi = g m1Vπ 1 + g m 3Vπ 3 and Vπ 1 + Vπ 3 =
                                              2
      ⎛V               ⎞
Also ⎜ π 1 + g m1Vπ 1 ⎟ rπ 3 = Vπ 3
      ⎝ rπ 1           ⎠
        ⎛1+ β ⎞
So Vπ 1 ⎜      ⎟ rπ 3 = Vπ 3
        ⎝ rπ 1 ⎠
        ⎛ 121 ⎞
Or Vπ 1 ⎜     ⎟ ( 6.29 ) = Vπ 3 ≅ Vπ 1
        ⎝ 761 ⎠
               v               v
Then 2Vπ 1 = d ⇒ Vπ 1 = d
                2              4
                                                  ⎛v ⎞         ⎛v ⎞
So Δi = ( g m1 + g m 3 ) Vπ 1 = ( 0.158 + 19.08 ) ⎜ d ⎟ = 9.62 ⎜ d ⎟
                                                  ⎝ 4⎠         ⎝ 2⎠
           Δi
So g m =
     c
                = 9.62 ⇒ Ad = ( 9.62 )( 73.2 ) ⇒ Ad = 704
         vd / 2
Now Rid = 2 Ri where Ri = rπ 1 + (1 + β ) rπ 3
Ri = 761 + (121)( 6.29 ) = 1522 k Ω
Then Rid = 3.044 M Ω



11.69
(a)
 Ad = 100 = g m ( ro 2 ro 4 )
Let I Q = 0.5 mA
         1           1
ro 2 =       =                 = 200 k Ω
       λn I D ( 0.02 )( 0.25 )
           1           1
ro 4 =         =                  = 160 k Ω
         λP I D ( 0.025 )( 0.25 )
Then 100 = g m ( 200 160 ) ⇒ g m = 1.125 mA / V

       ⎛ K′ ⎞⎛W        ⎞
gm = 2 ⎜ n ⎟ ⎜         ⎟ ID
       ⎝ 2 ⎠⎝ L        ⎠
          ⎛ 0.080 ⎞ ⎛ W ⎞          ⎛W ⎞
1.125 = 2 ⎜       ⎟ ⎜ ⎟ ( 0.25 ) ⇒ ⎜ ⎟ = 31.6
          ⎝ 2 ⎠⎝ L ⎠               ⎝ L ⎠n
    ⎛W ⎞                        ⎛W ⎞
Now ⎜ ⎟ somewhat arbitrary. Let ⎜ ⎟ = 31.6
    ⎝ L ⎠P                      ⎝ L ⎠P

11.70
Ad = g m ( ro 2 ro 4 )
P = ( I Q + I REF ) (V + − V − )
Let I Q = I REF
Then 0.5 = 2 I Q ( 3 − ( −3) ) ⇒ I Q = I REF = 0.0417 mA
           1             1
ro 2 =         =                    = 3205 k Ω
         λn I D ( 0.015 )( 0.0208 )
           1             1
ro 4 =         =                   = 2404 k Ω
         λP I D ( 0.02 )( 0.0208 )
Then
Ad = 80 = g m ( 3205 2404 ) ⇒ g m = 0.0582 mA/V

       ⎛ k ′ ⎞⎛ W ⎞
gm = 2 ⎜ n ⎟ ⎜ ⎟ I D
       ⎝ 2 ⎠ ⎝ L ⎠n
           ⎛ 0.080 ⎞⎛ W ⎞            ⎛W ⎞
0.0582 = 2 ⎜       ⎟⎜ ⎟ ( 0.0208 ) ⇒ ⎜ ⎟ = 1.02
           ⎝ 2 ⎠⎝ L ⎠ n              ⎝ L ⎠n

11.71
 Ad = g m ( ro 2 Ro )
     ≈ g m ro 2
         1
ro 2 =
       λn I D
               1
    =                   = 666.7 K
         ( 0.015)( 0.1)
Ad = 400 = g m ( 666.7 )
      g m = 0.60 mA/V
    ⎛ k′ ⎞⎛ W     ⎞
= 2 ⎜ n ⎟⎜        ⎟ ID
    ⎝ 2 ⎠⎝ L      ⎠
          ⎛ 0.08 ⎞ ⎛ W ⎞
0.60 = 2 ⎜       ⎟ ⎜ ⎟ ( 0.1)
          ⎝ 2 ⎠⎝ L ⎠
               ⎛W ⎞
0.090 = 0.004 ⎜ ⎟
               ⎝L⎠
⎛W ⎞ ⎛W ⎞
⎜ ⎟ = ⎜ ⎟ = 22.5
⎝ L ⎠1 ⎝ L ⎠ 2

11.72
Ad = g m ( Ro 4 Ro 6 )
where
Ro 4 = ro 4 + ro 2 [1 + g m 4 ro 4 ]
Ro 6 = ro 6 + ro8 [1 + g m 6 ro 6 ]
We have
                       1
ro 2 = ro 4 =                       = 1667 k Ω
              ( 0.015 )( 0.040 )
                        1
ro 6 = ro8 =                      = 1250 k Ω
                ( 0.02 )( 0.040 )
        ⎛ 0.060 ⎞
gm4 = 2 ⎜       ⎟ (15 )( 0.040 ) = 0.268 mA/V
        ⎝ 2 ⎠
        ⎛ 0.025 ⎞
gm6 = 2 ⎜       ⎟ (10 )( 0.040 ) = 0.141 mA/V
        ⎝ 2 ⎠
Then
Ro 4 = 1667 + 1667 ⎡1 + ( 0.268 )(1667 ) ⎤ ⇒ 748 M Ω
                   ⎣                     ⎦
Ro 6 = 1250 + 1250 ⎡1 + ( 0.141)(1250 ) ⎤ ⇒ 222.8 M Ω
                   ⎣                    ⎦
(a)
Ro = Ro 4 Ro 6 = 748 222.8 ⇒               Ro = 172 M Ω
(b)
 Ad = g m 4 ( Ro 4 Ro 6 ) = ( 0.268 )(172000 ) ⇒ Ad = 46096

11.73
 Ad = g m ( ro 2 ro 4 )
                 1
ro 2 = ro 4 =
                λ ID
                1
      =                    = 500 K
          ( 0.02 )( 0.1)
gm = 2 Kn I D = 2           ( 0.5)( 0.1)
    = 0.4472 mA/V
 Ad = ( 0.4472 ) ( 500 500 ) ⇒ Ad = 112
 Ro = ro 2 ro 4 = 500 500 ⇒ Ro = 250 K

11.74
(a)
I DP = K p (VSG + VTP )
                              2



   0.4
       + 1 = VSG 3 = 1.894 V
   0.5
I DN = K n (VGS − VTN )
                              2



  0.4
       + 1 = VGS 1 = 1.894 V
  0.5
VDS1 ( sat ) = VGS1 − VTN = 1.894 − 1 = 0.894 V
V + = VSG 3 + VDS1 ( sat ) − VGS 1 + vCM
V + = 1.894 + 0.894 − 1.894 + 4 ⇒ V + = 4.89 V = −V −
(b)
Ad = g m ( ro 2 ro 4 )
                    1                1
ro 2 = ro 4 =            =                   = 166.7 K
                λ ID       ( 0.015 )( 0.4 )
gm = 2 Kn I D           = 2 ( 0.5 )( 0.4 ) = 0.8944 mA/V
Ad = ( 0.8944 ) (166.7 166.7 ) ⇒ Ad = 74.5

11.75
(a)         For vcm = +2V ⇒ V + = 2.7 V
 If I Q is a 2-transistor current source,
V − = vcm − 0.7 − 0.7
V − = −3.4 V ⇒ V + = −V − = 3.4 V
(b)
                               100
 Ad = g m ( ro 2 ro 4 ) ro 2 =     = 1000 K
                               0.1
                               60
                        ro 4 =     = 600 K
                               0.1
                                0.1
                        gm =          = 3.846 mA/V
                               0.026
 Ad = ( 3.846 ) (1000 600 ) ⇒ Ad = 1442

11.76
(a)         V + = −V − = 3.4 V
(b)
        75
ro 2 =      = 1250 K
       0.06
        40
ro 4 =      = 666.7 K
       0.06
        0.06
gm =         = 2.308 mA/V
       0.026
Ad = ( 2.308 ) (1250 666.7 )
Ad = 1004

11.77
g m1 = 2 K n I Bias1 = 2            ( 0.2 )( 0.25 ) = 0.447 mA/V
         I CQ        0.75
gm2 =           =         = 28.85 mA/V
          VT        0.026
         β VT       (120 )( 0.026 )
rπ 2 =          =                        = 4.16 kΩ
         I CQ                0.75
i0 = g m1Vgs1 + g m 2Vπ 2
Vπ 2 = g m1Vgs1rπ 2 and vi = Vgs1 + Vπ 2
i0 = Vgs1 ( g m1 + g m 2 ⋅ g m1rπ 2 )
                                                  vi
vi = Vgs1 + g m1Vgs1rπ 2 and Vgs1 =
                                              1 + g m1rπ 2
            g m1 (1 + β )
i0 = vi ⋅
            1 + g m1rπ 2
        i0 g m1 (1 + β )     ( 0.447 )(121)
gm =
 C
           =             =
        vi   1 + g m1rπ 2 1 + ( 0.447 )( 4.16 )
⇒ g m = 18.9 mA/V
    C




11.78
                  1                1
r0 ( M 2 ) =             =                    = 500 kΩ
               λn I DQ       ( 0.01)( 0.2 )
               VA    80
 r0 ( Q2 ) =       =    = 400 kΩ
               I CQ 0.2
g m ( M 2 ) = 2 K n I DQ = 2           ( 0.2 )( 0.2 )
             = 0.4 mA/V
Ad = g m ( M 2 ) ⎡ r0 ( M 2 ) r0 ( Q2 ) ⎤
                 ⎣                      ⎦
     = 0.4 ⎡500 400 ⎤ ⇒ Ad = 88.9
           ⎣        ⎦
If the IQ current source is ideal, Acm = 0 and C M RRdB = ∞

11.79
a.




b.           Assume RL is capacitively coupled. Then
I CQ + I DQ = I Q
          VBE 0.7
I DQ =        =   = 0.0875 mA
           R1   8
 I CQ = 0.9 − 0.0875 = 0.8125 mA
 g m1 = 2 K P I DQ = 2 (1)( 0.0875 ) ⇒ g m1 = 0.592 mA/V
          I CQ        0.8125
gm2 =             =          ⇒ g m 2 = 31.25 mA/V
           VT         0.026
          β VT         (100 )( 0.026 )
 rπ 2 =           =                      ⇒ rπ 2 = 3.2 kΩ
           I CQ           0.8125
c.
V0 = ( − g m1Vsg − g m 2Vπ 2 ) RL
Vi + Vsg = V0 ⇒ Vsg = V0 − Vi
Vπ 2 = ( g m1Vsg ) ( R1 rπ 2 )
V0 = − ⎡ g m1Vsg + g m 2 g m1Vsg ( R1 rπ 2 ) ⎤ RL
       ⎣                                     ⎦
V0 = − (V0 − Vi ) ⎣ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎦ RL
                  ⎡                               ⎤
          ⎡ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎦ RL
                                          ⎤
        = ⎣
    V0
Av =
    Vi 1 + ⎡ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎤ RL
            ⎣                               ⎦
We find
g m1 + g m 2 g m1 ( R1 rπ 2 ) = 0.592 + ( 31.25 )( 0.592 ) ( 8 3.2 )
                                  = 42.88
                    ( 42.88 )( RL )
Then Av =
                  1 + ( 42.88 )( RL )

11.80
a.          Assume RL is capacitively coupled.
         0.7
I DQ   =      = 0.0875 mA
          8
I CQ   = 1.2 − 0.0875 = 1.11 mA
g m1 = 2 K p I DQ = 2 (1)( 0.0875 ) ⇒ g m1 = 0.592 mA/V
          I CQ        1.11
gm2 =             =         ⇒ g m 2 = 42.7 mA/V
           VT         0.026
          β VT        (100 )( 0.026 )
rπ 2 =            =                     ⇒ rπ 2 = 2.34 kΩ
          I CQ             1.11
b.
Vsg = VX
I X = g m 2Vπ 2 + g m1Vsg
(g    V
     m1 sg   )(R1   rπ 2 ) = Vπ 2
I X = VX ⎡ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎤
         ⎣                               ⎦
      VX                   1
R0 =      =
      IX     g m1 + g m 2 g m1 ( R1 rπ 2 )
                              1
      =                                           ⇒ R0 = 21.6 Ω
          0.592 + ( 0.592 )( 42.7 ) ( 8 2.34 )

11.81
(a)




                          Vo − ( −Vπ )
(1)           g m 2Vπ +                  =0
                               ro 2
                          Vo − ( −Vπ )                −Vπ −Vπ                      ⎛ 1 1⎞
(2)           g m 2Vπ +                  = g m1Vi +        +    or 0 = g m1Vi − Vπ ⎜ + ⎟
                               ro 2                    ro1   rπ                    ⎝ ro1 rπ ⎠
                   g m1Vi
Then Vπ =
                ⎛ 1 1⎞
                ⎜ + ⎟
                ⎝ ro1 rπ ⎠
From (1)
⎛         1 ⎞    Vo
⎜ g m 2 + ⎟ Vπ +      =0
⎝        ro 2 ⎠  ro 2
                                         ⎛       1 ⎞
                                         ⎜ gm2 + ⎟
           ⎛         1 ⎞
Vo = −ro 2 ⎜ g m 2 + ⎟ Vπ = −ro 2 g m1Vi ⎝
                                                ro 2 ⎠
           ⎝        ro 2 ⎠                ⎛ 1 1⎞
                                          ⎜ + ⎟
                                          ⎝ ro1 rπ ⎠
                    ⎛         1 ⎞
         − g m1ro 2 ⎜ g m 2 + ⎟
    V
Av = o =            ⎝        ro 2 ⎠
    Vi         ⎛ 1 1⎞
               ⎜ + ⎟
               ⎝ ro1 rπ ⎠
Now
g m1 = 2 K n I Q = 2           ( 0.25)( 0.025 ) = 0.158 mA / V
          IQ        0.025
gm2 =           =         = 0.9615 mA / V
          VT        0.026
          1                1
ro1 =           =                      = 2000 k Ω
         λ IQ       ( 0.02 )( 0.025)
         VA   50
ro 2 =      =      = 2000 k Ω
         I Q 0.025
         β VT       (100 )( 0.026 )
rπ =            =                     = 104 k Ω
         IQ             0.025
Then
                          ⎛           1 ⎞
      − ( 0.158 )( 2000 ) ⎜ 0.9615 +      ⎟
Av =                      ⎝          2000 ⎠
                                            ⇒ Av = −30039
                 ⎛ 1          1 ⎞
                 ⎜        +     ⎟
                 ⎝ 2000 104 ⎠
To find Ro; set Vi = 0 ⇒ g m1Vi = 0
Vx − ( −Vπ )
I x = g m 2Vπ +
                         ro 2
Vπ = − I x ( ro1 rπ )
Then
      ⎛         1 ⎞                     V
I x = ⎜ g m 2 + ⎟ ( − I x ) ( ro1 rπ ) + x
      ⎝        ro 2 ⎠                   ro 2
Combining terms,
        Vx        ⎡               ⎛         1 ⎞⎤
 Ro =      = ro 2 ⎢1 + ( ro1 rπ ) ⎜ g m 2 + ⎟ ⎥
        Ix        ⎣               ⎝        ro 2 ⎠ ⎦
             ⎡                 ⎛           1 ⎞⎤
      = 2000 ⎢1 + ( 2000 104 ) ⎜ 0.9615 +      ⎟ ⇒ Ro = 192.2 M Ω
             ⎣                 ⎝          2000 ⎠ ⎥
                                                 ⎦

(b)




                           Vo − ( −Vgs 3 )
(1)         g m 3Vgs 3 +                       =0
                                  ro3
                           Vo − ( −Vgs 3 )                     −Vgs 3 − ( −Vπ 2 )               ⎛         1 ⎞ Vgs 3
(2)         g m 3Vgs 3 +                       = g m 2Vπ 2 +                        or 0 = Vπ 2 ⎜ g m 2 + ⎟ −
                                  ro3                                 ro 2                      ⎝        ro 2 ⎠ ro 2
            Vπ 2               −Vgs 3 − ( −Vπ 2 )            ( −Vπ 2 )
(3)              + g m 2Vπ 2 +                    = g m1Vi +
            rπ 2                      ro 2                      ro1
                                Vgs 3
From (2), Vπ 2 =
                             ⎛         1 ⎞
                        ro 2 ⎜ g m 2 + ⎟
                             ⎝        ro 2 ⎠
Then
                 ⎛ 1             1    1⎞           Vgs 3
(3)         Vπ 2 ⎜      + gm2 +     + ⎟ = g m1Vi +
                 ⎝ rπ 2         ro 2 ro1 ⎠          ro 2
or
Vgs 3           ⎡ 1          1    1⎤           Vgs 3
                      ⎢ + gm2 +       + ⎥ = g m1Vi +
     ⎛          1 ⎞ r
ro 2 ⎜ g m 2 + ⎟ ⎣ π 2
                                  ro 2 ro1 ⎦          ro 2
     ⎝         ro 2 ⎠
              Vgs 3           ⎡ 1              1        1 ⎤              Vgs 3
        ⎛                1 ⎞⎣ ⎢104 + 0.9615 + 2000 + 2000 ⎥ = 0.9615Vi + 2000
2000 ⎜ 0.9615 +                                            ⎦
                            ⎟
        ⎝              2000 ⎠
Then Vgs 3 = 1.83 × 105 Vi
          ⎛         1 ⎞      −V               ⎛          1 ⎞
                                                             ⎟ (1.83 ×10 ) Vi
                                                                        5
From (1), ⎜ g m 3 + ⎟ Vgs 3 = o or Vo = −2000 ⎜ 0.158 +
          ⎝        ro 3 ⎠    ro3              ⎝         2000 ⎠
    V
Av = o = −5.80 × 107
    Vi




To find Ro
                                   Vx − ( −Vgs 3 )
(1)           I x = g m 3Vgs 3 +
                                          ro3
                             Vx − ( −Vgs 3 )                    −Vgs 3 − ( −Vπ 2 )
(2)           g m 3Vgs 3 +                      = g m 2Vπ 2 +
                                   ro 3                                ro 2
(3)       Vπ 2 = − I x ( ro1 rπ 2 )
                      ⎛         1 ⎞ V
From (1) I x = Vgs 3 ⎜ g m 3 + ⎟ + x
                      ⎝        ro 3 ⎠ ro3
            ⎛           1 ⎞ Vx
I x = Vgs 3 ⎜ 0.158 +        ⎟+
            ⎝         2000 ⎠ 2000
                   V
              Ix − x
So Vgs 3 =        2000
               0.1585
From (2),
      ⎡          1     1 ⎤ V           ⎛       1 ⎞
Vgs 3 ⎢ g m 3 +      + ⎥ + x = Vπ 2 ⎜ g m 2 + ⎟
      ⎣         ro 3 ro 2 ⎦ ro 3       ⎝      ro 2 ⎠
      ⎡              1      1 ⎤ Vx               ⎛           1 ⎞
Vgs 3 ⎢ 0.158 +          +       ⎥ + 2000 = Vπ 2 ⎜ 0.9615 + 2000 ⎟
      ⎣             2000 2000 ⎦                  ⎝               ⎠
     ⎡ I − Vx / 2000 ⎤              Vx
Then ⎢ x             ⎥ ( 0.159 ) + 2000 = − I x ( 2000 104 ) ( 0.962 )
     ⎣ 0.1585 ⎦
             V
We find Ro = x = 6.09 × 1010 Ω
              Ix

11.82
Assume emitter of Q1 is capacitively coupled to signal ground.
            ⎛ 80 ⎞
I CQ = 0.2 ⎜ ⎟ = 0.1975 mA
            ⎝ 81 ⎠
        0.2
I DQ =       = 0.00247 mA
         81
      (80 )( 0.026 )
rπ =                 = 10.5 k Ω
          0.1975
             0.1975
g m ( Q1 ) =         = 7.60 mA / V
              0.026
gm ( M1 ) = 2 K n I D = 2     ( 0.2 )( 0.00247 )
g m ( M 1 ) = 0.0445 mA / V




                                                           Vπ
Vi = Vgs + Vπ and Vπ = g m ( M 1 ) Vgs rπ or Vgs =
                                                      g m ( M 1 ) rπ
             ⎛       1              ⎞                    Vi
Then Vi = Vπ ⎜ 1 +
             ⎜ g (M )r              ⎟ or Vπ =
                                    ⎟
             ⎝         1 π          ⎠          ⎛            1     ⎞
                                               ⎜1 +
                   m
                                               ⎜ g (M ) r ⎟       ⎟
                                               ⎝        m     1 π ⎠

                                    V      − g m ( Q1 ) RC
Vo = − g m ( Q1 ) Vπ RC ⇒ Av = o =
                                    Vi ⎛            1        ⎞
                                         ⎜1 +
                                         ⎜ g (M )r ⎟         ⎟
                                         ⎝      m      1 π ⎠

                   − ( 7.60 )( 20 )
Then Av =                               ⇒ Av = −48.4
             ⎛              1         ⎞
             ⎜1 +
             ⎜ ( 0.0445 )(10.5 ) ⎟    ⎟
             ⎝                        ⎠
11.83
Using the results from Chapter 4 for the emitter-follower:
            ⎡        rπ 9 + r07 R011 ⎤
            ⎢ rπ 8 +                 ⎥
                          1+ β
 R0 = R4 || ⎢                        ⎥
            ⎢          1+ β          ⎥
            ⎢                        ⎥
            ⎣                        ⎦
        β VT (100 )( 0.026 )
 rπ 8 =      =                   = 2.6 kΩ
        IC8              1
           IC 8        1
 IC 9 ≈           =       = 0.01 mA
           β          100
           (100 )( 0.026 )
  rπ 9 =            = 260 kΩ
           0.01
       V    100
  r07 = A =     = 500 kΩ
       I Q 0.2
           VA 100
 r011 =       =    = 500 kΩ
           I Q 0.2
                                        0.2
R011 = r011 [1 + g m RE ] , g m =
                      ′                      = 7.69
                                       0.026
           (100 ) ( 0.026 )
 rπ 11 =                = 13 kΩ
             0.2
   ′
 RE = 0.2 13 = 0.197 kΩ
R011 = 500 ⎡1 + ( 7.69 )( 0.197 ) ⎤ = 1257 kΩ
           ⎣                      ⎦
Then
          ⎡       260 + 500 1257 ⎤
          ⎢ 2.6 +                ⎥
R0 = 5 || ⎢             101      ⎥
          ⎢          101         ⎥
          ⎢
          ⎣                      ⎥
                                 ⎦
   = 5 0.0863 ⇒ R0 = 0.0848 K ⇒ 84.8 Ω

