Chapter 10
Problem Solutions

10.1
                     0 − 2Vγ − V −
a.      I1 = I 2 =
                         R1 + R2
        2Vγ + I 2 R2 = VBE + I C R3

        2Vγ +
                  R2
              R1 + R2
                        ( −2Vγ − V − ) = VBE + IC R3
               1⎧
                ⎪               − ⎛    R2 ⎞          ⎫
                                                     ⎪
        IC =    ⎨2Vγ − ( 2Vγ + V ) ⎜         ⎟ − VBE ⎬
                ⎪
               R3
                ⎩                  ⎝ R1 + R2 ⎠       ⎪
                                                     ⎭
b.      Vγ = VBE and R1 = R2
               1 ⎧      1                  ⎫
                  ⎨2Vγ − ( 2Vγ + V ) − VBE ⎬
                                  −
        IC =
               R3 ⎩     2                  ⎭
                    −V −
        or I C =
                    2 R3
                           − ( −10 )
c.      I C = 2 mA =                   ⇒ R3 = 2.5 kΩ
                             2 R3
                                    −2 ( 0.7 ) − ( −10 )
        I1 = I 2 = 2 mA =                                  ⇒ R1 + R2 = 4.3 kΩ ⇒ R1 = R2 = 2.15 kΩ
                                         R1 + R2

10.2
                     ⎛I ⎞
(a)     VBE1 = VT ln ⎜ C1 ⎟
                     ⎝ IS ⎠
                                                            ⎛ 10 × 10−6 ⎞
(i)     I REF = I C1 = 10 μ A,          VBE1 = ( 0.026 ) ln ⎜      −14  ⎟ = 0.5388 V
                                                            ⎝ 10        ⎠
                                         I O = 10 μ A
                                                              ⎛ 100 × 10−6 ⎞
(ii)    I REF = I C1 = 100 μ A,           VBE1 = ( 0.026 ) ln ⎜      −14   ⎟ = 0.5987 V
                                                              ⎝ 10         ⎠
                                           I O = 100 μ A
                                                 ⎛ 10−3 ⎞
(iii)   I REF = I C1 = 1 mA, VBE1 = ( 0.026 ) ln ⎜ −14 ⎟ = 0.6585 V
                                                 ⎝ 10 ⎠
                              I O = 1 mA
                I REF
(b)     IO =
                    2
               1+
                     β
                10                                                         ⎛I ⎞
(i)     IO =         ⇒ I O = 9.615 μ A VBE1 = VBE 2                = VT ln ⎜ O ⎟
                   2                                                       ⎝ IS ⎠
               1+
                  50
                                                                                  ⎛ 9.615 × 10−6 ⎞
                                                                   = ( 0.026 ) ln ⎜       −14    ⎟
                                                                                  ⎝ 10           ⎠
                                                                   = 0.5378 V
                100                                        ⎛ 96.15 × 10−6 ⎞
(ii)    IO =         ⇒ I O = 96.15 μ A VBE1 = ( 0.026 ) ln ⎜              ⎟
                   2                                       ⎝ 10
                                                                   −14
                                                                          ⎠
               1+
                  50
                                            = 0.5977 V
1                                        ⎛ 0.9615 × 10−3 ⎞
(iii)          IO =         ⇒ I O = 0.9615 mA VBE1 = ( 0.026 ) ln ⎜               ⎟
                          2                                       ⎝     10−14     ⎠
                      1+
                         50
                                                   = 0.6575 V

10.3
          V + − VBE ( on ) − V −                        3 − 0.7 − ( −3)
I REF =                                 ⇒ 0.250 =
                       R1                                      R1
R1 = 21.2 K
                  I REF   0.250
I C1 = I C 2 =          =       ⇒ I C1 = I C 2 = 0.2419 mA
                      2       2
                 1+       1+
                      β      60
I B1 = I B 2   = 4.03 μ A

10.4
          V + − VBE ( on ) − V −            5 − 0.7 − ( −5 )
I REF =                                 =
                       R1                        18.3
I REF = 0.5082 mA
                   I REF   0.5082
I C1 = I C 2 =           =        ⇒ I C1 = I C 2 = 0.4958 mA
                       2        2
                 1+        1+
                       β       80
I B1 = I B 2   = ( 6.198 μ A )

10.5
                         V + − VBE ( on ) − V −                15 − 0.7 − ( −15 )
(a)            I REF =                               or R1 =                        ⇒ R1 = 58.6 k Ω
                                   R1                                 0.5
                      V + − VBE ( on ) − V −         0 − 0.7 − ( −15 )
(b)            R1 =                              =                       ⇒ R1 = 28.6 k Ω
                           I REF            0.5
Advantage: Requires smaller resistance.
(c)        For part (a):
                    29.3
 I O ( max ) =                   = 0.526 mA
               ( 58.6 )( 0.95 )
                       29.3
 I O ( min ) =                    = 0.476 mA
                  ( 58.6 )(1.05 )
ΔI O = 0.526 − 0.476 = 0.05 mA ⇒ ±5%
For part (b):
                   14.3
I O ( max ) =                 = 0.526 mA
              ( 28.6 )( 0.95)
                       14.3
 I O ( min ) =                    = 0.476 mA
                  ( 28.6 )(1.05 )
        ΔI O = 0.05 mA ⇒ ±5%

10.6
                           ⎛    2⎞     ⎛     2 ⎞
a.             I REF = I 0 ⎜ 1 + ⎟ = 2 ⎜ 1 +   ⎟ or I REF = 2.04 mA
                           ⎝ β⎠        ⎝ 100 ⎠
                       15 − 0.7
                  R1 =           ⇒ R1 = 7.01 kΩ
                          2.04
VA 80
b.           r0 =      =   = 40 kΩ
                    I0   2
              ΔI 0    1         ⎛ 1 ⎞
                     = ⇒ ΔI 0 = ⎜ ⎟ ( 9.3) = 0.2325 mA
             ΔVCE r0            ⎝ 40 ⎠
             ΔI 0 0.2325     ΔI
                   =     ⇒ 0 = 11.6%
              I0       2      I0

10.7
  I 0 = nI C1
                                       I C1       I0
I REF = I C1 + I B1 + I B 2 = I C1 +          +
                                       β          β
             ⎛    1 n⎞        ⎛ 1+ n ⎞
I REF = I C1 ⎜ 1 + + ⎟ = I C1 ⎜ 1 +   ⎟
             ⎝ β β⎠           ⎝     β ⎠
           I0 ⎛ 1 + n ⎞             nI REF
       =      ⎜1 +    ⎟ or I 0 =
           n⎝      β ⎠           ⎛ 1+ n ⎞
                                 ⎜1 +
                                 ⎝      β ⎟⎠

10.8
        I REF                    ⎛    2 ⎞
IO =          ⇒ I REF = ( 0.20 ) ⎜ 1 + ⎟ = 0.210 mA
            2                    ⎝    40 ⎠
       1+
            β
     5 − 0.7 4.3
R1 =        =      ⇒ R1 = 20.5 K
      I REF   0.21

10.9
                      5 − 0.7
a.           I REF =          = 0.239 mA
                         18
                       0.239
                 I0 =         ⇒ I 0 = 0.230 mA
                           2
                      1+
                          50
                     VA      50
b.              r0 =      =        = 218 kΩ
                      I 0 0.230
                     1           ⎛ 1 ⎞
             ΔI 0 =    ⋅ ΔVEC = ⎜       ⎟ (1.3) = 0.00597 mA ⇒ I 0 = 0.236 mA
                    r0           ⎝ 217 ⎠
                    ⎛ 1 ⎞
c.           ΔI 0 = ⎜     ⎟ ( 3.3) = 0.01516 mA ⇒ I 0 = 0.245 mA
                    ⎝ 217 ⎠

10.10
                           5 − 0.7 − ( −5 )
a.           I REF = 1 =                      ⇒ R1 = 9.3 kΩ
                                 R1
b.           I 0 = 2 I REF ⇒ I 0 = 2 mA
                                                       5 − 0.7
c.           For VEC 2 ( min ) = 0.7 ⇒ RC 2 =                  ⇒ RC 2 = 2.15 kΩ
                                                          2