11.84
 Ri = rπ 1 + (1 + β ) rπ 2
         (100 )( 0.026 )
rπ 2 =                      = 5.2 kΩ
                  0.5
      (100 )( 0.026 ) (100 ) ( 0.026 )
                                   2

rπ 1 =               =                  = 520 kΩ
        ( 0.5 /100 )         0.5
 Ri = 520 + (101)( 5.2 ) ⇒ Ri ≅ 1.05 MΩ
         rπ 3 + 50        (100 )( 0.026 )
 R0 = 5                 , rπ 3 =               = 2.6 kΩ
                  101                   1
            2.6 + 50
 R0 = 5              = 5 0.521 ⇒ R0 = 0.472 kΩ
              101
⎛V                ⎞
V0 = − ⎜ π 3 + g m 3Vπ 3 ⎟ ( 5 )
       ⎝ rπ 3            ⎠
           ⎛1+ β ⎞
V0 = −Vπ 3 ⎜       ⎟ ( 5)                   (1)
           ⎝ rπ 3 ⎠
Vπ 3              (V − V )
     = g m 2Vπ 2 + 0 π 3
rπ 3                 50
                 ⎛ 1    1 ⎞ V
g m 2Vπ 2 = Vπ 3 ⎜     + ⎟− 0               (2)
                 ⎝ rπ 3 50 ⎠ 50
       ⎛V               ⎞
Vπ 2 = ⎜ π 1 + g m1Vπ 1 ⎟ rπ 2
       ⎝ rπ 1           ⎠
                                            (3)
            ⎛ 1+ β ⎞
     = Vπ 1 ⎜      ⎟ rπ 2
            ⎝ rπ 1 ⎠
and
Vin = Vπ 1 + Vπ 2                           (4)
         0.5
gm2 =         = 19.23 mA/V
        0.026
Then
           ⎛ 101 ⎞
V0 = −Vπ 3 ⎜     ⎟ ( 5 ) ⇒ Vπ 3 = −V0 ( 0.005149 )            (1)
           ⎝ 2.6 ⎠
And
                             ⎛ 1    1 ⎞ V
19.23Vπ 2 = −V0 ( 0.005149 ) ⎜    + ⎟− 0
                             ⎝ 2.6 50 ⎠ 50                    (2)
          = −V0 ( 0.02208 )
Or Vπ 2 = −V0 ( 0.001148 )
And
Vπ 1 = Vin − Vπ 2 = Vin + V0 ( 0.001148 )                     (4)
So
                                            ⎛ 101 ⎞
−V0 ( 0.001148 ) = ⎡Vin + V0 ( 0.001148 ) ⎤ ⎜
                   ⎣                      ⎦ 520 ⎟ ( 5.2 )     (3)
                                            ⎝     ⎠
                                                            V0
−V0 ( 0.001148 ) − V0 ( 0.001159 ) = Vin (1.01) ⇒ Av =          = −438
                                                            Vin

11.85
5
I2 =      = 1 mA
        5
          1
VGS 2 =       + 0.8 = 2.21 V
         0.5
     2.21 − ( −5 )
I1 =               = 0.206 mA
         35




V0 = ( g m 2Vgs 2 ) ( R2 r02 )
Vgs 2 = ( g m1Vsg1 ) ( r01 R1 ) − V0 and Vsg1 = −Vin
So Vgs 2 = − ( g m1Vin ) ( r01 R1 ) − V0
Then
V0 = g m 2 ( R2 r02 ) ⎡ − ( g m1Vin ) ( r01 R1 ) − V0 ⎤
                      ⎣                               ⎦
        V0 − g m 2 ( R2 r02 ) g m1 ( r01 R1 )
Av =        =
        Vin       1 + g m 2 ( R2 r02 )
gm2 = 2 Kn2 I D 2 = 2            ( 0.5 )(1) = 1.414 mA / V
g m1 = 2 K p1 I D1 = 2           ( 0.2 )( 0.206 ) = 0.406 mA / V
          1                  1
r01 =             =                      = 485 kΩ
        λ1 I D1       ( 0.01)( 0.206 )
          1           1
r02 =           =           = 100 kΩ
        λ2 I D 2 ( 0.01)(1)
R2 r02 = 5 100 = 4.76 kΩ
R1 r01 = 35 485 = 32.6 kΩ
                  − (1.414 )( 4.76 )( 0.406 )( 32.6 )
Then Av =
                          1 + (1.414 )( 4.76 )
So ⇒ Av = −11.5
Output Resistance—From the results for a source follower in Chapter 6.
      1              1
R0 =      R2 r02 =       5 100
     gm2           1.414
                            = 0.707 4.76
So R0 = 0.616 kΩ

11.86
a.
5
R2 =        ⇒ R2 = 10 kΩ
        0.5
              I D2           0.5
VSG 2 =            − VTP 2 =      + 1 = 2.41 V
              K p2           0.25
        5 − ( −2.41)
R1 =                      ⇒ R1 = 74.1 kΩ
              0.1
b.




V0 = − ( g m 2Vsg 2 ) ( r02 R2 )
Vsg 2 = V0 − ⎡ − ( g m1Vgs1 ) ( r01 R1 ) ⎤ and Vgs1 = Vin
             ⎣                           ⎦
        V0 − ( g m 2 ) ( r02 R2 ) ( g m1 ) ( r01 R1 )
Av =        =
        Vin         1 + ( g m 2 ) ( r02 R2 )
g m1 = 2 K n1 I D1 = 2         ( 0.1)( 0.1) = 0.2 mA / V
gm2 = 2 K p 2 I D 2 = 2         ( 0.25)( 0.5) = 0.707 mA / V
          1                1
r01 =             =                   = 1000 kΩ
        λ1 I D1       ( 0.01)( 0.1)
          1            1
r02 =           =               = 200 kΩ
        λ2 I D 2 ( 0.01)( 0.5 )
r02 R2 = 200 10 = 9.52 kΩ
r01 R1 = 1000 74.1 = 69.0 kΩ
                  − ( 0.707 )( 9.52 )( 0.2 )( 69 )
Then Av =
                        1 + ( 0.707 )( 9.52 )
So ⇒ Av = −12.0
         1             1
R0 =        R2 r02 =       10 200
        gm2          0.707
     = 1.414 9.52
Or R0 = 1.23 kΩ

11.87
a.
I C 2 = 0.25 mA
      5−2
R=          ⇒ R = 12 kΩ
       0.25
        v − VBE ( on )         2 − 0.7
I C 3 = 02             ⇒ RE1 =         ⇒ RE1 = 2.6 kΩ
             RE1                 0.5
        5 − v03 5 − 3
RC =           =      ⇒ RC = 4 kΩ
          IC 3   0.5
       ⎡ v03 − VBE ( on ) ⎤ − ( −5 )
IC 4 = ⎣                  ⎦
                  RE 2
          3 − 0.7 + 5
RE 2 =                ⇒ RE 2 = 2.43 kΩ
               3
b.           Input resistance to base of Q3,
         Ri 3 = rπ 3 + (1 + β ) RE1
                   (100 )( 0.026 )
          rπ 3 =               = 5.2 kΩ
                      0.5
         Ri 3 = 5.2 + (101)( 2.6 ) = 267.8 kΩ
                v      1
         Ad 1 = 02 = g m 2 ( R Ri 3 )
                vd 2
          0.25
         gm2 =   = 9.62 mA/V
         0.026
         1
   Ad 1 = ( 9.62 ) (12 267.8 ) ⇒ Ad 1 = 55.2
         2
    v      − β ( RC Ri 4 )
Now 03 =
    v02 rπ 3 + (1 + β ) RE1
where Ri 4 = rπ 4 + (1 + β ) RE 2
       v0      (1 + β ) RE 2
and       =
       v03 rπ 4 + (1 + β ) RE 2
         (100 )( 0.026 )
rπ 4 =            = 0.867 kΩ
          3
v0      (101)( 2.43)
   =                     = 0.9965
v03 0.867 + (101)( 2.43)
Ri 4 = 0.867 + (101)( 2.43) = 246.3 kΩ
rπ 3 = 5.2 kΩ
      v03 − (100 ) ( 4 246.3)
So        =                    = −1.47
      v02   5.2 + (101)( 2.6 )
            v0
So Ad =         = ( 55.2 )( 0.9965 )( −1.47 ) ⇒ Ad = −80.9
            vd
c.          Using Equation (11.32b)
           − g m 2 ( R Ri 3 )
Acm1 =
               2 (1 + β ) R0
          1+
                    rπ 2
         (100 )( 0.026 )
rπ 2 =                 = 10.4 kΩ
           0.25
       − ( 9.62 ) (12 267.8 )
Acm1 =                          = −0.0569 = Acm1
             2 (101)(100 )
        1+
                   10.4
             ⎛ v0 ⎞⎛ v03 ⎞
Then Acm = ⎜ ⎟⎜           ⎟ ⋅ Acm1
             ⎝ v03 ⎠⎝ v02 ⎠
= ( 0.9965 )( −1.47 )( −0.0569 ) ⇒ Acm = 0.08335
                    ⎛ 80.9 ⎞
C M RRdB = 20 log10 ⎜         ⎟ ⇒ C M RRdB = 59.7 dB
                    ⎝ 0.08335 ⎠

11.88
a.
         10 − v01 10 − 2
RC1 =            =       ⇒ RC1 = 80 kΩ
           I C1    0.1
         10 − v04 10 − 6
RC 2 =           =       ⇒ RC 2 = 20 kΩ
           IC 4    0.2
b.
                  v01 − v02
         Ad 1 =             = − g m1 ( RC1 rπ 3 )
                     vd
                  0.1
         g m1 =         = 3.846 mA/V
                0.026
                (180 )( 0.026 )
         rπ 3 =                  = 23.4 kΩ
                       0.2
         Ad 1 = − ( 3.846 ) ( 80 23.4 ) ⇒ Ad 1 = −69.6
                     v04    1
         Ad 2 =            = g m 4 RC 2
                  v01 − v02 2
            0.2
       gm4 =      = 7.692 mA/V
          0.026
          1
    Ad 2 = ( 7.692 )( 20 ) = 76.9
          2
Then Ad = ( 76.9 )( −69.6 ) ⇒ Ad = −5352

11.89
a.        Neglect the effect of r0 in determining the differential-mode gain.
       v02 1
Ad 1 =     = g m 2 ( RC Ri 3 ) where Ri 3 = rπ 3 + (1 + β ) RE
       vd 2
               − β RC 2
A2 =
         rπ 3 + (1 + β ) RE
       12 − 0.7 − ( −12 )         23.3
I1 =                          =        = 1.94 mA ≈ I C 5
                  R1               12
         1
           ⋅ (1.94 )
gm2 = 2              = 37.3 mA/V
           0.026
       ( 200 )( 0.026 )
rπ 3 =
               IC 3
            1
v02 = 12 −    (1.94 )(8) = 4.24 V
            2
        4.24 − 0.7
IC 3 =              = 1.07 mA
           3.3
       ( 200 )( 0.026 )
rπ 3 =                  = 4.86 kΩ
            1.07
Ri 3 = 4.86 + ( 201)( 3.3) = 668 kΩ
          1
Ad 1 =      ( 37.3) ⎣8 668⎦ = 147.4
                    ⎡     ⎤
          2
Then
Ad = Ad 1 ⋅ A2 = (147.4 )( −1.197 ) ⇒ Ad = −176
                  VA     80
R0 = r05 =             =     = 41.2 kΩ
                  I C 5 1.94
           − g m 2 ( RC Ri 3 )
Acm1 =
               2 (1 + β ) R0
          1+
                    rπ 2
         ( 200 )( 0.026 )
rπ 2 =                       = 5.36 kΩ
            1
              ⋅ (1.94 )
            2
− ( 37.3) ( 8 668 )
Acm1 =                             = −0.09539
         2 ( 201)( 41.2 )
      1+
               5.36
A2 = −1.197
Acm = ( −0.09539 )( −1.197 ) ⇒ Acm = 0.114

b.
 vd = v1 − v2 = 2.015sin ω t − 1.985sin ω t
 vd = 0.03sin ω t ( V )
       v +v
vcm = 1 2 = 2.0sin ω t
          2
 v03 = Ad vd + Acm vcm
     = ( −176 )( 0.03) + ( 0.114 )( 2 )
Or v03 = −5.052sin ω t
Ideal, Acm = 0
So
v03 = Ad vd = ( −176 )( 0.03)
v03 = −5.28sin ω t
c.
Rid = 2rπ 2 = 2 ( 5.36 ) ⇒ Rid = 10.72 kΩ
2 Ricm ≅ 2 (1 + β ) R0 (1 + β ) r0
      VA          80
r0 =        =             = 82.5 kΩ
      IC 2    1
                ⋅ (1.94 )
              2
2 Ricm = ⎡ 2 ( 201)( 41.2 ) ⎤ ⎡( 201)( 82.5 ) ⎤
           ⎣                ⎦ ⎣               ⎦
       = 16.6 MΩ 16.6 MΩ
So ⇒ Ricm = 4.15 MΩ

11.90
a.
     24 − VGS 4
                = kn (VGS 4 − VTh )
                                    2
I1 =
        R1
24 − VGS 4 = ( 55 )( 0.2 )(VGS 4 − 2 )
                                          2


24 − VGS 4 = 11 (VGS 4 − 4VGS 4 + 4 )
                   2


    2
11VGS 4 − 43VGS 4 + 20 = 0

                 ( 43)       − 4 (11)( 20 )
                         2
          43 ±
VGS 4 =                                       = 3.37 V
                     2 (11)
     24 − 3.37
I1 =               = 0.375 mA = I Q
         55
            ⎛ 0.375 ⎞
v02 = 12 − ⎜          ⎟ ( 40 ) = 4.5 V
            ⎝ 2 ⎠
v02 − VGS 3
             = I D 3 = kn (VGS 3 − VTh )
                                         2

    R5
4.5 − VGS 3 = ( 0.2 ) ( 6 ) (VGS 3 − 4VGS 3 + 4 )
                               2


     2
1.2VGS 3 − 3.8VGS 3 + 0.3 = 0

                   ( 3.8)       − 4 (1.2 ) ( 0.3)
                            2
          3.8 ±
VGS 3 =                                             = 3.09 V
                       2 (1.2 )
         4.5 − 3.09
I D3 =              = 0.235 mA
             6

                                   ( 0.2 ) ⎛
                                               0.375 ⎞
  gm2 = 2 Kn I D2 = 2                      ⎜         ⎟
                                          ⎝      2 ⎠
          = 0.387 mA/V
         1            1
   Ad 1 =   g m 2 RD = ( 0.387 )( 40 ) ⇒ Ad 1 = 7.74
         2            2
         − g m 3 RD 2
    A2 =
         1 + g m 3 R5
   g m3 = 2 K n I D3 = 2           ( 0.2 )( 0.235 )
          = 0.434 mA/V
             − ( 0.434 ) ( 4 )
    A2 =                           = −0.482
            1 + ( 0.434 )( 6 )
So Ad = Ad 1 ⋅ A2 = ( 7.74 ) ( −0.482 ) ⇒ Ad = −3.73
                   1            1
    R0 = r05 =         =                  = 133 kΩ
                  λ I Q ( 0.02 )( 0.375 )
              − g m 2 RD      − ( 0.387 ) ( 40 )
  Acm1 =                  =
            1 + 2 g m 2 R0 1 + 2 ( 0.387 ) (133)
          = −0.149
   Acm = ( −0.149 )( −0.482 ) ⇒ Acm = 0.0718
b.
 vd = v1 − v2 = 0.3sin ω t
       v +v
vcm = 1 2 = 2sin ω t
          2
 v03 = Ad vd + Acm vcm
     = ( −3.73)( 0.3) + ( 0.0718 )( 2 ) ⇒ v03 = −0.975sin ω t ( V )
Ideal, Acm = 0
v03 = Ad vd = ( −3.73)( 0.3)
Or
 ⇒ v03 = −1.12sin ω t ( V )

11.91
The low-frequency, one-sided differential gain is
v02 1        ⎛ r       ⎞
Av 2 =       = g m RC ⎜ π ⎟
         vd 2         ⎝ rπ + RB ⎠
         1
           ⋅ β RC
       = 2
         rπ + RB
            (100 )( 0.026 )
     rπ =                     = 5.2 kΩ
                 0.5
       1
         ⋅ (100 )(10 )
Av 2 = 2               ⇒ Av 2 = 87.7
         5.2 + 0.5
CM = Cμ (1 + g m RC )
      0.5
 gm =        = 19.23 mA/V
     0.026
CM = 2 ⎡1 + (19.23)(10 ) ⎤ ⇒ CM = 387 pF
       ⎣                 ⎦
                    1
 fH =
         2π ⎡ rπ RB ⎤ ( Cπ + CM )
            ⎣       ⎦
                            1
       =                                         So ⇒ f H = 883 kHz
         2π ⎣5.2 0.5⎦ × 10 × ( 8 + 387 ) × 10−12
            ⎡         ⎤     3




11.92
                                                 1                  1
a.            From Equation (11.117), f Z =           =
                                              2π R0 C0 2π ( 5 × 106 )( 0.8 × 10−12 )
Or f Z = 39.8 kHz
b.         From Problem 11.69, f H = 883 kHz. From Equation (11.116(b)), the low-frequency
common- mode gain is
                  − g m RC
 Acm =
        ⎡⎛ RB ⎞ 2 (1 + β ) R0 ⎤
        ⎢⎜ 1 +    ⎟+          ⎥
        ⎣⎝     rπ ⎠        rπ ⎦
   rπ = 5.2 kΩ, g m = 19.23 mA/V
So
                     − (19.23)(10 )
Acm =
         ⎡⎛ 0.5 ⎞ 2 (101) ( 5 × 106 ) ⎤
         ⎢⎜ 1 +     ⎟+                ⎥
         ⎢⎝ 5.2 ⎠      5.2 × 103      ⎥
         ⎣                            ⎦
                   −4
       = −9.9 × 10
                    ⎛ 87.7 ⎞
C M RRdB = 20 log10 ⎜         −4 ⎟
                                   = 98.9 dB
                    ⎝ 9.9 × 10 ⎠
11.93
                                                      gm
a.         From Equation (7.72), fT =
                                             2π ( Cπ + Cμ )
       1
gm =        = 38.46 mA/V
     0.026
                  38.46 × 10−3
Then 800 × 106 =
                 2π ( Cπ + Cμ )
Or Cπ + Cμ = 7.65 × 10−12 F = 7.65 pF
And Cπ = 6.65 pF
CM = Cμ (1 + g m RC ) = 1 ⎡1 + ( 38.46 )(10 ) ⎤
                          ⎣                   ⎦
                       = 386 pF
                 1
fH =
     2π ⎡ rπ RB ⎤ ( Cπ + CM )
        ⎣        ⎦
        (120 )( 0.026 )
 rπ =                     = 3.12 kΩ
              1
                        1
 fH =
      2π ⎡3.12 1⎤ × 10 × ( 6.65 + 386 ) × 10−12
         ⎣      ⎦
                           3


Or f H = 535 kHz
                                                   1               1
b.         From Equation (11.140), f Z =                =
                                                2π R0 C0 2π (10 × 106 )(10−12 )
Or f Z = 15.9 kHz

11.94
The differential-mode half circuit is:




           ⎛v ⎞                       ⎛1⎞
       g m ⎜ d ⎟ RC                   ⎜ ⎟ β RC
v02 =      ⎝ 2⎠       or Av =         ⎝ 2⎠
         ⎛1+ β ⎞              rπ      + (1 + β ) RE
      1+ ⎜       ⎟ RE
         ⎝   rπ ⎠
        (100 )( 0.026 )
 rπ =                     = 5.2 kΩ
             0.5
      ⎛1⎞
      ⎜ ⎟ (100 )(10 )     500
 Av = ⎝ ⎠
       2
                      =
      5.2 + (101) RE 5.2 + (101) RE
a.   For RE = 0.1 kΩ : Av = 32.7
b.   For RE = 0.25 kΩ : Av = 16.4

More Related Content

PDF
PDF
PDF
PDF
A.gate by-rk-kanodia
PDF
PDF
PDF
Kanodia murolia previousyears
PDF
A.gate by-rk-kanodia
Kanodia murolia previousyears

What's hot (20)

PDF
PDF
Ee ies'2014-objective paper i (set-a)-final
PDF
Gate ee 2009 with solutions
PDF
PDF
Gate ee 2008 with solutions
PDF
Gate ee 2011 with solutions
PDF
Gate 2013 complete solutions of ec electronics and communication engineering
PDF
Gate ee 2007 with solutions
PDF
Power power electronics (solution manual) by M.H.Rashid.pdf
PDF
Gate ee 2006 with solutions
PDF
W ee network_theory_10-06-17_ls2-sol
PDF
Gate ee 2005 with solutions
PDF
Ch17s 3rd Naemen
PDF
Gate ee 2003 with solutions
PDF
Gate ee 2010 with solutions
PDF
PDF
Gate ee 2012 with solutions
PDF
PDF
Ch17p 3rd Naemen
PDF
structural analysis CE engg. solved ex.
Ee ies'2014-objective paper i (set-a)-final
Gate ee 2009 with solutions
Gate ee 2008 with solutions
Gate ee 2011 with solutions
Gate 2013 complete solutions of ec electronics and communication engineering
Gate ee 2007 with solutions
Power power electronics (solution manual) by M.H.Rashid.pdf
Gate ee 2006 with solutions
W ee network_theory_10-06-17_ls2-sol
Gate ee 2005 with solutions
Ch17s 3rd Naemen
Gate ee 2003 with solutions
Gate ee 2010 with solutions
Gate ee 2012 with solutions
Ch17p 3rd Naemen
structural analysis CE engg. solved ex.
Ad

Viewers also liked (17)

DOCX
Ramey soft
PDF
PDF
PDF
DOCX
Rameysoft-ftp client server, and others+
PPT
The Rich and The Rest
KEY
HDR Workshop
PPT
O3b Networks Company Info
PDF
O3b Networks presentation
PDF
Channel Bonding
PDF
Samsung UHD TV 2014 Communication Review
PDF
iptv over ngn
PPTX
Telecommunications: Wireless Networks
PDF
Quality of Experience in Multimedia Systems and Services: A Journey Towards t...
PDF
High-Dynamic Range (HDR) Demystified
PPT
Multi Channel Marketing Approach
PDF
MPEG-DASH: Overview, State-of-the-Art, and Future Roadmap
Ramey soft
Rameysoft-ftp client server, and others+
The Rich and The Rest
HDR Workshop
O3b Networks Company Info
O3b Networks presentation
Channel Bonding
Samsung UHD TV 2014 Communication Review
iptv over ngn
Telecommunications: Wireless Networks
Quality of Experience in Multimedia Systems and Services: A Journey Towards t...
High-Dynamic Range (HDR) Demystified
Multi Channel Marketing Approach
MPEG-DASH: Overview, State-of-the-Art, and Future Roadmap
Ad

Similar to Ch11s (20)

PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
Solutions manual for microelectronic circuits analysis and design 3rd edition...
PDF
PDF
PDF
SPICE MODEL of NJM2711 in SPICE PARK
ZIP
Pracfinl.Key
PDF
DOC
Standard formula
PDF
DOCX
Ecuaciones dispositivos electronicos
PDF
PDF
05777828
PDF
SPICE MODEL of 2SD985 in SPICE PARK
Solutions manual for microelectronic circuits analysis and design 3rd edition...
SPICE MODEL of NJM2711 in SPICE PARK
Pracfinl.Key
Standard formula
Ecuaciones dispositivos electronicos
05777828
SPICE MODEL of 2SD985 in SPICE PARK

Recently uploaded (20)

PPTX
Microsoft Excel 365/2024 Beginner's training
PDF
sbt 2.0: go big (Scala Days 2025 edition)
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PPT
What is a Computer? Input Devices /output devices
PDF
sustainability-14-14877-v2.pddhzftheheeeee
PPT
Geologic Time for studying geology for geologist
PPTX
2018-HIPAA-Renewal-Training for executives
PDF
UiPath Agentic Automation session 1: RPA to Agents
PDF
Enhancing plagiarism detection using data pre-processing and machine learning...
PDF
Flame analysis and combustion estimation using large language and vision assi...
DOCX
search engine optimization ppt fir known well about this
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
Comparative analysis of machine learning models for fake news detection in so...
PDF
“A New Era of 3D Sensing: Transforming Industries and Creating Opportunities,...
PPTX
Modernising the Digital Integration Hub
PDF
CloudStack 4.21: First Look Webinar slides
PDF
Five Habits of High-Impact Board Members
PDF
Improvisation in detection of pomegranate leaf disease using transfer learni...
PDF
A proposed approach for plagiarism detection in Myanmar Unicode text
Microsoft Excel 365/2024 Beginner's training
sbt 2.0: go big (Scala Days 2025 edition)
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
A contest of sentiment analysis: k-nearest neighbor versus neural network
What is a Computer? Input Devices /output devices
sustainability-14-14877-v2.pddhzftheheeeee
Geologic Time for studying geology for geologist
2018-HIPAA-Renewal-Training for executives
UiPath Agentic Automation session 1: RPA to Agents
Enhancing plagiarism detection using data pre-processing and machine learning...
Flame analysis and combustion estimation using large language and vision assi...
search engine optimization ppt fir known well about this
NewMind AI Weekly Chronicles – August ’25 Week III
Comparative analysis of machine learning models for fake news detection in so...
“A New Era of 3D Sensing: Transforming Industries and Creating Opportunities,...
Modernising the Digital Integration Hub
CloudStack 4.21: First Look Webinar slides
Five Habits of High-Impact Board Members
Improvisation in detection of pomegranate leaf disease using transfer learni...
A proposed approach for plagiarism detection in Myanmar Unicode text