10.11
I O = 0.50 mA ⇒ I OA = I OB = 0.25 mA
             ⎛    3⎞        ⎛    3 ⎞
I REF = I OA ⎜ 1 + ⎟ = 0.25 ⎜ 1 + ⎟
             ⎝ β⎠           ⎝ 60 ⎠
I REF = 0.2625 mA
         2.5 − 0.7
  R1 =             ⇒ R1 = 6.86 K
          0.2625

10.12




       10 − 0.7
R1 =            = 37.2 K
         0.25

10.13
 I 2 = 2 I1 and I3 = 3I1
(a) I 2 = 1.0 mA, I 3 = 1.5 mA
(b) I1 = 0.25 mA, I 3 = 0.75 mA
(c) I1 = 0.167 mA, I 2 = 0.333 mA

10.14
a.
IE3
I 0 = I C1 and I REF = I C1 + I B 3 = I C1 +
                                                    1+ β
                         VBE 2 I C1 VBE
I E 3 = I B1 + I B 2 +      =      +
                         R2   β      R2
                    2 I C1              VBE
I REF = I C1 +                  +
                  β (1 + β )        (1 + β ) R2
              VBE           ⎛     2      ⎞
I REF −               = I 0 ⎜1 +
                            ⎜ β (1 + β ) ⎟
                                         ⎟
          (1 + β ) R2       ⎝            ⎠
                     VBE
       I REF −
                 (1 + β ) R2
I0 =
         ⎛     2      ⎞
         ⎜1 +
         ⎜ β (1 + β ) ⎟
                      ⎟
         ⎝            ⎠
                              ⎛      2      ⎞      0.7
b.           I REF = ( 0.70 ) ⎜ 1 +
                              ⎜ ( 80 )( 81) ⎟ + ( 81)(10 )
                                            ⎟
                              ⎝             ⎠
             I REF = 0.700216 + 0.000864
                                             10 − 2 ( 0.7 )
             I REF = 0.7011 mA =                              ⇒ R1 = 12.27 kΩ
                                                  R1

10.15
a.
                                                       I ES
 I 0i = I CR and I REF = I CR + I BS = I CR +
                                                     1+ β
I ES = I BR + I B1 + I B 2 + ... + I BN      = (1 + N ) I BR
         (1 + N ) I CR
     =
              β
                             (1 + N ) I CR
Then I REF = I CR +
                              β (1 + β )
                   I REF
or I 0i =
            ⎛     (1 + N ) ⎞
            ⎜1 + β (1 + β ) ⎟
            ⎜               ⎟
            ⎝               ⎠
                             ⎡      6      ⎤
b.           I REF = ( 0.5 ) ⎢1 +          ⎥ = 0.5012 mA
                             ⎢ ( 50 )( 51) ⎥
                             ⎣             ⎦
                         5 − 2 ( 0.7 ) − ( −5 )
                 R1 =                             ⇒ R1 = 17.16 kΩ
                               0.5012

10.16
⎛         2      ⎞       ⎡         2      ⎤
            ⎜ β (1 + β ) ⎟ = ( 0.5 ) ⎢1 + ( 50 )( 51) ⎥ ⇒ I REF = 0.5004 mA
I REF = I 0 ⎜ 1 +            ⎟       ⎢                ⎥
            ⎝                ⎠       ⎣                ⎦
        5 − 2 ( 0.7 ) − ( −5 )
   R1 =                        ⇒ R1 = 17.19 kΩ
                0.5004

10.17




                   1
I 0 = I REF ⋅
            ⎛     2      ⎞
            ⎜1 +
            ⎜ β (2 + β ) ⎟
                         ⎟
            ⎝            ⎠
For I 0 = 0.8 mA
                ⎛      2 ⎞
I REF = ( 0.8 ) ⎜ 1 +
                ⎜ 25 ( 27 ) ⎟ ⇒ I REF = 0.8024 mA
                            ⎟
                ⎝           ⎠
      18 − 2 ( 0.7 )
R1 =                  ⇒ R1 = 20.69 kΩ
         0.8024

10.18
The analysis is exactly the same as in the text. We have
                   1
I 0 = I REF ⋅
              ⎛      2     ⎞
              ⎜1 +
              ⎜ β (2 + β ) ⎟
                           ⎟
              ⎝            ⎠