Ch11s

  • 1. Chapter 11 Problem Solutions 11.1 (a) −0.7 − ( −3) = 0.1 ⇒ RE = 23 K RE 3 − 1.5 = 0.05 ⇒ RC = 30 K RC (b) vCE 2 = 6 − iC 2 ( RC + 2 RE ) = 6 − iC 2 ( 76 ) (c) vcm ( max ) ⇒ vCB 2 = 0 ⇒ vCE 2 = 0.7 V So 0.7 = 6 − iC 2 ( 76 ) ⇒ iC 2 = 69.74 μ A ( v ( max ) − 0.7 ) − ( −3) = 2 CM ( 0.06974 ) ⇒ vCM ( max ) = 0.908 V 23 vCM ( min ) ⇒ VS = −3 V ⇒ vCM ( min ) = −2.3 V 11.2 Ad = 180, C M RRdB = 85 dB Ad 180 C M RR = 17, 783 = = ⇒ Acm = 0.01012 Acm Acm Assume the common-mode gain is negative. v0 = Ad vd + Acm vcm = 180vd − 0.01012vcm v0 = 180 ( 2sin ω t ) mV − ( 0.01012 )( 2sin ω t ) V v0 = 0.36sin ω t − 0.02024sin ω t Ideal Output: v0 = 0.360sin ω t ( V ) Actual Output: v0 = 0.340sin ω t ( V ) 11.3 a.
  • 2. 10 − 2 ( 0.7 ) I1 = ⇒ I1 = 1.01 mA 8.5 I1 1.01 IC 2 = = ⇒ I C 2 ≅ 1.01 mA 2 2 1+ 1+ β (1 + β ) (100 )(101) ⎛ 100 ⎞ ⎛ 1.01 ⎞ IC 4 = ⎜ ⎟⎜ ⎟ ⇒ I C 4 ≅ 0.50 mA ⎝ 101 ⎠ ⎝ 2 ⎠ VCE 2 = ( 0 − 0.7 ) − ( −5 ) ⇒ VCE 2 = 4.3 V VCE 4 = ⎡5 − ( 0.5 )( 2 ) ⎤ − ( −0.7 ) ⇒ VCE 4 = 4.7 V ⎣ ⎦ b. For VCE 4 = 2.5 V ⇒ VC 4 = −0.7 + 2.5 = 1.8 V 5 − 1.8 IC 4 = ⇒ I C 4 = 1.6 mA 2 ⎛ 1+ β ⎞ ⎛ 101 ⎞ IC 2 + ⎜ ⎟ ( 2IC 4 ) = ⎜ ⎟ ( 2 )(1.6 ) ⇒ I C 2 = 3.23 mA ⎝ β ⎠ ⎝ 100 ⎠ I1 ≈ I C 2 = 3.23 mA 10 − 2 ( 0.7 ) R1 = ⇒ R1 = 2.66 kΩ 3.23 11.4 a. Neglecting base currents 30 − 0.7 I1 = I 3 = 400 μ A ⇒ R1 = ⇒ R1 = 73.25 kΩ 0.4 VCE1 = 10 V ⇒ VC1 = 9.3 V 15 − 9.3 RC = ⇒ RC = 28.5 kΩ 0.2 b. (100 )( 0.026 ) rπ = = 13 kΩ 0.2 50 r0 ( Q3 ) = = 125 kΩ 0.4 We have β RC (100 )( 28.5) Ad = = ⇒ Ad = 62 2 ( rπ + RB ) 2 (13 + 10 ) ⎧ ⎫ ⎪ ⎪ β RC ⎪ 1 ⎪ Acm = − ⎨ ⎬ rπ + RB ⎪ 2r0 (1 + β ) ⎪ 1+ ⎪ ⎩ rπ + RB ⎪ ⎭ ⎧ ⎫ (100 )( 28.5 ) ⎪ ⎪ 1 ⎪ ⎪ =− ⎨ ⎬ ⇒ Acm = −0.113 13 + 10 ⎪ 2 (125 )(101) ⎪ 1+ ⎪ ⎩ ⎪ 13 + 10 ⎭ ⎛ 62 ⎞ C M RRdB = 20 log10 ⎜ ⎟ ⇒ C M RRdB = 54.8 dB ⎝ 0.113 ⎠ c.
  • 3. Rid = 2 ( rπ + RB ) = 2 (13 + 10 ) ⇒ Rid = 46 kΩ 1 Ricm = ⎡ rπ + RB + 2 (1 + β ) r0 ⎤ 2⎣ ⎦ 1 = ⎡13 + 10 + 2 (101)(125 ) ⎤ ⇒ Ricm = 12.6 MΩ 2⎣ ⎦ 11.5 IQ ( 0.5) (a) vCM ( max ) ⇒ VCB = 0 so that vCM ( max ) = 5 − ( RC ) = 5 − (8) 2 2 vCM ( max ) = 3 V (b) Vd ⎛ I CQ ⎞ Vd ⎛ 0.25 ⎞ ⎛ 0.018 ⎞ ΔI = g m ⋅ =⎜ ⎟⋅ =⎜ ⎟⎜ ⎟ = 0.08654 mA 2 ⎝ VT ⎠ 2 ⎝ 0.026 ⎠ ⎝ 2 ⎠ ΔVC 2 = ΔI ⋅ RC = ( 0.08654 ) ( 8 ) = 0.692 V (c) ⎛ 0.25 ⎞ ⎛ 0.010 ⎞ ΔI = ⎜ ⎟⎜ ⎟ = 0.04808 mA ⎝ 0.026 ⎠ ⎝ 2 ⎠ ΔVC 2 = ( 0.04808 )( 8 ) = 0.385 V 11.6 P = ( I1 + I C 4 ) (V + − V − ) I1 ≅ I C 4 so 1.2 = 2 I1 ( 6 ) ⇒ I1 = I C 4 = 0.1 mA 3 − 0.7 − ( −3) R1 = ⇒ R1 = 53 k Ω 0.1 3 −1 For vCM = +1V ⇒ VC1 = VC 2 = 1 V ⇒ RC = ⇒ RC = 40 k Ω 0.05 One-sided output 1 0.05 Ad = g m RC where g m = = 1.923 mA / V 2 0.026 Then 1 Ad = (1.923)( 40 ) ⇒ Ad = 38.5 2 11.7 a. IE 0 = 0.7 + ( 2 ) + I E (85) − 5 2 5 − 0.7 IE = ⇒ I E = 0.050 mA 85 + 1 ⎛ β ⎞ ⎛ I E ⎞ ⎛ 100 ⎞⎛ 0.050 ⎞ I C1 = I C 2 = ⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎝ 1 + β ⎠ ⎝ 2 ⎠ ⎝ 101 ⎠⎝ 2 ⎠ Or I C1 = I C 2 = 0.0248 mA VCE1 = VCE 2 = ⎡5 − I C1 (100 ) ⎤ − ( −0.7 ) ⎣ ⎦ So VCE1 = VCE 2 = 3.22 V b. vcm ( max ) for VCB = 0 and VC = 5 − I C1 (100 ) = 2.52 V So vcm ( max ) = 2.52 V vcm ( min ) for Q1 and Q2 at the edge of cutoff ⇒ vcm ( min ) = −4.3 V (c) Differential-mode half circuits
  • 4. vd ⎛V ⎞ − ′ = Vπ + ⎜ π + g mVπ ⎟ .RE 2 ⎝ rπ ⎠ ⎡ (1 + β ) ⎤ = Vπ ⎢1 + ′ RE ⎥ ⎣ rπ ⎦ Then − ( vd / 2 ) Vπ = ⎡ (1 + β ) ⎤ ⎢1 + ′ RE ⎥ ⎣ rπ ⎦ 1 β RC vo = − g mVπ RC ⇒ Ad = ⋅ 2 rπ + (1 + β ) RE ′ β VT (100 )( 0.026 ) ′ rπ = = = 105 k Ω RE = 2 k Ω I CQ 0.0248 Then 1 (100 )(100 ) Ad = ⋅ ⇒ Ad = 16.3 2 105 + (101)( 2 ) 11.8 a. For v1 = v2 = 0 and neglecting base currents −0.7 − ( −10 ) RE = ⇒ RE = 62 kΩ 0.15 b. v02 β RC Ad = = vd 2 ( rπ + RB ) β VT (100 )( 0.026 ) rπ = = = 34.7 kΩ I CQ 0.075 (100 )( 50 ) Ad = ⇒ Ad = 71.0 2 ( 34.7 + 0.5 ) ⎡ ⎤ ⎢ ⎥ β RC ⎢ 1 ⎥ Acm = − rπ + RB ⎢ 2 RE (1 + β ) ⎥ ⎢1 + ⎥ ⎢ ⎣ rπ + RB ⎥ ⎦ ⎡ ⎤ (100 )( 50 ) ⎢ 1 ⎥ =− ⎢ ⎥ ⇒ Acm = −0.398 34.7 + 0.5 ⎢ 2 ( 62 )(101) ⎥ ⎢1 + 34.7 + 0.5 ⎥ ⎣ ⎦ 71.0 C M RRdB = 20 log10 ⇒ C M RRdB = 45.0 dB 0.398 c. Rid = 2 ( rπ + RB ) Rid = 2 ( 34.7 + 0.5 ) ⇒ Rid = 70.4 kΩ Common-mode input resistance 1 Ricm = ⎡ rπ + RB + 2 (1 + β ) RE ⎤ 2⎣ ⎦ 1 = ⎡34.7 + 0.5 + 2 (101)( 62 ) ⎤ ⇒ Ricm = 6.28 MΩ 2⎣ ⎦ 11.9
  • 5. (a) v1 = v2 = 1 V ⇒ VE = 1.6 9 − 1.6 IE = ⇒ 18.97 μ A 390 IE = 9.49 μ A I C1 = I C 2 = 9.39 μ A 2 vC1 = vC 2 = ( 9.39 )( 0.51) − 9 = −4.21 V (b) 9.39 gm = ⇒ 0.361 mA/V 0.026 ΔI = g m d = ( 0.361× 10−3 ) ( 0.005 ) = 1.805 μ A V 2 ΔvC = (1.805 × 10−6 )( 510 × 103 ) = 0.921 V ⇒ vC 2 = −4.21 + 0.921 ⇒ −3.29 V vC1 = −4.21 − 0.921 ⇒ −5.13 V 11.10 (a) v1 = v2 = 0 I E1 = I E 2 ≅ 6 μ A β = 60 I C1 = I C 2 = 5.90 μ A vC1 = vC 2 = ( 5.90 )( 0.360 ) − 3 = −0.875 V VEC1 = VEC 2 = +0.6 − ( −0.875 ) = 1.475 V (b) (i) 5.90 gm = ⇒ 0.227 mA/V 0.026 Ad = g m RC = ( 0.227 )( 360 ) = 81.7 Acm = 0 (ii) g R ( 60 )( 0.026 ) Ad = m C = 40.8 rπ = 2 0.0059 = 264 K − ( 0.227 )( 360 ) Acm = = −0.0442 2 ( 61)( 4000 ) 1+ 264 11.11
  • 6. For v1 = v2 = 0.20 V I C1 = I C 2 = 0.1 mA vC1 = vC 2 = ( 0.1)( 30 ) − 10 = −7 V 0.1 gm = = 3.846 mA/V 0.026 v ΔI = g m d = ( 3.846 )( 0.008 ) ⇒ 30.77 μ A 2 ΔvC = ΔI ⋅ RC = ( 30.77 × 10−6 )( 30 × 103 ) = 0.923 V v2 ↑⇒ I C 2 ↓⇒ vC 2 ↓⇒ vC1 = −7 + 0.923 = −6.077 V vC 2 = −7 − 0.923 = −7.923 V 11.12 RC = 50 K For v1 = v2 = 0 −0.7 − ( −10 ) IE = 75 = 0.124 mA I C1 = I C 2 = 0.0615 mA 0.0615 gm = = 2.365 mA/V 0.026 (120 )( 0.026 ) rπ = = 50.7 K 0.0615 Differential Input v V v1 = d v2 = − d 2 2 Half-circuit. V ⎛ ΔR ⎞ ΔI = + g m d ⇒ ΔvC1 = −ΔI ⎜ RC + ⎟ 2 ⎝ 2 ⎠ ⎛ ΔR ⎞ ΔvC 2 = +ΔI ⎜ RC − ⎟ ⎝ 2 ⎠ ⎛ ΔR ⎞ ⎛ ΔR ⎞ vo = ΔvC1 − ΔvC 2 = −ΔI ⎜ RC + ⎟ − ΔI ⎜ RC − ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ = −2ΔIRC ⎛ V ⎞ = −2 ⎜ g m d ⎟ RC ⎝ 2⎠ Ad = − g m RC = − ( 2.365 )( 50 ) = −118.25 Common-mode input.
  • 7. ⎛V ⎞ vcm = Vπ + ⎜ π + g mVπ ⎟ ( 2 RE ) ⎝ rπ ⎠ vcm Vπ = ⎛ β⎞ 1 + ⎜ 1 + ⎟ ( 2 RE ) ⎝ rπ ⎠ g m vcm β vcm ΔI = g mVπ = = ⎛1+ β ⎞ rπ + (1 + β )( 2 RE ) 1+ ⎜ ⎟ ( 2 RE ) ⎝ rπ ⎠ ⎛ ΔR ⎞ − β ⎜ RC + ⎟ ⋅ vcm ΔvC1 = −ΔIR1 = ⎝ 2 ⎠ rπ + (1 + β )( 2 RE ) ⎛ ΔR ⎞ − β ⎜ RC − ⎟ vcm ⎝ 2 ⎠ ΔvC 2 = −ΔIR2 = rπ + (1 + β )( 2 RE ) ⎛ ΔR ⎞ ⎛ ΔR ⎞ − β ⎜ RC + ⎟ vcm + β ⎜ RC − ⎟ vcm vo = ΔvC1 − ΔvC 2 = ⎝ 2 ⎠ ⎝ 2 ⎠ [ ] [ ] ⎛ ΔR ⎞ −2 β ⎜ ⎟ vcm = ⎝ 2 ⎠ rπ + (1 + β )( 2 RE ) − βΔR − (120 )( 0.5 ) Acm = = rπ + (1 + β )( 2 RE ) 50.7 + (121)( 2 )( 75 ) = −0.0032966 118.25 C M RR = = 35,870.5 0.0032966 C M R R ∫ = 91.1 dB dB 11.13 v1 = v2 = 0 −0.7 − ( −10 ) IE = 75 = 0.124 mA I C1 = I C 2 = 0.0615 mA 0.0615 gm = = 2.365 mA/V 0.026 Δg m = 0.01 gm g m1 = 2.377 mA/V g m 2 = 2.353 mA/V (120 )( 0.026 ) rπ = = 50.7 K 0.0615
  • 8. Vd ΔI = g m 2 V ΔvC1 = − g m1 d Rc 2 Vd ΔvC 2 = + gm2 Rc 2 Vd V vo = ΔvC1 − ΔvC 2 = − g m1 RC − g m 2 d RC 2 2 Vd =− RC ( g m1 + g m 2 ) 2 R −50 Ad = − C ( g m1 + g m 2 ) = ( 2.377 + 2.353) ⇒ Ad = −118.25 2 2 Common-Mode − g m1 RC vcm − g m 2 RC vcm ΔvC1 = ΔvC 2 = ⎛ 1+ β ⎞ ⎛ 1+ β ⎞ 1+ ⎜ ⎟ ( 2 RE ) 1+ ⎜ ⎟ ( 2 RE ) ⎝ rπ ⎠ ⎝ rπ ⎠ vo − ( g m1 − g m 2 ) RC − ( 2.377 − 2.353) ( 50 ) = Acm = = vcm ⎛ 1+ β ⎞ ⎛ 121 ⎞ 1+ ⎜ ⎟ ( 2 RE ) 1+ ⎜ ⎟ ( 2 )( 75 ) ⎝ rπ ⎠ ⎝ 50.7 ⎠ −1.2 = ⇒ Acm = −0.003343 358.99 C M R R ∫ = 91 dB dB 11.14 (a) v1 = v2 = 0 vE = +0.7 V 5 − 0.7 IE = = 4.3 mA 1 I C1 = I C 2 = 2.132 mA vC1 = vC 2 = ( 2.132 )(1) − 5 = −2.87 V (b) v1 = 0.5, v2 = 0 Q2 on Q1 off ⎛ 120 ⎞ I C1 = 0, I C 2 = 4.3 ⎜ ⎟ mA = 4.264 mA ⎝ 121 ⎠ vC1 = −5 V vC 2 = ( 4.264 ) (1) − 5 vC 2 = −0.736 V 2.132 (c) vE ≈ 0.7 V gm == 82.0 mA/V 0.026 v V (82.0 ) ΔI = g m d ΔvC = ΔI ⋅ RC = g m d ⋅ RC = ⋅ Vd (1) = 41.0Vd 2 2 2 Vd = 0.015 ⇒ Δvc = 0.615 V vC 2 ↓ vC1 ↑ vC1 = −2.87 + 0.615 = −2.255 V vC 2 = −2.87 − 0.615 = −3.485 V 11.15
  • 9. (a) IC 1 gm = = = 38.46 mA/V VT 0.026 vo 1 Ad = = = 100 vd 0.01 Ad = g m RC 100 = 38.46 RC Rc = 2.6 K (b) With v1 = v2 = 0 vC1 = vC 2 = 10 − (1)( 2.6 ) = 7.4 V ⇒ vcm ( max ) = 7.4 V 11.16 a. i. ( v01 − v02 ) = 0 ii. I C1 = I C 2 = 1 mA v01 − v02 = ⎡V + − I C1 RC1 ⎤ − ⎡V + − I C 2 RC 2 ⎤ ⎣ ⎦ ⎣ ⎦ = I C ( RC 2 − RC1 ) = (1)( 7.9 − 8 ) ⇒ v01 − v02 = −0.1 V b. ⎛v ⎞ I 0 = ( I S 1 + I S 2 ) exp ⎜ BE ⎟ ⎝ VT ⎠ ⎛v ⎞ 2 × 10−3 So exp ⎜ BE ⎟ = −13 −13 ⎝ VT ⎠ 10 + 1.1× 10 = 9.524 × 109 ⎛v ⎞ ⎟ = (10 )( 9.524 × 10 ) ⇒ I C1 = 0.952 mA −13 9 I C1 = I S 1 exp ⎜ BE ⎝ VT ⎠ I C 2 = (1.1× 10−13 )( 9.524 × 109 ) ⇒ I C 2 = 1.048 mA i. v01 − v02 = I C 2 RC 2 − I C1 RC1 ⇒ v01 − v02 = (1.048 − 0.952 )( 8 ) ⇒ v01 − v02 = 0.768 V ii. v01 − v02 = (1.048 )( 7.9 ) − ( 0.952 )( 8 ) v01 − v02 = 8.279 − 7.616 ⇒ v01 − v02 = 0.663 V 11.17 From Equation (11.12(b)) IQ iC 2 = 1 + evd / VT 1 0.90 = 1 + evd / VT 1 So evd / VT = − 1 = 0.111 0.90 vd = VT ln ( 0.111) = ( 0.026 ) ln ( 0.111) ⇒ vd = −0.0571 V 11.18 From Example 11.2, we have
  • 10. vd ( max ) 1 0.5 + − 4 ( 0.026 ) 1 + e − vd ( max ) / 0.026 = 0.02 v ( max ) 0.5 + d 4 ( 0.026 ) ⎡ v ( max ) ⎤ 1 0.98 ⎢ 0.5 + d ⎥= ⎢ ⎣ 4 ( 0.026 ) ⎥ 1 + e ⎦ − vd ( max ) / 0.026 1 0.490 + 9.423vd ( max ) = − vd ( max ) / 0.026 1+ e By trial and error vd ( max ) = 23.7 mV 11.19 a. For I1 = 1 mA, VBE3 = 0.7 V 20 − 0.7 R1 = ⇒ R1 = 19.3 kΩ 1 V ⎛ I ⎞ 0.026 ⎛ 1 ⎞ R2 = T ⋅ ln ⎜ 1 ⎟ = ⎜I ⎟ ⋅ ln ⎜ ⎟ ⇒ R2 = 0.599 kΩ IQ ⎝ Q⎠ 0.1 ⎝ 0.1 ⎠ b. (180 )( 0.026 ) rπ 4 = = 46.8 kΩ 0.1 0.1 gm = = 3.846 mA/V 0.026 100 r04 = ⇒ 1 MΩ 0.1 From Chapter 10 R0 = r04 ⎡1 + g m ( RE rπ 4 ) ⎤ ⎣ ⎦ RE rπ 4 = 0.599 46.8 = 0.591 R0 = (1) ⎡1 + ( 3.846 )( 0.591) ⎤ = 3.27 MΩ ⎣ ⎦ 100 r01 = ⇒ 2 MΩ 0.05 ⎡ ⎛ r ⎞⎤ Ricm ≅ ⎡(1 + β ) R0 ⎤ ⎢(1 + β ) ⎜ 01 ⎟⎥ ⎣ ⎦ ⎣ ⎝ 2 ⎠⎦ = ⎣(181)( 3.27 ) ⎦ ⎣(181)(1) ⎤ ⎡ ⎤ ⎡ ⎦ = 592 181 ⇒ Ricm = 139 MΩ (c) From Eq. (11.32(b)) − g m RC Acm = 2 (1 + β ) Ro 1+ rπ + RB 0.05 gm = = 1.923 mA / V 0.026 (180 )( 0.026 ) rπ = = 93.6 k Ω 0.05 RB = 0 Then − (1.923)( 50 ) Acm = ⇒ Acm = −0.00760 2 (181)( 3270 ) 1+ 93.6
  • 11. 11.19 For vCM = 3.5 V and a maximum peak-to-peak swing in the output voltage of 2 V, we need the quiescent collector voltage to be VC = 3.5 + 1 = 4.5 V Assume the bias is ±10 V , and I Q = 0.5 mA. Then I C = 0.25 mA 10 − 4.5 Now RC = ⇒ RC = 22 k Ω 0.25 (100 )( 0.026 ) In this case, rπ = = 10.4 k Ω 0.25 Then (100 )( 22 ) Ad = = 101 So gain specification is met. 2 (10.4 + 0.5 ) For CMRRdB = 80 dB ⇒ 1 ⎡ (1 + β ) I Q Ro ⎤ 1 ⎡ (101)( 0.5 ) Ro ⎤ CMRR = 104 = ⎢1 + ⎥ = ⎢1 + ⎥ ⇒ Ro = 1.03 M Ω 2⎣ VT β ⎦ 2 ⎢ ( 0.026 )(100 ) ⎥ ⎣ ⎦ Need to use a Modified Widlar current source. Ro = ro ⎡1 + g m ( RE1 rπ ) ⎤ ⎣ ⎦ 100 If VA = 100V , then ro = = 200 k Ω 0.5 (100 )( 0.026 ) rπ = = 5.2 k Ω 0.5 0.5 gm = = 19.23 mA / V 0.026 Then 1030 = 200 ⎡1 + (19.23)( RE1 rπ ) ⎤ ⇒ RE1 rπ = 0.216 k Ω = RE1 5.2 ⇒ RE1 = 225 Ω ⎣ ⎦ Also let RE 2 = 225 Ω and I REF ≅ 0.5 mA 11.20 −0.7 − ( −10 ) (a) RE = ⇒ RE = 37.2 k Ω 0.25 (b)
  • 12. Vπ 1 V V ⎛1+ β ⎞ Ve + g mVπ 1 + π 2 + g mVπ 2 = e or (1) ⎜ ⎟ (Vπ 1 + Vπ 2 ) = rπ rπ RE ⎝ rπ ⎠ RE Vπ 1 V1 − Ve ⎛ r ⎞ = ⇒ Vπ 1 = ⎜ π ⎟ (V1 − Ve ) rπ RB + rπ ⎝ rπ + RB ⎠ Vπ 2 = V2 − Ve Then ⎛1+ β ⎞ ⎡ rπ ⎤ V (1) ⎜ ⎟⎢ (V1 − Ve ) + (V2 − Ve )⎥ = e ⎠ ⎣ rπ + RB ⎝ rπ ⎦ RE From this, we find rπ + RB V1 + ⋅ V2 rπ Ve = ⎡ rπ + RB r + RB ⎤ ⎢ +1+ π ⎥ ⎣ RE (1 + β ) rπ ⎦ Now Vo = − g mVπ 2 RC = − g m RC (V2 − Ve ) We have (120 )( 0.026 ) 0.125 rπ = ≅ 25 k Ω, gm = = 4.81 mA / V 0.125 0.026 (i) Vd V Set V1 = and V2 = − d 2 2 Then ⎛ ⎛ 25 + 0.5 ⎞ ⎞ Vd Vd ⎜ 1 − ⎜ 25 ⎟ ⎟ 2 ( −0.02 ) ⎝ ⎝ ⎠⎠ Ve = = 2 ⎡ 25 + 0.5 25 + 0.5 ⎤ 2.026 ⎢ +1+ ⎥ ⎣ ( 37.2 )(121) 25 ⎦ So Ve = −0.00494Vd Now ⎛ V ⎞ V Vo = − ( 4.81)( 50 ) ⎜ − d − ( −0.00494 )Vd ⎟ ⇒ Ad = o = 119 ⎝ 2 ⎠ Vd (ii) Set V1 = V2 = Vcm Then ⎛ 25 + 0.5 ⎞ Vcm ⎜ 1 + ⎟ ⎝ 25 ⎠ V ( −2.02 ) Ve = = cm ⎡ 25 + 0.5 25 + 0.5 ⎤ 2.02567 ⎢ +1+ ⎥ ⎣ ( 37.2 )(121) 25 ⎦ Ve = Vcm ( 0.9972 ) Then Vo = − ( 4.81)( 50 ) ⎡Vcm − Vcm ( 0.9972 ) ⎤ ⎣ ⎦ Vo or Acm = = −0.673 Vcm 11.21 From Equation (11.18)
  • 13. v0 = vC 2 − vC1 = g m RC vd I CQ gm = VT For I Q = 2 mA, I CQ = 1 mA 1 Then g m = = 38.46 mA/V 0.026 Now 2 = ( 38.46 ) RC ( 0.015 ) So RC = 3.47 kΩ Now VC = V + − I C RC = 10 − (1)( 3.47 ) = 6.53 V For VCB = 0 ⇒ vcm ( max ) = 6.53 V 11.22 The small-signal equivalent circuit is A KVL equation: v1 = Vπ 1 − Vπ 2 + v2 v1 − v2 = Vπ 1 − Vπ 2 A KCL equation Vπ 1 V + g mVπ 1 + π 2 + g mVπ 2 = 0 rπ rπ ⎛1 ⎞ (Vπ 1 + Vπ 2 ) ⎜ + g m ⎟ = 0 ⇒ Vπ 1 = −Vπ 2 ⎝ rπ ⎠ 1 1 Then v1 − v2 = 2Vπ 1 ⇒ Vπ 1 = ( v1 − v2 ) and Vπ 2 = − ( v1 − v2 ) 2 2 At the v01 node: v01 v01 − v02 + + g mVπ 1 = 0 RC RL ⎛ 1 1 ⎞ ⎛ 1 ⎞ 1 v01 ⎜ + ⎟ − v02 ⎜ ⎟ = g m ( v2 − v1 ) (1) ⎝ RC RL ⎠ ⎝ RL ⎠ 2 At the v02 node: v02 v02 − v01 + + g mVπ 2 = 0 RC RL ⎛ 1 1 ⎞ ⎛ 1 ⎞ 1 v02 ⎜ + ⎟ − v01 ⎜ ⎟ = g m ( v1 − v2 ) (2) ⎝ RC RL ⎠ ⎝ RL ⎠ 2 From (1):