10.19
                        2
I 0 = 2 mA, I B 2 =        = 0.0267 mA
                        75
                         1
I C1 = 1 mA, I B1 =        = 0.0133 mA
                        75
I E 3 = I B1 + I B 2 = 0.0133 + 0.0267 = 0.04 mA
          I E3      0.04
I B3 =          =        = 0.000526 mA
         1+ β         76
I REF   = I C1 + I B 3 ⇒ I REF = 1.000526 ≈ 1 mA
         10 − 2 ( 0.7 )       8.6
R1 =                      =       ⇒ R1 = 8.6 kΩ
             I REF             1

10.20
(a)
                          β ro3
Assuming RO ≈
                        2
         VA   V         100
rO 3 =      = A       =      = 400 K
         I O I REF      0.25
         (100 )( 400 )
RO =                       ⇒ RO = 20 MΩ
                2
(b)
          ΔV              ΔV     5
RO =           ⇒ ΔI O =      =
          ΔI O          20 MΩ 20 MΩ
ΔI O = 0.25 μ A

10.21
           V + − VBE1 − V − 5 − 0.7
I REF =                    =
                  R1          9.3
I REF = 0.4624 mA
      VT ⎛ I REF ⎞ 0.026 ⎛ 0.4624 ⎞
IO =     ln ⎜     ⎟=       ln ⎜    ⎟
      RE ⎝ I O ⎠      1.5     ⎝ IO ⎠
                ⎛ 0.4624 ⎞
I O = 0.01733ln ⎜        ⎟
                ⎝ IO ⎠
By trial and error
I O 41.7 μ A
VBE 2 = 0.7 − I O RE
VBE 2 = 0.7 − ( 0.0417 )(1.5 )
VBE 2 = 0.6375 V

10.22
(a)
V + − VBE1 − V − 5 − 0.7 − ( −5 )
I REF =                   =                 ⇒ I REF = 93 μ A
                 R1             100
               ⎛I ⎞                           ⎛ 93 × 10−3 mA ⎞
I O RE = VT ln ⎜ REF ⎟ ⇒ I O (10 ) = 0.026 ln ⎜              ⎟
               ⎝ IO ⎠                         ⎝       IO     ⎠
By trial and error, I O ≅ 6.8 μ A
Ro = ro 2 (1 + g m 2 RE )
                      ′
Now
        30
 ro 2 =      = 4.41 M Ω
        6.8
        0.0068
gm2 =            = 0.2615 mA / V
         0.026
        (100 )( 0.026 )
 rπ 2 =                 = 382.4 k Ω
            0.0068
So
  ′
RE = rπ 2 || RE = 382 || 10 = 9.74 k Ω
Then
Ro = 4.41 ⎡1 + ( 0.262 )( 9.74 ) ⎤ ⇒ Ro = 15.6 M Ω
            ⎣                    ⎦
(b)         VBE1 − VBE 2 = I o RE = ( 0.0068 )(10 ) ⇒ VBE1 − VBE 2 = 0.068 V

10.23
          I
ΔI 0 =       ⋅ ΔVC
          R0
R0 = r02 (1 + g m 2 RE )
                     ′
     V       80
r02 = A =         = 11.76 MΩ
      I 0 6.8
          I 0 0.0068
gm2 =        =       = 0.2615 mA/V
          VT   0.026
         (80 )( 0.026 )
rπ 2 =                = 306 kΩ
        0.0068
 ′
RE = RE rπ 2 = 10 306 = 9.68 K
R0 = (11.76 ) ⎡1 + ( 0.2615 )( 9.68 ) ⎤ = 41.54 MΩ
              ⎣                       ⎦
Now
       ⎛ 1 ⎞
ΔI 0 = ⎜       ⎟ ( 5 ) ⇒ ΔI 0 = 0.120 μ A
       ⎝ 41.54 ⎠