  • 14. ⎛ R ⎞ 1 v02 = v01 ⎜ 1 + L ⎟ − g m RL ( v2 − v1 ) ⎝ RC ⎠ 2 Substituting into (2) ⎛ R ⎞⎛ 1 1 ⎞ 1 ⎛ 1 1 ⎞ ⎛ 1 ⎞ 1 v01 ⎜1 + L ⎟ ⎜ + ⎟ − g m RL ( v2 − v1/ ) ⎜ + ⎟ − v01 ⎜ ⎟ = g m ( v1 − v2 ) ⎝ RC ⎠ ⎝ RC RL ⎠ 2 ⎝ RC RL ⎠ ⎝ RL ⎠ 2 ⎛ 1 RL 1 ⎞ 1 ⎡ ⎛ RL ⎞⎤ v01 ⎜ + 2 + ⎟ = g m ( v1 − v2 ) ⎢1 − ⎜ + 1⎟ ⎥ ⎝ RC RC RC ⎠ 2 ⎣ ⎝ RC ⎠⎦ v01 ⎛ RL ⎞ 1 ⎛ RL ⎞ ⎜2+ ⎟ = − gm ⎜ ⎟ ( v1 − v2 ) RC ⎝ RC ⎠ 2 ⎝ RC ⎠ For v1 − v2 = vd 1 − g m RL v01 Av1 = = 2 vd ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RC ⎠ 1 g m RL v02 From symmetry: Av 2 = = 2 vd ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RC ⎠ v02 − v01 g m RL Then Av = = vd ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RC ⎠ 11.23 The small-signal equivalent circuit is KVL equation: v1 = Vπ 1 − Vπ 2 + v2 or v1 − v2 = Vπ 1 − Vπ 2 KCL equation:
  • 15. Vπ 1 V + g mVπ 1 + g mVπ 2 + π 2 = 0 rπ rπ ⎛1 ⎞ (Vπ 1 + Vπ 2 ) ⎜ + g m ⎟ = 0 ⇒ Vπ 1 = −Vπ 2 ⎝ rπ ⎠ 1 Then v1 − v2 = −2Vπ 2 or Vπ 2 = − ( v1 − v2 ) 2 Now v0 = − g mVπ 2 ( RC RL ) 1 = g m ( RC RL )( v1 − v2 ) 2 v0 1 For v1 − v2 ≡ vd ⇒ Ad = = g m ( RC RL ) vd 2 11.23 a. 10 − 7 RD = ⇒ RD = 6 kΩ 0.5 I Q = I D1 + I D 2 ⇒ I Q = 1 mA b. 10 = I D ( 6 ) + VDS − VGS ID and VGS = + VTN Kn 0.5 For I D = 0.5 mA, VGS = + 2 = 3.12 V 0.4 and VDS = 10.12 Load line is actually nonlinear. c. Maximum common-mode voltage when M 1 and M 2 reach the transition point, or VDS ( sat ) = VGS − VTN = 3.12 = 2 = 1.12V Then vcm = v02 − vDS ( sat ) + VGS = 7 − 1.12 + 3.12 Or vcm ( max ) = 9 V Minimum common-mode voltage, voltage across I Q becomes zero. So vcm ( min ) = −10 + 3.12 ⇒ vcm ( min ) = −6.88 V 11.24
  • 16. We have VC 2 = − g mVπ 2 RC = − g m (Vb 2 − Ve ) RC and VC1 = − g mVπ 1 RC = − g m (Vb1 − Ve ) RC Then V0 = VC 2 − VC1 = − g m (Vb 2 − Ve ) RC − ⎡ − g m (Vb1 − Ve ) RC ⎤ ⎣ ⎦ = g m RC (Vb1 − Vb 2 ) V0 Differential gain Ad = = g m RC Vb1 − Vb 2 Common-mode gain Acm = 0 11.25 (a) vcm = 3 V ⇒ VC1 = VC 2 = 3 V 10 − 3 Then RC = ⇒ RC = 70 k Ω 0.1 (b) CMRRdB = 75 dB ⇒ CMRR = 5623 Now 1 ⎡ (1 + β ) I Q Ro ⎤ CMRR = ⎢1 + ⎥ 2⎣ β VT ⎦ 1 ⎡ (151)( 0.2 ) Ro ⎤ 5623 = ⎢1 + ⎥ ⇒ Ro = 1.45 M Ω 2 ⎢ (150 )( 0.026 ) ⎥ ⎣ ⎦ Use a Widlar current source. Ro = ro [1 + g m RE ] ′ Let VA of current source transistor be 100 V. 100 0.2 Then ro = = 500 k Ω, g m = = 7.69 mA / V 0.2 0.026 (150 )( 0.026 ) rπ = = 19.5 k Ω 0.2 So 1450 = 500 ⎡1 + ( 7.69 ) RE ⎤ ⇒ RE = 0.247 k Ω ⎣ ′⎦ ′ ′ Now RE = RE rπ ⇒ 0.247 = RE 19.5 ⇒ RE = 250Ω ⎛I ⎞ Then I Q RE = VT ln ⎜ REF ⎟ ⎜ I ⎟ ⎝ Q ⎠ ⎛ I REF ⎞ ( 0.2 )( 0.250 ) = ( 0.026 ) ln ⎜ ⎜ ⎟ ⇒ I REF = 1.37 mA ⎟ ⎝ ( 0.2 ) ⎠ 10 − 0.7 − ( −10 ) Then R1 = ⇒ R1 = 14.1 k Ω 1.37 11.26 At terminal A. R (1 + δ ) ⋅ R R (1 + δ ) R RTHA = RA R = = ≅ = 5 kΩ R (1 + δ ) + R 2+δ 2 Variation in RTH is not significant ⎛ RA ⎞ + R (1 + δ )( 5 ) 5 (1 + δ ) VTHA = ⎜ ⎟V = = ⎝ RA + R ⎠ R (1 + δ ) + R 2+δ
  • 17. At terminal B. R RTHB = R R = = 5 kΩ 2 ⎛ R ⎞ + VTHB = ⎜ ⎟ V = 2.5 V ⎝R+R⎠ From Eq. (11.27) − β RC (V2 − V1 ) VO = where V2 = VTHB and V1 = VTHA 2 ( rπ + RB ) (120 )( 0.026 ) RB = 5 k Ω, rπ = = 12.5 k Ω 0.25 − (120 )( 3)(V2 − V1 ) So VO = = −10.3 (V2 − V1 ) 2 (12.5 + 5 ) We can find V2 − V1 = VTHB − VTHA ⎡ 5 (1 + δ ) ⎤ VTHB − VTHA = 2.5 − ⎢ ⎥ ⎣ 2+δ ⎦ 2.5 ( 2 + δ ) − 5 (1 + δ ) 2.5δ − 5δ = = 2+δ 2+δ −2.5δ ≅ = −1.25δ 2 Then VO = − (10.3)( −1.25 ) δ = 12.9δ So for −0.01 ≤ δ ≤ 0.01 We have −0.129 ≤ VO 2 ≤ 0.129 V 11.27 a. Rid = 2rπ (180 )( 0.026 ) rπ = = 23.4 kΩ 0.2 So Rid = 46.8 kΩ b. Assuming rμ → ∞, then Ricm ≅ ⎡(1 + β ) R0 ⎤ ⎣ ⎦ Ricm = ⎡(181)(1) ⎤ ⎣ ⎦ = 181 ⇒ Ricm = 181 MΩ 11.28 (a) 10 − 0.7 − ( −10 ) I1 = = 0.5 ⇒ R1 = 38.6 K R1 0.026 ⎛ 0.5 ⎞ R2 = ln ⎜ ⎟ ⇒ R2 = 236 Ω 0.14 ⎝ 0.14 ⎠ (b)
  • 18. Ricm ≈ (1 + β ) Ro 0.14 Ro = ro 4 (1 + g m 4 RE ) g m 4 = ′ = 5.385 mA/V 0.026 (180 )( 0.026 ) rπ 4 = = 33.4 K 0.14 ′ RE = 33.4 0.236 = 0.234 K 100 ro 4 = = 714 K 0.14 Ro = 714 ⎡1 + ( 5.385 )( 0.234 ) ⎤ ⎣ ⎦ = 1614 K Ricm = (181)(1614 ) ≈ 292 MΩ (c) − g m1 RC 0.07 Acm = g m1 = = 2.692 mA/V 2 (1 + β ) Ro 0.026 1+ rπ 1 (180 )( 0.026 ) rπ 1 = = 66.86 K 0.07 − ( 2.692 )( 40 ) Acm = 2 (181)(1614 ) 1+ 66.86 Acm = −0.0123 11.29 Ad 1 = g m1 ( R1 rπ 3 ) I Q1 / 2 g m1 = = 19.23I Q1 VT β VT 2 (100 )( 0.026 ) 5.2 rπ 3 = = = IQ2 / 2 IQ 2 IQ 2 g m 3 R2 IQ 2 / 2 Ad 2 = , g m3 = = 19.23I Q 2 2 VT (19.23) I Q 2 Then 30 = ⋅ R2 ⇒ I Q 2 R2 = 3.12 V 2 Maximum vo 2 − vo1 = ±18 mV for linearity vo3 ( max ) = ( ±18 )( 30 ) mV ⇒ ±0.54 V so I Q 2 R2 = 3.12 V is OK. From Ad 1 :
  • 19. ⎛ 5.2 ⎞ ⎞ ⎜ R1 ⎜ ⎜I ⎟ ⎟⎟ ⎜ ⎝ Q2 ⎠ ⎟ 20 = 19.23I Q1 ( R1 rπ 3 ) = 19.23I Q1 ⎜ ⎟ ⎜ R + ⎛ 5.2 ⎞ ⎟ ⎜ 1 ⎜ IQ 2 ⎟ ⎟ ⎜ ⎟ ⎝ ⎝ ⎠⎠ 19.23I Q1 R1 ( 5.2 ) 20 = I Q 2 R1 + 5.2 I Q1 Let ⋅ R1 = 5V ⇒ I Q1 R1 = 10 V 2 19.23 (10 )( 5.2 ) Then 20 = ⇒ I Q 2 R1 = 44.8 V I Q 2 R1 + 5.2 10 Now I Q1 R1 = 10 ⇒ R1 = I Q1 ⎛ 10 ⎞ ⎛ IQ2 ⎞ So I Q 2 ⎜ ⎜I ⎟ ⎟ = 44.8 ⇒ ⎜ ⎜I ⎟ ⎟ = 4.48 ⎝ Q1 ⎠ ⎝ Q1 ⎠ Let I Q1 = 100 μ A, I Q 2 = 448 μ A Then I Q 2 R2 = 3.12 ⇒ R2 = 6.96 k Ω I Q1 R1 = 10 ⇒ R1 = 100 k Ω 11.30 a. 20 − VGS 3 = 0.25 (VGS 3 − 2 ) 2 I1 = 50 20 − VGS 3 = 12.5 (VGS 3 − 4VGS 3 + 4 ) 2 2 12.5VGS 3 − 49VGS 3 + 30 = 0 ( 49 ) − 4 (12.5 )( 30 ) 2 49 ± VGS 3 = ⇒ VGS 3 = 3.16 V 2 (12.5 ) 20 − 3.16 I1 = ⇒ I1 = I Q = 0.337 mA 50 IQ I D1 = ⇒ I D1 = 0.168 mA 2 0.168 = 0.25 (VGS 1 − 2 ) ⇒ VGS1 = 2.82 V 2 VDS 4 = −2.82 − ( −10 ) ⇒ VDS 4 = 7.18 V VD1 = 10 − ( 0.168 )( 24 ) = 5.97 V VDS1 = 5.97 − ( −2.82 ) ⇒ VDS 1 = 8.79 V (b) (c)
  • 20. Max vCM ⇒ VDS 1 = VDS 2 = VDS ( sat ) = VGS1 − VTN 2.82 − 2 = 0.82 V Now VD1 = 10 − ( 0.168 )( 24 ) = 5.97 V VS ( max ) = 5.97 − VDS1 ( sat ) = 5.97 − 0.82 VS ( max ) = 5.15 V vCM ( max ) = VS ( max ) + VGS1 = 5.15 + 2.82 vCM ( max ) = 7.97 V vCM ( min ) = V − + VDS 4 ( sat ) + VGS 1 VDS 4 ( sat ) = VGS 4 − VTN = 3.16 − 2 = 1.16 V Then vCM ( min ) = −10 + 1.16 + 2.82 ⇒ vCM ( min ) = −6.02 V 11.31 a. I D1 = I D 2 = 120 μ A = 100 ( VGS1 − 1.2 ) ⇒ VGS 1 = VGS 2 = 2.30 V 2 For v1 = v2 = −5.4 V and VDS1 = VDS 2 = 12 V ⇒ −5.4 − 2.30 + 12 = 4.3 V = VD 10 − 4.3 RD = ⇒ RD = 47.5 kΩ 0.12 I Q = I D1 + I D 2 ⇒ I Q = I1 = 240 μ A I1 = 240 = 200 (VGS 3 − 1.2 ) ⇒ VGS 3 = 2.30 V 2 20 − 2.3 R1 = ⇒ R1 = 73.75 kΩ 0.24 b. 1 1 r04 = = = 416.7 kΩ λ IQ ( 0.01)( 0.24 ) 1 5.4 ΔI Q = ⋅ ΔVDS = ⇒ ΔI Q ≅ 13 μ A r04 416.7 11.32 (a) I Q = 160 μ A k′ ⎛ W ⎞ I D = n ⎜ ⎟ (VGS − VTN ) 2 2⎝L⎠ 80 80 = ( 4 )(VOS − 0.5 ) 2 2 80 = 160 (Vo5 − 0.5 ) 2 80 VGS = + 0.5 = 1.207 V 160 5−2 RD = = 37.5 K VDS = 2 − ( −1.207 ) = 3.21 V 0.08 (c) VDS ( sat ) = VGS − VTN = 1.207 − 0.5 = 0.707 V Then VS = VO 2 − VDS ( sat ) = 2 − 0.707 = +1.29 V And v1 = v2 = vcm = VGS + VS = 1.207 + 1.29 vcm = 2.50 V (b)
  • 21. 11.33 vD = 5 − ( 0.2 )( 8 ) = 3.4 V ID VGS = + VTN Kn 0.2 = + 0.8 = 1.694 V 0.25 VDS ( sat ) = VGS − VTN = 1.694 − 0.8 = 0.894 V VS = VD − VDS ( sat ) = 3.4 − 0.894 = 2.506 vCM = VS + VGS = 2.506 + 1.694 ⇒ vCM = 4.2 V (b) Vd ΔvD = ΔI D ⋅ RD ΔI D = g m ⋅ gm = 2 Kn I D 2 =2 ( 0.25)( 0.2 ) = 0.4472 mA/V ΔI D = ( 0.4472 )( 0.05 ) ⇒ 22.36 μ A ΔvD = ( 22.36 × 10−6 )( 8 × 103 ) = 0.179 V vD 2 = 3.4 + ΔvD vD 2 = 3.4 + 0.179 ⇒ vD 2 = 3.58 V (c) vd = −50 mV ΔI D = − ( 0.4472 )( 0.025 ) ⇒ −11.18 μ A ΔvD = − (11.18 × 10−6 )( 8 × 103 ) = −0.0894 V vD 2 = 3.4 − 0.0894 ⇒ vD 2 = 3.31 V 11.34 a. I D1 = I D 2 = 0.5 mA v01 − v02 = ⎡V + − I D1 RD1 ⎤ − ⎡V + − I D 2 RD 2 ⎤ ⎣ ⎦ ⎣ ⎦ v01 − v02 = I D 2 RD 2 − I D1 RD1 = I D ( RD 2 − RD1 ) i. RD1 − RD 2 = 6 kΩ, v01 − v02 = 0 ii. RD1 = 6 kΩ, RD 2 = 5.9 kΩ v01 − v02 = ( 0.5 )( 5.9 − 6 ) ⇒ v01 − v02 = −0.05 V b.
  • 22. K n1 = 0.4 mA / V 2 , K n 2 = 0.44 mA / V 2 VGS1 = VGS 2 I Q = ( K n1 + K n 2 )(VGS − VTN ) 2 1 = ( 0.4 + 0.44 )(VGS − VTN ) ⇒ (VGS − VTN ) = 1.19 2 2 I D1 = ( 0.4 )(1.19 ) = 0.476 mA I D 2 = ( 0.44 )(1.19 ) = 0.524 mA i. RD1 = RD 2 = 6 kΩ v01 − v02 = ( 0.524 − 0.476 )( 6 ) ⇒ v01 − v02 = 0.288 V ii. RD1 = 6 kΩ, RD 2 = 5.9 kΩ v01 − v02 = ( 0.524 )( 5.9 ) − ( 0.476 )( 6 ) = 3.0916 − 2.856 ⇒ v01 − v02 = 0.236 V 11.35 (a) From Equation (11.69) iD 2 1 Kn ⎛ K ⎞ 2 = − ⋅ vd 1 − ⎜ n ⎟ vd IQ 2 2IQ ⎜ 2IQ ⎟ ⎝ ⎠ 0.1 ⎡ 0.1 ⎤ 2 0.90 = 0.50 − ⋅ vd 1 − ⎢ ⎥ vd 2 ( 0.25 ) ⎢ 2 ( 0.25 ) ⎥ ⎣ ⎦ +0.40 = − ( 0.4472 ) vd 1 − ( 0.2 ) vd 2 0.8945 = −vd 1 − ( 0.2 ) vd 2 Square both sides 0.80 = vd (1 − [ 0.2] vd ) 2 2 ( 0.2 ) ( vd2 ) 2 2 − vd + 0.80 = 0 2 1 ± 1 − 4 ( 0.2 )( 0.80 ) vd = = 4V 2 or 1V 2 2 ( 0.2 ) Then vd = ± 2 V or ± 1 V IQ 0.25 But vd max = = = 1.58 kn 0.1 So vd = ±1V, ⇒ vd = −1V b. From part (a), vd ,max = 1.58 V 11.36
  • 23. ⎛i ⎞ d ⎜ D1 ⎟ ⎜I ⎟ ⎛ K ⎞ 2 ⎝ Q⎠= Kn ⋅ 1− ⎜ n ⎜ 2I ⎟ vd + ( ⎟ ) vd vd =0 dvd 2IQ ⎝ Q ⎠ Kn = 2IQ iD1 1 Kn So linear = + ⋅ vd IQ 2 2 IQ 1 Kn ⎡1 Kn ⎛K ⎞ 2 ⎤ + ⋅ vd ( max ) − ⎢ + ⋅ vd ( max ) ⋅ 1 − ⎜ n ⎟vd ( max ) ⎥ 2 2IQ ⎢2 2 IQ ⎝ 2I n ⎠ ⎥ Then ⎣ ⎦ = 0.02 1 Kn + ⋅v 2 2 I Q d ( max ) ⎡1 Kn ⎤ ⎡1 Kn ⎛K ⎞ 2 ⎤ 0.98 ⎢ + ⋅ vd ( max ) ⎥ = ⎢ + ⋅ vd ( max ) ⋅ 1 − ⎜ n ⎟ vd ( max ) ⎥ ⎢2 2IQ ⎥ ⎢2 2IQ ⎜ 2I ⎟ ⎥ ⎣ ⎦ ⎣ ⎝ Q ⎠ ⎦ 0.15 ⎡1 0.15 ⎛ 0.15 ⎞ 2 ⎤ 0.49 + 0.98 ⋅ vd ( max ) = ⎢ + ⋅ vd ( max ) ⋅ 1 − ⎜ ⎟ vd ( max ) ⎥ ⎜ 2 ( 0.2 ) ⎟ 2 ( 0.2 ) ⎢2 2 ( 0.2 ) ⎝ ⎠ ⎥ ⎣ ⎦ 0.49 + 0.600 vd ( max ) = 0.50 + 0.6124 vd ( max ) ⋅ 1 − ( 0.6124 ) vd ( max ) 2 0.600 vd ( max ) = 0.010 + 0.6124 vd ( max ) ⋅ 1 − ( 0.6124 ) vd ( max ) 2 By trial and error vd ( max ) ≈ 0.429 V 11.37 (b) gm = 2 K p I D = 2 ( 0.05 )( 0.008696 ) = 0.0417 mA/V Vd ΔI = g m = ( 0.0417 )( 0.05 ) = 0.002085 mA 2 ΔvD = ( 0.002085 )( 510 ) = 1.063 vD 2 ↑⇒ vD 2 = 1.063 − 4.565 = −3.502 V vD1 = −1.063 − 4.565 = −5.628 V 9 = I S RS + VSG + 1 I S = 2I D 8 = 2 K P RS (VSG + VTP ) + VSG 2 8 = ( 2 )( 0.05 )( 390 )(VSG − 0.8 ) + VSG 2 8 = 39 (VSG − 1.6VSG + 0.64 ) + VSG 2 2 39VSG − 61.4VSG + 16.96 = 0 61.4 ± 3769.96 − 4 ( 39 )(16.96 ) VSG = 2 ( 39 ) = 1.217 V VS = 2.217 I S = 0.01739 mA I D1 = I D 2 ⇒ 8.696 μ A vD1 = vD 2 = ( 8.696 )( 0.510 ) − 9 = −4.565 V (b)
  • 24. g m = 2 K P I DQ = 2 ( 0.05 )( 0.008696 ) = 0.0417 mA/V Vd ΔvD = ΔI D ⋅ RD = ( 0.0417 )( 0.05 ) = 0.002085 mA ΔI D = g m ⋅ 2 ΔvD = ( 0.002085 )( 510 ) = 1.063 V v1 ↑, I D1 ↓, vD1 ↓ vD1 = −4.565 − 1.063 = −5.628 V vD 2 = −4.565 + 1.063 = −3.502 V 11.38 (a) v1 = v2 = 0 I D = K n (VSG + VTP ) 2 ID = 6 μA 6 + 0.4 = VSG 30 VSG = 0.847 V VS = +0.847 V vD = I D RD − 3 = ( 6 )( 0.36 ) − 3 = −0.84 V VSD = VS − vD = 0.847 − ( −0.84 ) vSD = 1.69 V (b) (i) Ad = g m RD g m = 2 K n I D =2 ( 30 )( 6 ) = 26.83 μ A/V Ad = ( 26.83)( 0.36 ) ⇒ Ad = 9.66 Acm = 0 (ii) g R ( 26.83)( 0.36 ) Ad = m D = ⇒ Ad = 4.83 2 2 − g m RD − ( 26.83)( 0.36 ) Acm = = = −0.0448 1 + 2 g m RO 1 + 2 ( 26.83)( 4 ) 11.39
  • 25. For v1 = v2 = −0.30 V I D1 = I D 2 = 0.1 mA ID VSG = − VTP KP 0.1 = +1 = 2 V 0.1 vD1 = vD 2 = ( 0.1)( 30 ) − 10 = −7 V gm = 2 K p I D = 2 ( 0.1)( 0.1) = 0.2 mA/V ⎛V ⎞ ΔI D = g m ⎜ d ⎟ = ( 0.2 )( 0.1) = 0.02 mA ⎝ 2⎠ ΔvD = ( ΔI D ) RD = ( 0.02 )( 30 ) = 0.6 V vD 2 ↑⇒ vD 2 = −7 + 0.6 ⇒ vD 2 = −6.4 V vD1 = −7 − 0.6 ⇒ vD1 = −7.6 V 11.40 For v1 = v2 = 0 0 = VGS + 2 I D RS − 10 10 = VGS + 2 K n RS (VGS − VTN ) 2 = VGS + 2 ( 0.15 )( 75 )(VGS − 1) 2 2 22.5VGS − 44VGS + 12.5 = 0 So VGS = 1.61 V and I D = ( 0.15 )(1.61 − 1) ⇒ 55.9 μ A 2 gm = 2 Kn I D = 2 ( 0.15 )( 0.0559 ) g m = 0.1831 mA/V Use Half-circuits – Differential gain ⎛V ⎞⎛ ΔR ⎞ vD1 = − g m ⎜ d ⎟ ⎜ RD + ⎟ ⎝ 2 ⎠⎝ 2 ⎠ ⎛V ⎞⎛ ΔR ⎞ vo 2 = g m ⎜ d ⎟ ⎜ RD − ⎟ ⎝ 2 ⎠⎝ 2 ⎠ vo = vD1 − vD 2 = − g mVd RD v Ad = o = − g m RD Vd Now – Common-Mode Gain
  • 26. Vi = Vgs + g mVgs ( 2 RS ) = Vcm Vcm Vgs = 1 + g m ( 2 RS ) ⎛ ΔR ⎞ − g m ⎜ RD + D ⎟ Vcm ⎝ 2 ⎠ vD1 = 1 + g m ( 2 RS ) ⎛ ΔR ⎞ − gm ⎜ RD − D ⎟ Vcm ⎝ 2 ⎠ vD 2 = 1 + g m ( 2 RS ) vO = vD1 − vD 2 − g m ( ΔRD ) Vcm So vo = 1 + g m ( 2 RD ) vo − g m ( ΔRD ) Acm = = Vcm 1 + g m ( 2 RS ) Then Ad = − ( 0.1831)( 50 ) = −9.16 − ( 0.1831)( 0.5 ) Acm = = −0.003216 1 + ( 0.1831)( 2 )( 75 ) C M R R ∫ = 69.1 dB bB 11.41 a. Ad = g m ( r02 r04 ) VA 2 150 r02 = = = 375 kΩ I C 2 0.4 VA 4 100 r04 = = = 250 kΩ I C 4 0.4 IC 2 0.4 gm = = = 15.38 mA/V VT 0.026 Ad = (15.38 ) ( 375 250 ) ⇒ Ad = 2307 b. RL = r02 r04 = 375 250 ⇒ RL = 150 kΩ 11.41 From 11.40 I D1 = I D 2 = 55.9 μ A g m = 0.183 mA/V
  • 27. Vd ⎛ +V ⎞ Ad : ΔvD1 = − g m1 ⋅ RD ΔvD 2 = + g m 2 ⎜ d ⎟ RD 2 ⎝ 2 ⎠ V V vO = ΔvD1 − ΔvD 2 = − g m1 d RD − g m 2 d RD 2 2 −V −V ⎛ Δg ⎛ Δg ⎞ ⎞ vO = d ⋅ RD ( g m 2 + g m1 ) = d ⋅ RD ⎜ g m − m + ⎜ g m − m ⎟ ⎟ 2 2 ⎝ 2 ⎝ 2 ⎠⎠ Ad = − g m RD = − ( 0.183) ( 50 ) = −9.15 ⎛ Δg ⎞ ⎛ Δg ⎞ − ⎜ g m + M ⎟ RD vcm ⎜ g m − M ⎟ RD vCM ⎝ 2 ⎠ ⎝ 2 ⎠ ACM : vO = ΔvD1 − ΔvD 2 = + 1 + g m ( 2 RS ) 1 + g m ( 2 RS ) vO −Δg m RD Acm = = Δg m = ( 0.01) ( 0.183) = 0.00183 vcm 1 + g m ( 2 RS ) − ( 0.00183) ( 50 ) Acm = = −0.003216 1 + ( 0.183)( 2 ) ( 75 ) C M R R ∫ = 69.1 dB dB 11.42 (a) v1 = v2 = 0 5 = 2 I D RS + VSG 5 = 2 K p RS (VSG + VTP ) + VSG 2 5 = 2 ( 0.5 )( 2 ) (VSG − 1.6VSG + 0.64 ) + VSG 2 2 5 = 2VSG − 2.2VSG + 1.28 2 2VSG − 2.2VSG − 3.72 = 0 2.2 ± 4.84 + 4 ( 2 )( 3.72 ) VSG = 2 ( 2) VSG = 2.02 V 5 − 2.02 vS = 2.02 V, IS = = 1.49 mA 2 I D1 = I D 2 = 0.745 mA vD1 = vD 2 = ( 0.745 (1) − 5 ) ⇒ vD1 = vD 2 = −4.26 V (b) 5 = I S RS + VSG 2 5 = ( I D1 + I D 2 ) RS + VSG 2 5 = ⎡ K p (VSG1 + VTP ) + K p (VSG 2 + VTP ) ⎤ RS + VSG 2 2 2 ⎣ ⎦ VSG1 = VSG 2 − 1 5 = ( 0.5 )( 2 ) ⎡(VSG 2 − 1.8 ) + (VSG 2 − 0.8 ) ⎤ + VSG 2 2 2 ⎣ ⎦ 5 = ⎡VSG 2 − 3.6VSG 2 + 3.24 + VSG 2 − 1.6VSG 2 + 0.64 ⎤ + VSG 2 ⎣ 2 2 ⎦ 2 5 = 2VSG 2 − 4.2VSG 2 + 3.88 2 2VSG 2 − 4.2VSG 2 − 1.12 = 0 4.2 ± 17.64 + 4 ( 2 ) (1.12 ) VSG 2 = 2 ( 2)
  • 28. VSG 2 = 2.339 V VSG1 = 1.339 V vS = 2.339 V = 0.5 (1.339 − 0.8 ) = 0.5 ( 2.339 − 0.8 ) 2 2 I D1 I D2 I D1 = 0.1453 mA I D2 = 1.184 mA vD1 = ( 0.1453)(1) − 5 vD 2 = (1.184 ) (1) − 5 vD1 = −4.855 V vD 2 = −3.816 V (c) Vd ΔI = g m gm = 2 K p I D 2 vS ≈ 2.02 V = 2 ( 0.5 )( 0.745 ) g m = 1.22 mA/V ΔI = (1.22 )( 0.1) = 0.122 mA ΔvD = ( ΔI ) RD = ( 0.122 )(1) = 0.122 V vD 2 ↓ vD1 ↑ vD1 = −4.26 + 0.122 vD 2 = −4.26 − 0.122 vD1 = −4.138 V vD 2 = −4.382 V 11.43 IQ a. gf = ⇒ I Q = g f ( 4VT ) = ( 8 )( 4 )( 0.026 ) 4VT ⇒ I Q = 0.832 mA Neglecting base currents. 30 − 0.7 R1 = ⇒ R1 = 35.2 kΩ 0.832 V 100 b. r04 = r02 = A = = 240 kΩ I CQ 0.416
  • 29. I CQ 0.416 gm = = = 16 mA / V VT 0.026 Ad = g m ( r02 || r04 ) = 16 ( 240 || 240 ) ⇒ Ad = 1920 (180 )( 0.026 ) Rid = 2rπ , rπ = = 11.25 kΩ 0.416 ⇒ Rid = 22.5 kΩ R0 = r02 || r04 ⇒ R0 = 120 kΩ c. Max. common-mode voltage when VCB = 0 for Q1 and Q2 . Therefore vcm ( max ) = V + − VEB ( Q3 ) = 15 − 0.7 vcm ( max ) = 14.3 V Min. common-mode voltage when VCB = 0 for Q5 . Therefore vcm ( min ) = 0.7 + 0.7 + ( −15 ) = −13.6 V So −13.6 ≤ vcm ≤ 14.3 V 1 Ricm ≅ (1 + β )( 2 R0 ) 2 V 100 R0 = A = = 120 kΩ I Q 0.832 Ricm = (181)(120 ) ⇒ Ricm = 21.7 MΩ 11.43 (a) gm = 2 Kn I D =2 ( 0.4 )(1) g m = 1.265 mA/V v 1 Ad = o = = 10 vd 0.1 Ad = g m RD 10 = (1.265 ) RD RD = 7.91 K (b) Quiescent v1 = v2 = 0 vD1 = vD 2 = 10 − (1)( 7.91) = 2.09 V ID 1 VGS = + VTN = + 0.8 = 2.38 V Kn 0.4 VDS ( sat ) = 2.38 − 0.8 = 1.58 So vcm = vD − VDS ( sat ) + VGS = 2.09 − 1.58 + 2.38 vcm = 2.89 V 11.44
  • 30. g m RD Ad = 2 For vCM = 2.5 V IQ I D1 = I D 2 = = 0.25 mA 2 10 − 3 Let VD1 = VD 2 = 3 V , then RD = ⇒ RD = 28 k Ω 0.25 g m ( 28 ) Then 100 = ⇒ g m = 7.14 mA / V 2 k′ ⎛ W ⎞ And g m = 2 n ⎜ ⎟ ID 2⎝L ⎠ ⎛ 0.080 ⎞ ⎛ W ⎞ 7.14 = 2 ⎜ ⎟ ⎜ ⎟ ( 0.25 ) ⇒ ⎝ 2 ⎠⎝ L ⎠ ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ = ⎜ ⎟ = 1274 (Extremely large transistors to meet the gain requirement.) ⎝ L ⎠1 ⎝ L ⎠ 2 Need ACM = 0.10 From Eq. (11.64(b)) g m RD ACM = 1 + 2 g m Ro ( 7.14 )( 28) So 0.10 = ⇒ Ro = 140 k Ω 1 + 2 ( 7.14 ) Ro For the basic 2-transistor current source 1 1 Ro = ro = = = 200 k Ω λ I Q ( 0.01)( 0.5 ) This current source is adequate to meet common-mode gain requirement. 11.45 Not in detail, Approximation looks good. a. −V − ( −5 ) and I S = 2 I D = 2 K n (VGS 1 − VTN ) 2 I S = GS 1 RS 5 − VGS 1 = 2 ( 0.050 )(VGS 1 − 1) 2 20 5 − VGS 1 = 2 (VGS1 − 2VGS1 + 1) 2 2 2VGS1 − 3VGS 1 − 3 = 0 ( 3) + 4 ( 2 )( 3) 2 3± VGS1 = ⇒ VGS1 = 2.186 V 2 ( 2) 5 − 2.186 IS = ⇒ I S = 0.141 mA 20 I I D1 = I D 2 = S ⇒ I D1 = I D 2 = 0.0704 mA 2 v02 = 5 − ( 0.0704 )( 25 ) ⇒ v02 = 3.24 V b. g m = 2 K n (VGS − VTN ) = 2 ( 0.05 )( 2.186 − 1) g m = 0.119 mA/V 1 1 r0 = = = 710 kΩ λ I DQ ( 0.02 )( 0.0704 )
  • 31. Vgs1 = v1 − VS , Vgs 2 = v2 − VS v01 v −V + g mVgs1 + 01 S = 0 RD r0 ⎛ 1 1⎞ V v01 ⎜ + ⎟ + g m ( v1 − VS ) − S = 0 (1) ⎝ RD r0 ⎠ r0 v02 v − VS + g mVgs 2 + 02 =0 RD r0 ⎛ 1 1⎞ V v02 ⎜ + ⎟ + g m ( v2 − VS ) − S = 0 (2) ⎝ RD r0 ⎠ r0 v − V v − VS V g mVgs1 + 01 S + 02 + g mVgs 2 = S r0 r0 RS v01 v02 2VS V g m ( v1 − VS ) + + − + g m ( v2 − VS ) = S r0 r0 r0 RS v01 v02 ⎧ 2 1 ⎫ g m ( v1 + v2 ) + + = VS ⎨2 g m + + ⎬ (3) r0 r0 ⎩ r0 RS ⎭ From (1) ⎛ 1⎞ VS ⎜ g m + ⎟ − g m v1 v01 = ⎝ r0 ⎠ ⎛ 1 1⎞ ⎜ + ⎟ ⎝ RD r0 ⎠ Then ⎛ 1⎞ VS ⎜ g m + ⎟ − g m v1 ⎧ 2 1 ⎫ g m ( v1 + v2 ) + ⎝ r0 ⎠ v + 02 = VS ⎨2 g m + + ⎬ (3) ⎛ 1 1⎞ r0 ⎩ r0 RS ⎭ r0 ⎜ + ⎟ ⎝ RD r0 ⎠
  • 32. ⎛ 1 1⎞ ⎛ 1⎞ ⎛ 1 1⎞ ⎧ 2 1 ⎫ ⎛ 1 1⎞ g m ( v1 + v2 ) r0 ⎜ + ⎟ + VS ⎜ g m + ⎟ − g m v1 + v02 ⎜ + ⎟ = VS ⎨2 g m + + ⎬ ⋅ r0 ⎜ + ⎟ ⎝ RD r0 ⎠ ⎝ r0 ⎠ ⎝ RD r0 ⎠ ⎩ r0 RS ⎭ ⎝ RD r0 ⎠ ⎛ r ⎞ ⎛ 1 1⎞ ⎧ ⎪⎛ 2 1 ⎞⎛ r0 ⎞ ⎛ 1 ⎞⎪ ⎫ g m ( v1 + v2 ) ⎜ 1 + 0 ⎟ − g m v1 + v02 ⎜ + ⎟ = VS ⎨⎜ 2 g m + + ⎟ ⎜1 + ⎟ − ⎜ gm + ⎟⎬ ⎝ RD ⎠ ⎝ RD r0 ⎠ ⎪⎝ ⎩ r0 RS ⎠ ⎝ RD ⎠ ⎝ r0 ⎠ ⎪ ⎭ ⎛ r r ⎞ ⎛ 1 1⎞ ⎧ 2 1 r 2 r 1⎫ g m ⎜ v1 ⋅ 0 + v2 + v2 ⋅ 0 ⎟ + v02 ⎜ + ⎟ = VS ⎨2 g m + + + 2gm ⋅ 0 + + 0 − gm − ⎬ ⎝ RD RD ⎠ ⎝ RD r0 ⎠ ⎩ r0 RS RD RD RS RD r0 ⎭ ⎛ r ⎞ ⎛ 1 1⎞ ⎧ ⎪ 1 1 ⎛ r0 ⎞ 2 ⎫ (1 + g m r0 )⎪ (4) r g m ⎜ v1 ⋅ 0 + v2 + v2 ⋅ 0 ⎟ + v02 ⎜ + ⎟ = VS ⎨2 g m + + ⎜1 + ⎟+ ⎬ ⎝ RD RD ⎠ ⎝ RD r0 ⎠ ⎪ ⎩ r0 RS ⎝ RD ⎠ RD ⎪ ⎭ ⎛ 1 1⎞ ⎛ 1⎞ Then substituting into (2), v02 ⎜ + ⎟ + g m v2 = VS ⎜ g m + ⎟ ⎝ RD r0 ⎠ ⎝ r0 ⎠ ⎡ 710 710 ⎤ ⎡1 1 ⎤ Substitute numbers: ( 0.119 ) ⎢ v1 + v2 + v2 ⎥ + v02 ⎢ 25 + 710 ⎥ (4) ⎣ 25 25 ⎦ ⎣ ⎦ ⎧ 1 1 ⎛ 710 ⎞ 2 ⎫ = VS ⎨0.119 + + ⎜1 + ⎟ + ⎡1 + ( 0.119 )( 710 ) ⎤ ⎬ ⎣ ⎦ ⎩ 710 20 ⎝ 25 ⎠ 25 ⎭ ( 0.119 ) [ 28.4v1 + 29.4v2 ] + ( 0.0414 ) v02 = VS {0.1204 + 1.470 + 6.8392} = VS ( 8.4296 ) or VS = 0.4010v1 + 0.4150v2 + 0.00491v02 ⎛ 1 1 ⎞ ⎛ 1 ⎞ Then v02 ⎜ + ⎟ + ( 0.119 ) v2 = VS ⎜ 0.119 + ⎟ (2) ⎝ 25 710 ⎠ ⎝ 710 ⎠ v02 ( 0.0414 ) + v2 ( 0.119 ) = ( 0.1204 ) [ 0.401v1 + 0.4150v2 + 0.00491v02 ] v02 ( 0.0408 ) = ( 0.04828 ) v1 − ( 0.0690 ) v2 v02 = (1.183) v1 − (1.691) v2 vd Now v1 = vcm + 2 vd v2 = vcm − 2 ⎛ v ⎞ ⎛ v ⎞ So v02 = (1.183) ⎜ vcm + d ⎟ − (1.691) ⎜ vcm − d ⎟ ⎝ 2⎠ ⎝ 2⎠ Or v02 = 1.437vd − 0.508vcm ⇒ Ad = 1.437, Acm = −0.508 ⎛ 1.437 ⎞ C M R RdB = 20 log10 ⎜ ⎟ ⇒ C M R RdB = 9.03 dB ⎝ 0.508 ⎠ 11.46 KVL:
  • 33. v1 = Vgs1 − Vgs 2 + v2 So v1 − v2 = Vgs1 − Vgs 2 KCL: g mVgs1 + g mVgs 2 = 0 ⇒ Vgs1 = −Vgs 2 1 1 So Vgs1 = ( v1 − v2 ) , Vgs 2 = − ( v1 − v2 ) 2 2 Now v02 v02 − v01 + = − g mVgs 2 RD RL (1) ⎛ 1 1 ⎞ v01 = v02 ⎜ + ⎟− ⎝ RD RL ⎠ RL v01 v01 − v02 + = − g mVgs1 RD RL (2) ⎛ 1 1 ⎞ v02 = v01 ⎜ + ⎟− ⎝ RD RL ⎠ RL ⎛ R ⎞ From (1): v01 = v02 ⎜ 1 + L ⎟ + g m RLVgs 2 ⎝ RD ⎠ Substitute into (2): ⎛ R ⎞⎛ 1 1 ⎞ ⎛ 1 1 ⎞ v02 − g mVgs1 = v02 ⎜1 + L ⎟ ⎜ + ⎟ + g m RL ⎜ + ⎟ Vgs 2 − ⎝ RD ⎠ ⎝ RD RL ⎠ ⎝ RD RL ⎠ RL ⎛ R ⎞⎛ 1 ⎞ ⎛ 1 R 1 ⎞ − g m ⋅ ( v1 − v2 ) + g m ⎜ 1 + L ⎟ ⎜ ⎟ ( v1 − v2 ) = v02 ⎜ + L + 2 ⎟ ⎝ RD ⎠ ⎝ 2 ⎠ ⎝ RD RD RD ⎠ 1 ⋅ g m RL 1 ⎛ RL ⎞ v02 ⎛ RL ⎞ v02 gm ⎜ ⎟ ( v1 − v2 ) = ⎜ 2 + ⎟ ⇒ Ad 2 = = 2 2 ⎝ RD ⎠ RD ⎝ RD ⎠ v1 − v2 ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RD ⎠ 1 − ⋅ g m RL v01 From symmetry Ad 1 = = 2 v1 − v2 ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RD ⎠ v02 − v01 g m RL Then Av = = v1 − v2 ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RD ⎠ 11.47
  • 34. v1 − v2 = Vgs1 − Vgs 2 and g mVgs1 + g mVgs 2 = 0 ⇒ Vgs1 = −Vgs 2 Then v1 − v2 = −2Vgs 2 1 Or Vgs 2 = − ( v1 − v2 ) 2 gm v0 = − g mVgs 2 ( RD RL ) = ( RD RL ) ( v1 − v2 ) 2 gm Or Ad = 2 ( RD RL ) 11.48 Kn IQ From Equation (11.64(a)), Ad = ⋅ RD 2 2 We need Ad = = 10 0.2 K n ( 0.5 ) Then 10 = ⋅ RD or K n ⋅ RD = 20 2 If we set RD = 20 k Ω, then K n = 1 mA / V 2 For this case VD = 10 − ( 0.25 )( 20 ) = 5 V 0.25 VGS = + 1 = 1.5 V 1 VDS ( sat ) = VGS − VTN = 1.5 − 1 = 0.5 V Then vcm ( max ) = VD − VDS ( sat ) + VGS = 5 − 0.5 + 1.5 Or vcm ( max ) = 6 V 11.49 Vd 1 = − g mVgs1 RD = − g m RD (V1 − Vs ) Vd 2 = − g mVgs 2 RD = − g m RD (V2 − Vs ) Now Vo = Vd 2 − Vd 1 = − g m RD (V2 − Vs ) − ( − g m RD (V1 − Vs ) ) Vo = g m RD (V1 − V2 ) Define V1 − V2 ≡ Vd V Then Ad = o = g m RD and Acm = 0 Vd 11.49 Ad = g m ( r02 r04 ) g m = 2 kn I DQ =2 ( 0.12 )( 0.075 ) = 0.1897 mA/V 1 1 r02 = = = 889 kΩ λn I DQ ( 0.015 )( 0.075 ) 1 1 r04 = = = 667 kΩ λ p I DQ ( 0.02 )( 0.075 ) Ad = ( 0.1897 ) ( 889 667 ) ⇒ Ad = 72.3 11.50 (a)
  • 35. ⎛ K′ ⎞⎛W ⎞ ⎛ 0.080 ⎞ ⎟ (10 ) = 0.40 mA / V 2 K n1 = K n 2 = ⎜ n ⎟ ⎜ ⎟=⎜ ⎝ 2 ⎠⎝ L ⎠ ⎝ 2 ⎠ ID 0.1 VGS1 = VGS 2 = + VTN = + 1 = 1.5 V Kn 0.4 VDS1 ( sat ) = 1.5 − 1 = 0.5 V For vCM = +3 V ⇒ VD1 = VD 2 = vCM − VGS 1 + VDS 1 ( sat ) = 3 − 1.5 + 0.5 ⇒ VD1 = VD 2 = 2 V 10 − 2 RD = ⇒ RD = 80 k Ω 0.1 (b) 1 Ad = g m RD and g m = 2 ( 0.4 )( 0.1) = 0.4 mA / V 2 1 Then Ad = ( 0.4 )( 80 ) = 16 2 16 C M R RdB = 45 ⇒ C M R R = 177.8 = Acm So Acm = 0.090 g m RD Acm = 1 + 2 g m Ro ( 0.4 )(80 ) 0.090 = ⇒ Ro = 443 k Ω 1 + 2 ( 0.4 ) Ro If we assume λ = 0.01 V −1 for the current source transistor, then 1 1 ro = = = 500 k Ω λ I Q ( 0.01)( 0.2 ) So the CMRR specification can be met by a 2-transistor current source. ⎛W ⎞ ⎛W ⎞ Let ⎜ ⎟ = ⎜ ⎟ = 1 ⎝ L ⎠3 ⎝ L ⎠ 4 ⎛ 0.080 ⎞ IQ 0.2 ⎟ (1) = 0.040 mA / V and VGS 3 = 2 Then K n 3 = K n 4 = ⎜ + VTN = + 1 = 3.24 V ⎝ 2 ⎠ K n3 0.04 For vCM = −3 V , VD 3 = −3 − VGS1 = −3 − 1.5 = −4.5 V ⇒ VDS 3 ( min ) = −4.5 − ( −10 ) = 5.5 V > VDS 3 ( sat ) So design is OK. ⎛W ⎞ On reference side: For ⎜ ⎟ ≥ 1, VGS ( max ) = 3.24 V ⎝L⎠ 20 − VGS 3 = 20 − 3.24 = 16.76 V 16.67 Then = 5.17 ⇒ We need six transistors in series. 3.24
  • 36. 20 − 3.24 VGS = = 2.793 V 6 ⎛ K′ ⎞⎛W ⎞ = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN ) 2 I REF ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.080 ⎞⎛ W ⎞ ⎛W ⎞ ⎟⎜ ⎟ ( 2.793 − 1) ⇒ ⎜ ⎟ = 1.56 for each of the 6 transistors. 2 0.2 = ⎜ ⎝ 2 ⎠⎝ L ⎠ ⎝L⎠ 11.51 1 Ad = g m RD 2 gm = 2 Kn I D = 2 ( 0.25 )( 0.25) = 0.50 mA / V 1 Ad = ( 0.50 )( 3) = 0.75 2 From Problem 11.26
  • 37. 5 (1 + δ ) V1 = VA = , V2 = VB = 2.5 V and V1 − V2 = 1.25δ 2+δ Then Vo 2 = Ad ⋅ (V1 − V2 ) = ( 0.75 )(1.25δ ) = 0.9375δ So for −0.01 ≤ δ ≤ 0.01 −9.375 ≤ Vo 2 ≤ 9.375 mV 11.52 From previous results v −v Ad 1 = o 2 o1 = g m1 R1 = 2 K n1 I Q1 ⋅ R1 = 20 v1 − v2 vo3 1 1 and Ad 2 = = g m 3 R2 = 2 K n3 I Q 2 ⋅ R2 = 30 vo 2 − vo1 2 2 I Q1 R1 I Q 2 R2 Set = 5 V and = 2.5 V 2 2 Let I Q1 = I Q 2 = 0.1 mA Then R1 = 100 k Ω, R2 = 50 k Ω 2 ⎛ 0.06 ⎞ ⎛ W ⎞ ⎛ 20 ⎞ ⎛W ⎞ ⎛W ⎞ Then 2 ⎜ ⎟ ⎜ ⎟ ( 0.1) = ⎜ ⎟ ⇒ ⎜ ⎟ = ⎜ ⎟ = 6.67 ⎝ 2 ⎠ ⎝ L ⎠1 ⎝ 100 ⎠ ⎝ L ⎠1 ⎝ L ⎠ 2 2 ⎛ 0.060 ⎞ ⎛ W ⎞ ⎛ 2 ( 30 ) ⎞ ⎛W ⎞ ⎛W ⎞ and 2 ⎜ ⎟ ⎜ ⎟ ( 0.1) = ⎜ ⎟ ⇒ ⎜ ⎟ = ⎜ ⎟ = 240 ⎝ 2 ⎠ ⎝ L ⎠3 ⎝ 50 ⎠ ⎝ L ⎠3 ⎝ L ⎠ 4 11.53 2 ⎛ v ⎞ a. iD1 = I DSS ⎜ 1 − GS 1 ⎟ ⎝ VP ⎠ 2 ⎛ v ⎞ iD 2 = I DSS ⎜ 1 − GS 2 ⎟ ⎝ VP ⎠ ⎛ v ⎞ ⎛ v ⎞ iD1 − iD 2 = I DSS ⎜1 − GS 1 ⎟ − I DSS ⎜ 1 − GS 2 ⎟ ⎝ VP ⎠ ⎝ VP ⎠ I DSS = ( vGS 2 − vGS1 ) VP I DSS I DSS =− ⋅ vd = ⋅ vd VP ( −VP ) iD1 + iD 2 = I Q ⇒ iD 2 = I Q − iD1 ( ) 2 I DSS 2 iD1 − I Q − iD1 = ⋅ vd ( −VP ) 2 iD1 − 2 iD1 ( I Q − iD1 ) + ( I Q − iD1 ) = I DSS 2 ⋅ vd ( −VP ) 2 1⎡ ⎤ Then iD1 ( I Q − iD1 ) = I ⎢ I Q − DSS 2 ⋅ vd ⎥ 2 2⎢ ⎣ ( −VP ) ⎦ ⎥ Square both sides
  • 38. 2 1⎡ I ⎤ i − iD1 I Q + ⎢ I Q − DSS 2 ⋅ vd ⎥ = 0 2 D1 2 4⎢ ⎣ ( −VP ) ⎥ ⎦ 2 ⎛ 1⎞⎡ I ⎤ I Q ± I − 4 ⎜ ⎟ ⎢ I Q − DSS 2 ⋅ vd ⎥ 2 2 ( −VP ) ⎥ Q ⎝ 4⎠⎢ ⎣ ⎦ iD1 = 2 ⎡ 2 ⎤ 1 2 ⎢ 2 2 I Q I DSS vd ⎛ I DSS vd ⎞ ⎥ 2 2 IQ iD1 = ± IQ − IQ − +⎜ ⎟ ⎢ ( −VP ) ⎜ ( −VP ) ⎟ ⎥ 2 2 2 2 ⎝ ⎠ ⎦ ⎣ Use + sign 2 IQ 1 2 I Q I DSS 2 ⎛ I ⎞ iD1 = + ⋅ vd − ⎜ DSS 2 ⋅ vd ⎟ 2 2 2 ( −VP )2 ⎜ ( −V ) ⎟ ⎝ P ⎠ 2 2 IQ 1 IQ 2 I DSS ⎛ I DSS ⎞ ⎛v ⎞ iD1 = + vd −⎜ ⎟ ⎜ d ⎟ 2 2 ( −VP ) ⎜ I ⎟ V IQ ⎝ Q ⎠ ⎝ P⎠ Or 2 2 iD1 1 ⎛ 1 ⎞ 2 I DSS ⎛ I DSS ⎞ ⎛ vd ⎞ = +⎜ ⎟ ⋅ vd −⎜ ⎟ ⎜ ⎟ I Q 2 ⎝ −2VP ⎜ I ⎟ V ⎠ IQ ⎝ Q ⎠ ⎝ P⎠ We had iD 2 = I Q − iD1 Then 2 2 iD 2 1 ⎛ 1 ⎞ 2 I DSS ⎛ I DSS ⎞ ⎛ vd ⎞ = −⎜ ⎟ ⋅ vd −⎜ ⎟ ⎜ ⎟ I Q 2 ⎝ −2VP ⎜ I ⎟ V ⎠ IQ ⎝ Q ⎠ ⎝ P⎠ b. If iD1 = I Q , then 2 2 1 ⎛ 1 ⎞ 2 I DSS ⎛ I DSS ⎞ ⎛ vd ⎞ 1= +⎜ ⎟ ⋅ vd −⎜ ⎟ ⎜ ⎟ 2 ⎝ −2VP ⎜ I ⎟ V ⎠ IQ ⎝ Q ⎠ ⎝ P⎠ 2 2 2 I DSS ⎛ I DSS ⎞ ⎛ vd ⎞ VP = vd −⎜ ⎟ ⎜ ⎟ ⎜ I ⎟ V IQ ⎝ Q ⎠ ⎝ P⎠ Square both sides
  • 39. ⎡ 2I ⎛I ⎞ ⎛ vd ⎞ ⎤ 2 2 = v ⎢ DSS − ⎜ DSS ⎟ ⎜ ⎟ ⎥ 2 2 VP ⎢ IQ ⎜ I ⎟ V ⎠ ⎝ P⎠ ⎥ d ⎣ ⎝ Q ⎦ 2 2 ⎛ I DSS ⎞ ⎛ 1 ⎞ 2 2 2 I DSS 2 ⎟ ⎜ ⎟ ( vd ) − 2 ⎜ ⋅ vd + VP =0 ⎜ I ⎟ V ⎝ Q ⎠ ⎝ P⎠ IQ 2 2 2 2 I DSS ⎛ 2I ⎞ ⎛I ⎞ ⎛ 1 ⎞ ⎟ ⎜ ⎟ (VP ) 2 ± ⎜ DSS ⎟ − 4 ⎜ DSS ⎜ I ⎟ ⎜ I ⎟ V 2 IQ ⎝ Q ⎠ ⎝ Q ⎠ ⎝ P⎠ vd = 2 2 ⎛ 2I ⎞ ⎛ 1 ⎞ 2 ⎜ DSS ⎟ ⎜ ⎟ ⎜ IQ ⎟ ⎝ VP ⎠ ⎝ ⎠ 2 ⎛ IQ ⎞ vd = (VP ) ⎜ 2 ⎟ ⎝ I DSS ⎠ 1/ 2 ⎛ IQ ⎞ Or vd = VP ⎜ ⎟ ⎝ I DSS ⎠ c. For vd small, IQ 1 IQ 2 I DSS iD1 ≈ + ⋅ ⋅ vd 2 2 ( −VP ) IQ diD1 1 IQ 2 I DSS gf = = ⋅ ⋅ 2 ( −VP ) vd → 0 d vd IQ ⎛ 1 ⎞ I Q I DSS Or ⇒ g f ( max ) = ⎜ ⎟ ⎝ −VP ⎠ 2 11.53 Ad = g m ( ro 2 Ro ) Want Ad = 400 From Example 11.15, ro 2 = 1 M Ω Assuming that g m = 0.283 mA / V for the PMOS from Example 11.15, then Ro = 285 M Ω. ⎛ k ′ ⎞⎛ W ⎞ So 400 = g m (1000 285000 ) ⇒ g m = 0.4014 mA / V = 2 ⎜ n ⎟ ⎜ ⎟ I DQ ⎝ 2 ⎠ ⎝ L ⎠1 ⎛ 0.080 ⎞ ⎛ W ⎞ ⎛W ⎞ ⎛W ⎞ 0.04028 = ⎜ ⎟ ⎜ ⎟ ( 0.1) ⇒ ⎜ ⎟ = ⎜ ⎟ = 10.1 ⎝ 2 ⎠ ⎝ L ⎠1 ⎝ L ⎠1 ⎝ L ⎠ 2 11.54 a. I Q = I D1 + I D 2 ⇒ I Q = 1 mA v0 = 7 = 10 − ( 0.5 ) RD ⇒ RD = 6 kΩ b. ⎛ 1 ⎞ I Q ⋅ I DSS g f ( max ) = ⎜ ⎟ ⎝ −VP ⎠ 2 ⎛ 1 ⎞ (1)( 2 ) g f ( max ) = ⎜ ⎟ ⇒ g f ( max ) = 0.25 mA/V ⎝ 4⎠ 2 c. g R Ad = m D = g f ( max ) ⋅ RD 2 Ad = ( 0.25 )( 6 ) ⇒ Ad = 1.5
  • 40. 11.55 a. −VGS − ( −5 ) 2 ⎛ V ⎞ IS = = ( 2 ) I DSS ⎜ 1 − GS ⎟ RS ⎝ VP ⎠ 2 ⎛ V ⎞ 5 − VGS = ( 2 )( 0.8 )( 20 ) ⎜ 1 − GS ⎟ ⎜ ( −2 ) ⎟ ⎝ ⎠ ⎛ 1 2 ⎞ 5 − VGS = ( 2 )16 ⎜1 + VGS + VGS ⎟ ⎝ 4 ⎠ 2 8VGS + 33VGS + 27 = 0 −33 ± 1089 − 4 ( 8 )( 27 ) VGS = 2 (8) = −1.125 V 5 − ( −1.125 ) IS = 20 = 0.306 mA I D1 = I D 2 = 0.153 mA vo 2 = 1.17 V (b) 11.56 Equivalent circuit and analysis is identical to that in problem 11.36. 1 ⋅ g m RL Ad 2 = 2 ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RD ⎠ 1 − ⋅ g m RL Ad 1 = 2 ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RD ⎠ v02 − v01 g m RL Av = = vd ⎛ RL ⎞ ⎜2+ ⎟ ⎝ RD ⎠ 11.57 (a) Ad = g m ( ro 2 ro 4 ) 0.1 gm = = 3.846 mA/V 0.026 120 ro 2 = = 1200 K 0.1 80 ro 4 = = 800 K 0.1 Ad = ( 3.846 ) (1200 800 ) Ad = 1846 (b)
  • 41. For Ad = 923 = ( 3.846 ) (1200 800 RL ) 480 RL 240 = 480 RL = ⇒ RL = 480 K 480 + RL 11.58 (a) ⎛ 2⎞ I Q = 250 μ A I REF = I Q ⎜ 1 + ⎟ ⎝ β⎠ ⎛ 2 ⎞ = 250 ⎜1 + ⎟ = 252.8 μ A ⎝ 180 ⎠ 5 − ( 0.7 ) − ( −5 ) R1 = ⇒ R1 = 36.8 K 0.2528 (b) 0.125 Ad = g m ( ro 2 ro 4 ) gm = = 4.808 mA/V 0.026 150 ro 2 = = 1200 K 0.125 100 Ad = ( 4.808 ) (1200 800 ) ro 4 = = 800 K 0.125 Ad = 2308 (c) 2 (180 )( 0.026 ) Rid = 2rπ = ⇒ Rid = 74.9 K 0.125 Ro = ro 2 ro 4 = 1200 800 = 480 K = Ro (d) vcm ( max ) = 5 − 0.7 = 4.3 V vcm ( min ) = 0.7 + 0.7 − 5 = −3.6 V 11.59 a. ⎛ IQ ⎞ ⎛ 1 ⎞ I 0 = I B3 + I B 4 ≈ 2 ⎜ ⎟ ⎜ ⎟ ⎝ 2 ⎠⎝ β ⎠ I Q 0.2 I0 = = ⇒ I0 = 2 μ A β 100 b. V 100 r02 = r04 = A = = 1000 kΩ I CQ 0.1 I CQ 0.1 gm = = = 3.846 mA/V VT 0.026 Ad = g m ( r02 r04 ) = ( 3.846 ) (1000 1000 ) ⇒ Ad = 1923 c. ( Ad = g m r02 r04 RL ) Ad = ( 3.846 ) (1000 1000 250 ) ⇒ Ad = 641 11.60 a.
  • 42. Ad = g m ( r02 r04 RL ) I CQ IQ gm = = VT 2VT V 125 r02 = A 2 = I CQ I CQ VA 4 80 r04 = = I CQ I CQ If I Q = 2 mA, then g m = 38.46 mA/V r02 = 125 kΩ, r04 = 80 kΩ So Ad = 38.46 ⎡125 80 200 ⎤ ⎣ ⎦ Or Ad = 1508 For each gain of 1000. lower the current level For I Q = 0.60 mA, I CQ = 0.30 mA 0.3 gm = = 11.54 mA/V 0.026 125 r02 = = 417 kΩ 0.3 80 r04 = = 267 kΩ 0.3 Ad = 11.54 ⎡ 417 267 200 ⎤ = 1036 ⎣ ⎦ So I Q = 0.60 mA is adequate b. For V + = 10 V, VBE = VEB = 0.6 V For VCB = 0, vcm ( max ) = V + − 2VEB = 10 − 2 ( 0.6 ) Or vcm ( max ) = 8.8 V 11.61 a. From symmetry. 0.1 VGS 3 = VGS 4 = VDS 3 = VDS 4 = +1 0.1 Or VDS 3 = VDS 4 = 2 V 0.1 VSG1 = VSG 2 = +1 = 2 V 0.1 VSD1 = VSD 2 = VSG1 − (VDS 3 − 10 ) = 2 − ( 2 − 10 ) Or VSD1 = VSD 2 = 10 V b. 1 1 r0 n = = ⇒ 1 MΩ λn I DQ ( 0.01)( 0.1) 1 1 r0 p = = ⇒ 0.667 MΩ λP I DQ ( 0.015 )( 0.1) g m = 2 K p (VSG + VTP ) = 2 ( 0.1)( 2 − 1) = 0.2 mA / V Ad = g m ( ron rop ) = ( 0.2 ) (1000 667 ) ⇒ Ad = 80 (c)
  • 43. IQ I D 2 = I D1 = = 0.1 mA 2 1 1 ro 4 = = = 1000 k Ω λn I D 4 ( 0.01)( 0.1) 1 1 ro 2 = = = 667 k Ω λP I D 2 ( 0.015)( 0.1) Ro = ro 2 ro 4 = 667 1000 = 400 k Ω 11.62 Ad = g m ( ro 4 ro 2 ) ⎛ 0.08 ⎞ gm = 2 ⎜ ⎟ ( 2.5 )( 0.05 ) ⎝ 2 ⎠ = 0.1414 mA/V 1 ro 4 = = 1000 K ( 0.02 )( 0.05 ) 1 ro 2 = = 1333 K ( 0.015)( 0.05 ) Ad = ( 0.1414 ) (1000 1333) Ad = 80.8 11.63 R04 = r04 ⎡1 + g m 4 ( R rπ 4 ) ⎤ ⎣ ⎦ 80 r04 = = 800 K 0.1 0.1 gm4 = = 3.846 0.026 (100 )( 0.026 ) rπ 4 = 0.1 = 26 K R rπ 4 = 1 26 = 0.963 K Assume β = 100 (100 )( 0.026 ) rπ 3 = = 26 kΩ 0.1 0.1 g m3 = = 3.846 mA/V 0.026 R04 = 800 ⎡1 + ( 3.846 )( 0.963) ⎤ ⇒ 3.763 MΩ ⎣ ⎦ ⇒ R0 = 3.763MΩ Then Av = − g m ( r02 R0 ) 120 r02 = = 1200 kΩ 0.1 0.1 gm = = 3.846 mA/V 0.026 Av = − ( 3.846 ) ⎡1200 3763⎤ ⇒ Av = −3499 ⎣ ⎦ b. For
  • 44. 80 R = 0, r04 = = 800 kΩ 0.1 Av = − g m ( r02 r04 ) = − ( 3.846 ) ⎡1200 800 ⎤ ⇒ Av = −1846 ⎣ ⎦ (c) For part (a), Ro = ( 3.763 1.2 ) = 0.910 M Ω For part (b), Ro = (1.2 0.8 ) = 0.48 M Ω 11.64 IE5 I +I I +I I B5 = = B3 B4 = C 3 C 4 1+ β 1+ β β (1 + β ) Now I C 3 + I C 4 ≈ I Q IQ So I B 5 ≈ β (1 + β ) IE6 I Q1 I B6 = = 1 + β β (1 + β ) For balance, we want I B 6 = I B 5 So that I Q1 = I Q 11.65 Resistance looking into drain of M4. Vsg 4 ≅ I X R1 VX − Vsg 4 I X ± g m 4Vsg 4 = r04 ⎡ R ⎤ V I X ⎢1 + g m 4 R1 + 1 ⎥ = X ⎣ r04 ⎦ r04 ⎡ R ⎤ Or R0 = r04 ⎢1 + g m 4 R1 + 1 ⎥ ⎣ r04 ⎦ a.
  • 45. Ad = g m 2 ( ro 2 Ro ) g m 2 = 2 K n I DQ = 2 ( 0.080 )( 0.1) = 0.179 mA / V 1 1 ro 2 = = = 667 k Ω λn I DQ ( 0.015 )( 0.1) g m 4 = 2 K P I DQ = 2 ( 0.080 )( 0.1) = 0.179 mA / V 1 1 ro 4 = = = 500 k Ω λ p I DQ ( 0.02 )( 0.1) ⎡ 1 ⎤ R0 = 500 ⎢1 + ( 0.179 )(1) + = 590.5 kΩ ⎣ 500 ⎥ ⎦ Ad = ( 0.179 ) ⎡667 590.5⎤ ⇒ Ad = 56.06 ⎣ ⎦ b. When R1 = 0, R0 = r04 = 500 kΩ Ad = ( 0.179 ) ⎡667 500 ⎤ ⇒ Ad = 51.15 ⎣ ⎦ (c) For part (a), Ro = ro 2 Ro = 667 590.5 ⇒ Ro = 313 k Ω For part (b), Ro = ro 2 ro 4 = 667 500 ⇒ Ro = 286 kΩ 11.66 Let β = 100, VA = 100 V
  • 46. VA 100 ro 2 = = = 1000 k Ω I CQ 0.1 Ro 4 = ro 4 [1 + g m RE ] where RE = rπ RE ′ ′ Now (100 )( 0.026 ) rπ = = 26 k Ω 0.1 0.1 gm = = 3.846 mA / V 0.026 ′ RE = 26 1 = 0.963 k Ω Then Ro 4 = 1000 ⎡1 + ( 3.846 )( 0.963) ⎤ = 4704 k Ω ⎣ ⎦ Ad = g m ( ro 2 Ro 4 ) = 3.846 (1000 4704 ) ⇒ Ad = 3172 11.67 (a) For Q2, Q4 Vx − Vπ 4 V (1) Ix = + g m 2Vπ 2 + g m 4Vπ 4 + x ro 2 ro 4 Vx − Vπ 4 V (2) g m 2Vπ 2 + = π4 ro 2 rπ 4 rπ 2 (3) Vπ 4 = −Vπ 2 Vx ⎡ 1 1 ⎤ From (2) = Vπ 4 ⎢ + + gm2 ⎥ ro 2 ⎢ ⎣ rπ 4 rπ 2 ro 2 ⎥ ⎦
  • 47. Now ⎛ β ⎞ ⎛ IQ ⎞ ⎛ 120 ⎞ IC 4 = ⎜ ⎟⎜ ⎟=⎜ ⎟ ( 0.5 ) = 0.496 mA ⎝ 1+ β ⎠⎝ 2 ⎠ ⎝ 121 ⎠ ⎛ IQ ⎞ ⎛ 1 ⎞ ⎛ β ⎞ ⎛ 120 ⎞ IC 2 = ⎜ ⎟⎜ ⎟⎜ ⎟ = ( 0.5 ) ⎜ ⎟ ⇒ I C 2 = 0.0041 mA ⎜ (121)2 ⎟ ⎝ 2 ⎠⎝ 1+ β ⎠⎝ 1+ β ⎠ ⎝ ⎠ So (120 )( 0.026 ) rπ 2 = = 761 k Ω 0.0041 0.0041 gm2 = = 0.158 mA/V 0.026 100 ro 2 = ⇒ 24.4 M Ω 0.0041 (120 ) ( 0.026 ) rπ 4 = = 6.29 k Ω 0.496 0.496 gm4 = = 19.08 mA / V 0.026 100 ro 4 = = 202 k Ω 0.496 Now Vx ⎡ 1 1 ⎤ Vx = Vπ 4 ⎢ + + 0.158⎥ ⇒ which yields Vπ 4 = ro 2 ⎢ 6.29 761 24400 ⎣ ⎥ ⎦ ( 0.318) ro 2 From (1), V V ⎛ 1 ⎞ I x = x + x + Vπ 4 ⎜ g m 4 − g m 2 − ⎟ ro 2 ro 4 ⎝ ro 2 ⎠ ⎡ ⎛ 1 ⎞⎤ Ix ⎢ 1 ⎜ 19.08 − 0.158 − ⎟ 1 24400 ⎠ ⎥ +⎝ V =⎢ + ⎥ which yields Ro 2 = x = 135 k Ω Vx ⎢ 24400 202 ( 0.318)( 24400 ) ⎥ Ix ⎢ ⎥ ⎣ ⎦ 80 Now ro 6 = = 160 k Ω 0.5 Then Ro = Ro 2 ro 6 = 135 160 ⇒ Ro = 73.2 k Ω (b) Δi Ad = g m Ro where g m = c c vd / 2
  • 48. vd Δi = g m1Vπ 1 + g m 3Vπ 3 and Vπ 1 + Vπ 3 = 2 ⎛V ⎞ Also ⎜ π 1 + g m1Vπ 1 ⎟ rπ 3 = Vπ 3 ⎝ rπ 1 ⎠ ⎛1+ β ⎞ So Vπ 1 ⎜ ⎟ rπ 3 = Vπ 3 ⎝ rπ 1 ⎠ ⎛ 121 ⎞ Or Vπ 1 ⎜ ⎟ ( 6.29 ) = Vπ 3 ≅ Vπ 1 ⎝ 761 ⎠ v v Then 2Vπ 1 = d ⇒ Vπ 1 = d 2 4 ⎛v ⎞ ⎛v ⎞ So Δi = ( g m1 + g m 3 ) Vπ 1 = ( 0.158 + 19.08 ) ⎜ d ⎟ = 9.62 ⎜ d ⎟ ⎝ 4⎠ ⎝ 2⎠ Δi So g m = c = 9.62 ⇒ Ad = ( 9.62 )( 73.2 ) ⇒ Ad = 704 vd / 2 Now Rid = 2 Ri where Ri = rπ 1 + (1 + β ) rπ 3 Ri = 761 + (121)( 6.29 ) = 1522 k Ω Then Rid = 3.044 M Ω 11.69 (a) Ad = 100 = g m ( ro 2 ro 4 ) Let I Q = 0.5 mA 1 1 ro 2 = = = 200 k Ω λn I D ( 0.02 )( 0.25 ) 1 1 ro 4 = = = 160 k Ω λP I D ( 0.025 )( 0.25 ) Then 100 = g m ( 200 160 ) ⇒ g m = 1.125 mA / V ⎛ K′ ⎞⎛W ⎞ gm = 2 ⎜ n ⎟ ⎜ ⎟ ID ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.080 ⎞ ⎛ W ⎞ ⎛W ⎞ 1.125 = 2 ⎜ ⎟ ⎜ ⎟ ( 0.25 ) ⇒ ⎜ ⎟ = 31.6 ⎝ 2 ⎠⎝ L ⎠ ⎝ L ⎠n ⎛W ⎞ ⎛W ⎞ Now ⎜ ⎟ somewhat arbitrary. Let ⎜ ⎟ = 31.6 ⎝ L ⎠P ⎝ L ⎠P 11.70
  • 49. Ad = g m ( ro 2 ro 4 ) P = ( I Q + I REF ) (V + − V − ) Let I Q = I REF Then 0.5 = 2 I Q ( 3 − ( −3) ) ⇒ I Q = I REF = 0.0417 mA 1 1 ro 2 = = = 3205 k Ω λn I D ( 0.015 )( 0.0208 ) 1 1 ro 4 = = = 2404 k Ω λP I D ( 0.02 )( 0.0208 ) Then Ad = 80 = g m ( 3205 2404 ) ⇒ g m = 0.0582 mA/V ⎛ k ′ ⎞⎛ W ⎞ gm = 2 ⎜ n ⎟ ⎜ ⎟ I D ⎝ 2 ⎠ ⎝ L ⎠n ⎛ 0.080 ⎞⎛ W ⎞ ⎛W ⎞ 0.0582 = 2 ⎜ ⎟⎜ ⎟ ( 0.0208 ) ⇒ ⎜ ⎟ = 1.02 ⎝ 2 ⎠⎝ L ⎠ n ⎝ L ⎠n 11.71 Ad = g m ( ro 2 Ro ) ≈ g m ro 2 1 ro 2 = λn I D 1 = = 666.7 K ( 0.015)( 0.1) Ad = 400 = g m ( 666.7 ) g m = 0.60 mA/V ⎛ k′ ⎞⎛ W ⎞ = 2 ⎜ n ⎟⎜ ⎟ ID ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.08 ⎞ ⎛ W ⎞ 0.60 = 2 ⎜ ⎟ ⎜ ⎟ ( 0.1) ⎝ 2 ⎠⎝ L ⎠ ⎛W ⎞ 0.090 = 0.004 ⎜ ⎟ ⎝L⎠ ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ = ⎜ ⎟ = 22.5 ⎝ L ⎠1 ⎝ L ⎠ 2 11.72
  • 50. Ad = g m ( Ro 4 Ro 6 ) where Ro 4 = ro 4 + ro 2 [1 + g m 4 ro 4 ] Ro 6 = ro 6 + ro8 [1 + g m 6 ro 6 ] We have 1 ro 2 = ro 4 = = 1667 k Ω ( 0.015 )( 0.040 ) 1 ro 6 = ro8 = = 1250 k Ω ( 0.02 )( 0.040 ) ⎛ 0.060 ⎞ gm4 = 2 ⎜ ⎟ (15 )( 0.040 ) = 0.268 mA/V ⎝ 2 ⎠ ⎛ 0.025 ⎞ gm6 = 2 ⎜ ⎟ (10 )( 0.040 ) = 0.141 mA/V ⎝ 2 ⎠ Then Ro 4 = 1667 + 1667 ⎡1 + ( 0.268 )(1667 ) ⎤ ⇒ 748 M Ω ⎣ ⎦ Ro 6 = 1250 + 1250 ⎡1 + ( 0.141)(1250 ) ⎤ ⇒ 222.8 M Ω ⎣ ⎦ (a) Ro = Ro 4 Ro 6 = 748 222.8 ⇒ Ro = 172 M Ω (b) Ad = g m 4 ( Ro 4 Ro 6 ) = ( 0.268 )(172000 ) ⇒ Ad = 46096 11.73 Ad = g m ( ro 2 ro 4 ) 1 ro 2 = ro 4 = λ ID 1 = = 500 K ( 0.02 )( 0.1) gm = 2 Kn I D = 2 ( 0.5)( 0.1) = 0.4472 mA/V Ad = ( 0.4472 ) ( 500 500 ) ⇒ Ad = 112 Ro = ro 2 ro 4 = 500 500 ⇒ Ro = 250 K 11.74 (a) I DP = K p (VSG + VTP ) 2 0.4 + 1 = VSG 3 = 1.894 V 0.5 I DN = K n (VGS − VTN ) 2 0.4 + 1 = VGS 1 = 1.894 V 0.5 VDS1 ( sat ) = VGS1 − VTN = 1.894 − 1 = 0.894 V V + = VSG 3 + VDS1 ( sat ) − VGS 1 + vCM V + = 1.894 + 0.894 − 1.894 + 4 ⇒ V + = 4.89 V = −V − (b)
  • 51. Ad = g m ( ro 2 ro 4 ) 1 1 ro 2 = ro 4 = = = 166.7 K λ ID ( 0.015 )( 0.4 ) gm = 2 Kn I D = 2 ( 0.5 )( 0.4 ) = 0.8944 mA/V Ad = ( 0.8944 ) (166.7 166.7 ) ⇒ Ad = 74.5 11.75 (a) For vcm = +2V ⇒ V + = 2.7 V If I Q is a 2-transistor current source, V − = vcm − 0.7 − 0.7 V − = −3.4 V ⇒ V + = −V − = 3.4 V (b) 100 Ad = g m ( ro 2 ro 4 ) ro 2 = = 1000 K 0.1 60 ro 4 = = 600 K 0.1 0.1 gm = = 3.846 mA/V 0.026 Ad = ( 3.846 ) (1000 600 ) ⇒ Ad = 1442 11.76 (a) V + = −V − = 3.4 V (b) 75 ro 2 = = 1250 K 0.06 40 ro 4 = = 666.7 K 0.06 0.06 gm = = 2.308 mA/V 0.026 Ad = ( 2.308 ) (1250 666.7 ) Ad = 1004 11.77 g m1 = 2 K n I Bias1 = 2 ( 0.2 )( 0.25 ) = 0.447 mA/V I CQ 0.75 gm2 = = = 28.85 mA/V VT 0.026 β VT (120 )( 0.026 ) rπ 2 = = = 4.16 kΩ I CQ 0.75
  • 52. i0 = g m1Vgs1 + g m 2Vπ 2 Vπ 2 = g m1Vgs1rπ 2 and vi = Vgs1 + Vπ 2 i0 = Vgs1 ( g m1 + g m 2 ⋅ g m1rπ 2 ) vi vi = Vgs1 + g m1Vgs1rπ 2 and Vgs1 = 1 + g m1rπ 2 g m1 (1 + β ) i0 = vi ⋅ 1 + g m1rπ 2 i0 g m1 (1 + β ) ( 0.447 )(121) gm = C = = vi 1 + g m1rπ 2 1 + ( 0.447 )( 4.16 ) ⇒ g m = 18.9 mA/V C 11.78 1 1 r0 ( M 2 ) = = = 500 kΩ λn I DQ ( 0.01)( 0.2 ) VA 80 r0 ( Q2 ) = = = 400 kΩ I CQ 0.2 g m ( M 2 ) = 2 K n I DQ = 2 ( 0.2 )( 0.2 ) = 0.4 mA/V Ad = g m ( M 2 ) ⎡ r0 ( M 2 ) r0 ( Q2 ) ⎤ ⎣ ⎦ = 0.4 ⎡500 400 ⎤ ⇒ Ad = 88.9 ⎣ ⎦ If the IQ current source is ideal, Acm = 0 and C M RRdB = ∞ 11.79 a. b. Assume RL is capacitively coupled. Then
  • 53. I CQ + I DQ = I Q VBE 0.7 I DQ = = = 0.0875 mA R1 8 I CQ = 0.9 − 0.0875 = 0.8125 mA g m1 = 2 K P I DQ = 2 (1)( 0.0875 ) ⇒ g m1 = 0.592 mA/V I CQ 0.8125 gm2 = = ⇒ g m 2 = 31.25 mA/V VT 0.026 β VT (100 )( 0.026 ) rπ 2 = = ⇒ rπ 2 = 3.2 kΩ I CQ 0.8125 c. V0 = ( − g m1Vsg − g m 2Vπ 2 ) RL Vi + Vsg = V0 ⇒ Vsg = V0 − Vi Vπ 2 = ( g m1Vsg ) ( R1 rπ 2 ) V0 = − ⎡ g m1Vsg + g m 2 g m1Vsg ( R1 rπ 2 ) ⎤ RL ⎣ ⎦ V0 = − (V0 − Vi ) ⎣ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎦ RL ⎡ ⎤ ⎡ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎦ RL ⎤ = ⎣ V0 Av = Vi 1 + ⎡ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎤ RL ⎣ ⎦ We find g m1 + g m 2 g m1 ( R1 rπ 2 ) = 0.592 + ( 31.25 )( 0.592 ) ( 8 3.2 ) = 42.88 ( 42.88 )( RL ) Then Av = 1 + ( 42.88 )( RL ) 11.80 a. Assume RL is capacitively coupled. 0.7 I DQ = = 0.0875 mA 8 I CQ = 1.2 − 0.0875 = 1.11 mA g m1 = 2 K p I DQ = 2 (1)( 0.0875 ) ⇒ g m1 = 0.592 mA/V I CQ 1.11 gm2 = = ⇒ g m 2 = 42.7 mA/V VT 0.026 β VT (100 )( 0.026 ) rπ 2 = = ⇒ rπ 2 = 2.34 kΩ I CQ 1.11 b.
  • 54. Vsg = VX I X = g m 2Vπ 2 + g m1Vsg (g V m1 sg )(R1 rπ 2 ) = Vπ 2 I X = VX ⎡ g m1 + g m 2 g m1 ( R1 rπ 2 ) ⎤ ⎣ ⎦ VX 1 R0 = = IX g m1 + g m 2 g m1 ( R1 rπ 2 ) 1 = ⇒ R0 = 21.6 Ω 0.592 + ( 0.592 )( 42.7 ) ( 8 2.34 ) 11.81 (a) Vo − ( −Vπ ) (1) g m 2Vπ + =0 ro 2 Vo − ( −Vπ ) −Vπ −Vπ ⎛ 1 1⎞ (2) g m 2Vπ + = g m1Vi + + or 0 = g m1Vi − Vπ ⎜ + ⎟ ro 2 ro1 rπ ⎝ ro1 rπ ⎠ g m1Vi Then Vπ = ⎛ 1 1⎞ ⎜ + ⎟ ⎝ ro1 rπ ⎠ From (1)
  • 55. 1 ⎞ Vo ⎜ g m 2 + ⎟ Vπ + =0 ⎝ ro 2 ⎠ ro 2 ⎛ 1 ⎞ ⎜ gm2 + ⎟ ⎛ 1 ⎞ Vo = −ro 2 ⎜ g m 2 + ⎟ Vπ = −ro 2 g m1Vi ⎝ ro 2 ⎠ ⎝ ro 2 ⎠ ⎛ 1 1⎞ ⎜ + ⎟ ⎝ ro1 rπ ⎠ ⎛ 1 ⎞ − g m1ro 2 ⎜ g m 2 + ⎟ V Av = o = ⎝ ro 2 ⎠ Vi ⎛ 1 1⎞ ⎜ + ⎟ ⎝ ro1 rπ ⎠ Now g m1 = 2 K n I Q = 2 ( 0.25)( 0.025 ) = 0.158 mA / V IQ 0.025 gm2 = = = 0.9615 mA / V VT 0.026 1 1 ro1 = = = 2000 k Ω λ IQ ( 0.02 )( 0.025) VA 50 ro 2 = = = 2000 k Ω I Q 0.025 β VT (100 )( 0.026 ) rπ = = = 104 k Ω IQ 0.025 Then ⎛ 1 ⎞ − ( 0.158 )( 2000 ) ⎜ 0.9615 + ⎟ Av = ⎝ 2000 ⎠ ⇒ Av = −30039 ⎛ 1 1 ⎞ ⎜ + ⎟ ⎝ 2000 104 ⎠ To find Ro; set Vi = 0 ⇒ g m1Vi = 0
  • 56. Vx − ( −Vπ ) I x = g m 2Vπ + ro 2 Vπ = − I x ( ro1 rπ ) Then ⎛ 1 ⎞ V I x = ⎜ g m 2 + ⎟ ( − I x ) ( ro1 rπ ) + x ⎝ ro 2 ⎠ ro 2 Combining terms, Vx ⎡ ⎛ 1 ⎞⎤ Ro = = ro 2 ⎢1 + ( ro1 rπ ) ⎜ g m 2 + ⎟ ⎥ Ix ⎣ ⎝ ro 2 ⎠ ⎦ ⎡ ⎛ 1 ⎞⎤ = 2000 ⎢1 + ( 2000 104 ) ⎜ 0.9615 + ⎟ ⇒ Ro = 192.2 M Ω ⎣ ⎝ 2000 ⎠ ⎥ ⎦ (b) Vo − ( −Vgs 3 ) (1) g m 3Vgs 3 + =0 ro3 Vo − ( −Vgs 3 ) −Vgs 3 − ( −Vπ 2 ) ⎛ 1 ⎞ Vgs 3 (2) g m 3Vgs 3 + = g m 2Vπ 2 + or 0 = Vπ 2 ⎜ g m 2 + ⎟ − ro3 ro 2 ⎝ ro 2 ⎠ ro 2 Vπ 2 −Vgs 3 − ( −Vπ 2 ) ( −Vπ 2 ) (3) + g m 2Vπ 2 + = g m1Vi + rπ 2 ro 2 ro1 Vgs 3 From (2), Vπ 2 = ⎛ 1 ⎞ ro 2 ⎜ g m 2 + ⎟ ⎝ ro 2 ⎠ Then ⎛ 1 1 1⎞ Vgs 3 (3) Vπ 2 ⎜ + gm2 + + ⎟ = g m1Vi + ⎝ rπ 2 ro 2 ro1 ⎠ ro 2 or
  • 57. Vgs 3 ⎡ 1 1 1⎤ Vgs 3 ⎢ + gm2 + + ⎥ = g m1Vi + ⎛ 1 ⎞ r ro 2 ⎜ g m 2 + ⎟ ⎣ π 2 ro 2 ro1 ⎦ ro 2 ⎝ ro 2 ⎠ Vgs 3 ⎡ 1 1 1 ⎤ Vgs 3 ⎛ 1 ⎞⎣ ⎢104 + 0.9615 + 2000 + 2000 ⎥ = 0.9615Vi + 2000 2000 ⎜ 0.9615 + ⎦ ⎟ ⎝ 2000 ⎠ Then Vgs 3 = 1.83 × 105 Vi ⎛ 1 ⎞ −V ⎛ 1 ⎞ ⎟ (1.83 ×10 ) Vi 5 From (1), ⎜ g m 3 + ⎟ Vgs 3 = o or Vo = −2000 ⎜ 0.158 + ⎝ ro 3 ⎠ ro3 ⎝ 2000 ⎠ V Av = o = −5.80 × 107 Vi To find Ro Vx − ( −Vgs 3 ) (1) I x = g m 3Vgs 3 + ro3 Vx − ( −Vgs 3 ) −Vgs 3 − ( −Vπ 2 ) (2) g m 3Vgs 3 + = g m 2Vπ 2 + ro 3 ro 2 (3) Vπ 2 = − I x ( ro1 rπ 2 ) ⎛ 1 ⎞ V From (1) I x = Vgs 3 ⎜ g m 3 + ⎟ + x ⎝ ro 3 ⎠ ro3 ⎛ 1 ⎞ Vx I x = Vgs 3 ⎜ 0.158 + ⎟+ ⎝ 2000 ⎠ 2000 V Ix − x So Vgs 3 = 2000 0.1585
  • 58. From (2), ⎡ 1 1 ⎤ V ⎛ 1 ⎞ Vgs 3 ⎢ g m 3 + + ⎥ + x = Vπ 2 ⎜ g m 2 + ⎟ ⎣ ro 3 ro 2 ⎦ ro 3 ⎝ ro 2 ⎠ ⎡ 1 1 ⎤ Vx ⎛ 1 ⎞ Vgs 3 ⎢ 0.158 + + ⎥ + 2000 = Vπ 2 ⎜ 0.9615 + 2000 ⎟ ⎣ 2000 2000 ⎦ ⎝ ⎠ ⎡ I − Vx / 2000 ⎤ Vx Then ⎢ x ⎥ ( 0.159 ) + 2000 = − I x ( 2000 104 ) ( 0.962 ) ⎣ 0.1585 ⎦ V We find Ro = x = 6.09 × 1010 Ω Ix 11.82 Assume emitter of Q1 is capacitively coupled to signal ground. ⎛ 80 ⎞ I CQ = 0.2 ⎜ ⎟ = 0.1975 mA ⎝ 81 ⎠ 0.2 I DQ = = 0.00247 mA 81 (80 )( 0.026 ) rπ = = 10.5 k Ω 0.1975 0.1975 g m ( Q1 ) = = 7.60 mA / V 0.026 gm ( M1 ) = 2 K n I D = 2 ( 0.2 )( 0.00247 ) g m ( M 1 ) = 0.0445 mA / V Vπ Vi = Vgs + Vπ and Vπ = g m ( M 1 ) Vgs rπ or Vgs = g m ( M 1 ) rπ ⎛ 1 ⎞ Vi Then Vi = Vπ ⎜ 1 + ⎜ g (M )r ⎟ or Vπ = ⎟ ⎝ 1 π ⎠ ⎛ 1 ⎞ ⎜1 + m ⎜ g (M ) r ⎟ ⎟ ⎝ m 1 π ⎠ V − g m ( Q1 ) RC Vo = − g m ( Q1 ) Vπ RC ⇒ Av = o = Vi ⎛ 1 ⎞ ⎜1 + ⎜ g (M )r ⎟ ⎟ ⎝ m 1 π ⎠ − ( 7.60 )( 20 ) Then Av = ⇒ Av = −48.4 ⎛ 1 ⎞ ⎜1 + ⎜ ( 0.0445 )(10.5 ) ⎟ ⎟ ⎝ ⎠
  • 59. 11.83 Using the results from Chapter 4 for the emitter-follower: ⎡ rπ 9 + r07 R011 ⎤ ⎢ rπ 8 + ⎥ 1+ β R0 = R4 || ⎢ ⎥ ⎢ 1+ β ⎥ ⎢ ⎥ ⎣ ⎦ β VT (100 )( 0.026 ) rπ 8 = = = 2.6 kΩ IC8 1 IC 8 1 IC 9 ≈ = = 0.01 mA β 100 (100 )( 0.026 ) rπ 9 = = 260 kΩ 0.01 V 100 r07 = A = = 500 kΩ I Q 0.2 VA 100 r011 = = = 500 kΩ I Q 0.2 0.2 R011 = r011 [1 + g m RE ] , g m = ′ = 7.69 0.026 (100 ) ( 0.026 ) rπ 11 = = 13 kΩ 0.2 ′ RE = 0.2 13 = 0.197 kΩ R011 = 500 ⎡1 + ( 7.69 )( 0.197 ) ⎤ = 1257 kΩ ⎣ ⎦ Then ⎡ 260 + 500 1257 ⎤ ⎢ 2.6 + ⎥ R0 = 5 || ⎢ 101 ⎥ ⎢ 101 ⎥ ⎢ ⎣ ⎥ ⎦ = 5 0.0863 ⇒ R0 = 0.0848 K ⇒ 84.8 Ω 11.84 Ri = rπ 1 + (1 + β ) rπ 2 (100 )( 0.026 ) rπ 2 = = 5.2 kΩ 0.5 (100 )( 0.026 ) (100 ) ( 0.026 ) 2 rπ 1 = = = 520 kΩ ( 0.5 /100 ) 0.5 Ri = 520 + (101)( 5.2 ) ⇒ Ri ≅ 1.05 MΩ rπ 3 + 50 (100 )( 0.026 ) R0 = 5 , rπ 3 = = 2.6 kΩ 101 1 2.6 + 50 R0 = 5 = 5 0.521 ⇒ R0 = 0.472 kΩ 101
  • 60. ⎛V ⎞ V0 = − ⎜ π 3 + g m 3Vπ 3 ⎟ ( 5 ) ⎝ rπ 3 ⎠ ⎛1+ β ⎞ V0 = −Vπ 3 ⎜ ⎟ ( 5) (1) ⎝ rπ 3 ⎠ Vπ 3 (V − V ) = g m 2Vπ 2 + 0 π 3 rπ 3 50 ⎛ 1 1 ⎞ V g m 2Vπ 2 = Vπ 3 ⎜ + ⎟− 0 (2) ⎝ rπ 3 50 ⎠ 50 ⎛V ⎞ Vπ 2 = ⎜ π 1 + g m1Vπ 1 ⎟ rπ 2 ⎝ rπ 1 ⎠ (3) ⎛ 1+ β ⎞ = Vπ 1 ⎜ ⎟ rπ 2 ⎝ rπ 1 ⎠ and Vin = Vπ 1 + Vπ 2 (4) 0.5 gm2 = = 19.23 mA/V 0.026 Then ⎛ 101 ⎞ V0 = −Vπ 3 ⎜ ⎟ ( 5 ) ⇒ Vπ 3 = −V0 ( 0.005149 ) (1) ⎝ 2.6 ⎠ And ⎛ 1 1 ⎞ V 19.23Vπ 2 = −V0 ( 0.005149 ) ⎜ + ⎟− 0 ⎝ 2.6 50 ⎠ 50 (2) = −V0 ( 0.02208 ) Or Vπ 2 = −V0 ( 0.001148 ) And Vπ 1 = Vin − Vπ 2 = Vin + V0 ( 0.001148 ) (4) So ⎛ 101 ⎞ −V0 ( 0.001148 ) = ⎡Vin + V0 ( 0.001148 ) ⎤ ⎜ ⎣ ⎦ 520 ⎟ ( 5.2 ) (3) ⎝ ⎠ V0 −V0 ( 0.001148 ) − V0 ( 0.001159 ) = Vin (1.01) ⇒ Av = = −438 Vin 11.85
  • 61. 5 I2 = = 1 mA 5 1 VGS 2 = + 0.8 = 2.21 V 0.5 2.21 − ( −5 ) I1 = = 0.206 mA 35 V0 = ( g m 2Vgs 2 ) ( R2 r02 ) Vgs 2 = ( g m1Vsg1 ) ( r01 R1 ) − V0 and Vsg1 = −Vin So Vgs 2 = − ( g m1Vin ) ( r01 R1 ) − V0 Then V0 = g m 2 ( R2 r02 ) ⎡ − ( g m1Vin ) ( r01 R1 ) − V0 ⎤ ⎣ ⎦ V0 − g m 2 ( R2 r02 ) g m1 ( r01 R1 ) Av = = Vin 1 + g m 2 ( R2 r02 ) gm2 = 2 Kn2 I D 2 = 2 ( 0.5 )(1) = 1.414 mA / V g m1 = 2 K p1 I D1 = 2 ( 0.2 )( 0.206 ) = 0.406 mA / V 1 1 r01 = = = 485 kΩ λ1 I D1 ( 0.01)( 0.206 ) 1 1 r02 = = = 100 kΩ λ2 I D 2 ( 0.01)(1) R2 r02 = 5 100 = 4.76 kΩ R1 r01 = 35 485 = 32.6 kΩ − (1.414 )( 4.76 )( 0.406 )( 32.6 ) Then Av = 1 + (1.414 )( 4.76 ) So ⇒ Av = −11.5 Output Resistance—From the results for a source follower in Chapter 6. 1 1 R0 = R2 r02 = 5 100 gm2 1.414 = 0.707 4.76 So R0 = 0.616 kΩ 11.86 a.
  • 62. 5 R2 = ⇒ R2 = 10 kΩ 0.5 I D2 0.5 VSG 2 = − VTP 2 = + 1 = 2.41 V K p2 0.25 5 − ( −2.41) R1 = ⇒ R1 = 74.1 kΩ 0.1 b. V0 = − ( g m 2Vsg 2 ) ( r02 R2 ) Vsg 2 = V0 − ⎡ − ( g m1Vgs1 ) ( r01 R1 ) ⎤ and Vgs1 = Vin ⎣ ⎦ V0 − ( g m 2 ) ( r02 R2 ) ( g m1 ) ( r01 R1 ) Av = = Vin 1 + ( g m 2 ) ( r02 R2 ) g m1 = 2 K n1 I D1 = 2 ( 0.1)( 0.1) = 0.2 mA / V gm2 = 2 K p 2 I D 2 = 2 ( 0.25)( 0.5) = 0.707 mA / V 1 1 r01 = = = 1000 kΩ λ1 I D1 ( 0.01)( 0.1) 1 1 r02 = = = 200 kΩ λ2 I D 2 ( 0.01)( 0.5 ) r02 R2 = 200 10 = 9.52 kΩ r01 R1 = 1000 74.1 = 69.0 kΩ − ( 0.707 )( 9.52 )( 0.2 )( 69 ) Then Av = 1 + ( 0.707 )( 9.52 ) So ⇒ Av = −12.0 1 1 R0 = R2 r02 = 10 200 gm2 0.707 = 1.414 9.52 Or R0 = 1.23 kΩ 11.87 a. I C 2 = 0.25 mA 5−2 R= ⇒ R = 12 kΩ 0.25 v − VBE ( on ) 2 − 0.7 I C 3 = 02 ⇒ RE1 = ⇒ RE1 = 2.6 kΩ RE1 0.5 5 − v03 5 − 3 RC = = ⇒ RC = 4 kΩ IC 3 0.5 ⎡ v03 − VBE ( on ) ⎤ − ( −5 ) IC 4 = ⎣ ⎦ RE 2 3 − 0.7 + 5 RE 2 = ⇒ RE 2 = 2.43 kΩ 3
  • 63. b. Input resistance to base of Q3, Ri 3 = rπ 3 + (1 + β ) RE1 (100 )( 0.026 ) rπ 3 = = 5.2 kΩ 0.5 Ri 3 = 5.2 + (101)( 2.6 ) = 267.8 kΩ v 1 Ad 1 = 02 = g m 2 ( R Ri 3 ) vd 2 0.25 gm2 = = 9.62 mA/V 0.026 1 Ad 1 = ( 9.62 ) (12 267.8 ) ⇒ Ad 1 = 55.2 2 v − β ( RC Ri 4 ) Now 03 = v02 rπ 3 + (1 + β ) RE1 where Ri 4 = rπ 4 + (1 + β ) RE 2 v0 (1 + β ) RE 2 and = v03 rπ 4 + (1 + β ) RE 2 (100 )( 0.026 ) rπ 4 = = 0.867 kΩ 3 v0 (101)( 2.43) = = 0.9965 v03 0.867 + (101)( 2.43) Ri 4 = 0.867 + (101)( 2.43) = 246.3 kΩ rπ 3 = 5.2 kΩ v03 − (100 ) ( 4 246.3) So = = −1.47 v02 5.2 + (101)( 2.6 ) v0 So Ad = = ( 55.2 )( 0.9965 )( −1.47 ) ⇒ Ad = −80.9 vd c. Using Equation (11.32b) − g m 2 ( R Ri 3 ) Acm1 = 2 (1 + β ) R0 1+ rπ 2 (100 )( 0.026 ) rπ 2 = = 10.4 kΩ 0.25 − ( 9.62 ) (12 267.8 ) Acm1 = = −0.0569 = Acm1 2 (101)(100 ) 1+ 10.4 ⎛ v0 ⎞⎛ v03 ⎞ Then Acm = ⎜ ⎟⎜ ⎟ ⋅ Acm1 ⎝ v03 ⎠⎝ v02 ⎠ = ( 0.9965 )( −1.47 )( −0.0569 ) ⇒ Acm = 0.08335 ⎛ 80.9 ⎞ C M RRdB = 20 log10 ⎜ ⎟ ⇒ C M RRdB = 59.7 dB ⎝ 0.08335 ⎠ 11.88 a. 10 − v01 10 − 2 RC1 = = ⇒ RC1 = 80 kΩ I C1 0.1 10 − v04 10 − 6 RC 2 = = ⇒ RC 2 = 20 kΩ IC 4 0.2
  • 64. b. v01 − v02 Ad 1 = = − g m1 ( RC1 rπ 3 ) vd 0.1 g m1 = = 3.846 mA/V 0.026 (180 )( 0.026 ) rπ 3 = = 23.4 kΩ 0.2 Ad 1 = − ( 3.846 ) ( 80 23.4 ) ⇒ Ad 1 = −69.6 v04 1 Ad 2 = = g m 4 RC 2 v01 − v02 2 0.2 gm4 = = 7.692 mA/V 0.026 1 Ad 2 = ( 7.692 )( 20 ) = 76.9 2 Then Ad = ( 76.9 )( −69.6 ) ⇒ Ad = −5352 11.89 a. Neglect the effect of r0 in determining the differential-mode gain. v02 1 Ad 1 = = g m 2 ( RC Ri 3 ) where Ri 3 = rπ 3 + (1 + β ) RE vd 2 − β RC 2 A2 = rπ 3 + (1 + β ) RE 12 − 0.7 − ( −12 ) 23.3 I1 = = = 1.94 mA ≈ I C 5 R1 12 1 ⋅ (1.94 ) gm2 = 2 = 37.3 mA/V 0.026 ( 200 )( 0.026 ) rπ 3 = IC 3 1 v02 = 12 − (1.94 )(8) = 4.24 V 2 4.24 − 0.7 IC 3 = = 1.07 mA 3.3 ( 200 )( 0.026 ) rπ 3 = = 4.86 kΩ 1.07 Ri 3 = 4.86 + ( 201)( 3.3) = 668 kΩ 1 Ad 1 = ( 37.3) ⎣8 668⎦ = 147.4 ⎡ ⎤ 2 Then Ad = Ad 1 ⋅ A2 = (147.4 )( −1.197 ) ⇒ Ad = −176 VA 80 R0 = r05 = = = 41.2 kΩ I C 5 1.94 − g m 2 ( RC Ri 3 ) Acm1 = 2 (1 + β ) R0 1+ rπ 2 ( 200 )( 0.026 ) rπ 2 = = 5.36 kΩ 1 ⋅ (1.94 ) 2
  • 65. − ( 37.3) ( 8 668 ) Acm1 = = −0.09539 2 ( 201)( 41.2 ) 1+ 5.36 A2 = −1.197 Acm = ( −0.09539 )( −1.197 ) ⇒ Acm = 0.114 b. vd = v1 − v2 = 2.015sin ω t − 1.985sin ω t vd = 0.03sin ω t ( V ) v +v vcm = 1 2 = 2.0sin ω t 2 v03 = Ad vd + Acm vcm = ( −176 )( 0.03) + ( 0.114 )( 2 ) Or v03 = −5.052sin ω t Ideal, Acm = 0 So v03 = Ad vd = ( −176 )( 0.03) v03 = −5.28sin ω t c. Rid = 2rπ 2 = 2 ( 5.36 ) ⇒ Rid = 10.72 kΩ 2 Ricm ≅ 2 (1 + β ) R0 (1 + β ) r0 VA 80 r0 = = = 82.5 kΩ IC 2 1 ⋅ (1.94 ) 2 2 Ricm = ⎡ 2 ( 201)( 41.2 ) ⎤ ⎡( 201)( 82.5 ) ⎤ ⎣ ⎦ ⎣ ⎦ = 16.6 MΩ 16.6 MΩ So ⇒ Ricm = 4.15 MΩ 11.90 a. 24 − VGS 4 = kn (VGS 4 − VTh ) 2 I1 = R1 24 − VGS 4 = ( 55 )( 0.2 )(VGS 4 − 2 ) 2 24 − VGS 4 = 11 (VGS 4 − 4VGS 4 + 4 ) 2 2 11VGS 4 − 43VGS 4 + 20 = 0 ( 43) − 4 (11)( 20 ) 2 43 ± VGS 4 = = 3.37 V 2 (11) 24 − 3.37 I1 = = 0.375 mA = I Q 55 ⎛ 0.375 ⎞ v02 = 12 − ⎜ ⎟ ( 40 ) = 4.5 V ⎝ 2 ⎠ v02 − VGS 3 = I D 3 = kn (VGS 3 − VTh ) 2 R5
  • 66. 4.5 − VGS 3 = ( 0.2 ) ( 6 ) (VGS 3 − 4VGS 3 + 4 ) 2 2 1.2VGS 3 − 3.8VGS 3 + 0.3 = 0 ( 3.8) − 4 (1.2 ) ( 0.3) 2 3.8 ± VGS 3 = = 3.09 V 2 (1.2 ) 4.5 − 3.09 I D3 = = 0.235 mA 6 ( 0.2 ) ⎛ 0.375 ⎞ gm2 = 2 Kn I D2 = 2 ⎜ ⎟ ⎝ 2 ⎠ = 0.387 mA/V 1 1 Ad 1 = g m 2 RD = ( 0.387 )( 40 ) ⇒ Ad 1 = 7.74 2 2 − g m 3 RD 2 A2 = 1 + g m 3 R5 g m3 = 2 K n I D3 = 2 ( 0.2 )( 0.235 ) = 0.434 mA/V − ( 0.434 ) ( 4 ) A2 = = −0.482 1 + ( 0.434 )( 6 ) So Ad = Ad 1 ⋅ A2 = ( 7.74 ) ( −0.482 ) ⇒ Ad = −3.73 1 1 R0 = r05 = = = 133 kΩ λ I Q ( 0.02 )( 0.375 ) − g m 2 RD − ( 0.387 ) ( 40 ) Acm1 = = 1 + 2 g m 2 R0 1 + 2 ( 0.387 ) (133) = −0.149 Acm = ( −0.149 )( −0.482 ) ⇒ Acm = 0.0718 b. vd = v1 − v2 = 0.3sin ω t v +v vcm = 1 2 = 2sin ω t 2 v03 = Ad vd + Acm vcm = ( −3.73)( 0.3) + ( 0.0718 )( 2 ) ⇒ v03 = −0.975sin ω t ( V ) Ideal, Acm = 0 v03 = Ad vd = ( −3.73)( 0.3) Or ⇒ v03 = −1.12sin ω t ( V ) 11.91 The low-frequency, one-sided differential gain is
  • 67. v02 1 ⎛ r ⎞ Av 2 = = g m RC ⎜ π ⎟ vd 2 ⎝ rπ + RB ⎠ 1 ⋅ β RC = 2 rπ + RB (100 )( 0.026 ) rπ = = 5.2 kΩ 0.5 1 ⋅ (100 )(10 ) Av 2 = 2 ⇒ Av 2 = 87.7 5.2 + 0.5 CM = Cμ (1 + g m RC ) 0.5 gm = = 19.23 mA/V 0.026 CM = 2 ⎡1 + (19.23)(10 ) ⎤ ⇒ CM = 387 pF ⎣ ⎦ 1 fH = 2π ⎡ rπ RB ⎤ ( Cπ + CM ) ⎣ ⎦ 1 = So ⇒ f H = 883 kHz 2π ⎣5.2 0.5⎦ × 10 × ( 8 + 387 ) × 10−12 ⎡ ⎤ 3 11.92 1 1 a. From Equation (11.117), f Z = = 2π R0 C0 2π ( 5 × 106 )( 0.8 × 10−12 ) Or f Z = 39.8 kHz b. From Problem 11.69, f H = 883 kHz. From Equation (11.116(b)), the low-frequency common- mode gain is − g m RC Acm = ⎡⎛ RB ⎞ 2 (1 + β ) R0 ⎤ ⎢⎜ 1 + ⎟+ ⎥ ⎣⎝ rπ ⎠ rπ ⎦ rπ = 5.2 kΩ, g m = 19.23 mA/V So − (19.23)(10 ) Acm = ⎡⎛ 0.5 ⎞ 2 (101) ( 5 × 106 ) ⎤ ⎢⎜ 1 + ⎟+ ⎥ ⎢⎝ 5.2 ⎠ 5.2 × 103 ⎥ ⎣ ⎦ −4 = −9.9 × 10 ⎛ 87.7 ⎞ C M RRdB = 20 log10 ⎜ −4 ⎟ = 98.9 dB ⎝ 9.9 × 10 ⎠
  • 68. 11.93 gm a. From Equation (7.72), fT = 2π ( Cπ + Cμ ) 1 gm = = 38.46 mA/V 0.026 38.46 × 10−3 Then 800 × 106 = 2π ( Cπ + Cμ ) Or Cπ + Cμ = 7.65 × 10−12 F = 7.65 pF And Cπ = 6.65 pF CM = Cμ (1 + g m RC ) = 1 ⎡1 + ( 38.46 )(10 ) ⎤ ⎣ ⎦ = 386 pF 1 fH = 2π ⎡ rπ RB ⎤ ( Cπ + CM ) ⎣ ⎦ (120 )( 0.026 ) rπ = = 3.12 kΩ 1 1 fH = 2π ⎡3.12 1⎤ × 10 × ( 6.65 + 386 ) × 10−12 ⎣ ⎦ 3 Or f H = 535 kHz 1 1 b. From Equation (11.140), f Z = = 2π R0 C0 2π (10 × 106 )(10−12 ) Or f Z = 15.9 kHz 11.94 The differential-mode half circuit is: ⎛v ⎞ ⎛1⎞ g m ⎜ d ⎟ RC ⎜ ⎟ β RC v02 = ⎝ 2⎠ or Av = ⎝ 2⎠ ⎛1+ β ⎞ rπ + (1 + β ) RE 1+ ⎜ ⎟ RE ⎝ rπ ⎠ (100 )( 0.026 ) rπ = = 5.2 kΩ 0.5 ⎛1⎞ ⎜ ⎟ (100 )(10 ) 500 Av = ⎝ ⎠ 2 = 5.2 + (101) RE 5.2 + (101) RE
  • 69. a. For RE = 0.1 kΩ : Av = 32.7 b. For RE = 0.25 kΩ : Av = 16.4