10.24
                       5 − 0.7 − ( −5 )
(a)          I REF =                      = 0.50
                             R1
             R1 = 18.6 K
                            ⎛I ⎞
             I O RE = VT ln ⎜ REF ⎟
                            ⎝ IO ⎠
                    0.026 ⎛ 0.50 ⎞
             RE =         ln ⎜      ⎟
                    0.050 ⎝ 0.050 ⎠
             RE = 1.20 K
(b)         RO = rc 2 [1 + RE g m 2 ]
                            ′
             ′
            RE = RE rπ 2
                     ( 75 )( 0.026 )                    0.050
            rπ 2 =                     = 39 K   gm2 =         = 1.923 mA/V
                      0.050                             0.026
                   VA 100
            ro 2 =    =     ⇒ 2 MΩ               ′
                                                RE = 1.20 39 = 1.164 K
                   I O 0.05
            RO = 2 ⎡1 + (1.164 )(1.923) ⎤ ⇒ RO = ( 6.477 ) MΩ
                   ⎣                    ⎦
                   ΔV       5
(c)         ΔI O =     =         = 0.772 μ A
                   RO 6.477
            ΔI O          0.772
                 × 100% =       × 100 = 1.54%
             IO            50

10.25
Let R1 = 5 k Ω, Then
          12 − 0.7 − ( −12 )
I REF =                        ⇒ I REF = 4.66 mA
                     5
Now
               ⎛I ⎞           0.026 ⎛ 4.66 ⎞
I O RE = VT ln ⎜ REF ⎟ ⇒ RE =      ln ⎜    ⎟ ⇒ RE ≅ 1 k Ω
               ⎝ IO ⎠         0.10 ⎝ 0.10 ⎠

10.26
            ⎛I ⎞
VBE = VT ln ⎜ REF ⎟
            ⎝ IS ⎠
                   ⎛ 10−3 ⎞
0.7 = ( 0.026 ) ln ⎜      ⎟ ⇒ I S = 2.03 × 10 A
                                             −15

                   ⎝  IS ⎠
                            ⎛ 2 × 10−3 ⎞
At 2 mA, VBE = ( 0.026 ) ln ⎜          −15 ⎟
                            ⎝ 2.03 × 10 ⎠
             = 0.718 V
    15 − 0.718
 R1 =          ⇒ R1 = 7.14 kΩ
         2
    V     ⎛ I ⎞ 0.026 ⎛ 2 ⎞
RE = T ln ⎜ REF ⎟ =      ⋅ ln ⎜ ⎟ ⇒ RE = 1.92 kΩ
     I 0 ⎝ I 0 ⎠ 0.050 ⎝ 0.050 ⎠

10.27
a.
       10 − 0.7
I REF ≈         = 0.465 mA
          20
Let V − = 0
            ⎛I ⎞
VBE ≅ VT ln ⎜ REF ⎟
            ⎝ IS ⎠
                   ⎛ 10−3 ⎞
0.7 = ( 0.026 ) ln ⎜      ⎟ ⇒ I S = 2.03 ×10 A
                                            −15

                   ⎝  IS ⎠
Then
                   ⎛ 0.465 × 10−3 ⎞
VBE ≅ ( 0.026 ) ln ⎜          −15 ⎟
                                    = 0.680 V
                   ⎝ 2.03 × 10 ⎠
Then
10 − 0.680
I REF ≅              ⇒ I REF = 0.466 mA
              20
                   VT ⎛ I REF    ⎞ 0.026      ⎛ 0.466 ⎞
b.          RE =     ln ⎜        ⎟=      ⋅ ln ⎜       ⎟ ⇒ RE = 400Ω
                   I0 ⎝ I0       ⎠  0.10      ⎝ 0.10 ⎠

10.28
          10 − 0.7 − ( −10 )
I REF ≈                        = 0.4825 mA
                 40
            ⎛I ⎞
VBE ≅ VT ln ⎜ REF ⎟
            ⎝ IS ⎠
                   ⎛ 10−3 ⎞
0.7 = ( 0.026 ) ln ⎜      ⎟ ⇒ I S = 2.03 × 10 A
                                             −15

                   ⎝ IS ⎠
Now
                   ⎛ 0.4825 × 10−3 ⎞
VBE = ( 0.026 ) ln ⎜           −15 ⎟
                                     = 0.681 V
                   ⎝ 2.03 × 10     ⎠
VBE1 = 0.681 V
So
          10 − 0.681 − ( −10 )
I REF ≅                        ⇒ I REF = 0.483 mA
                  40
                ⎛I ⎞
I 0 RE = VT ln ⎜ REF ⎟
                ⎝ I0 ⎠
                         ⎛ 0.483 ⎞
I 0 (12 ) = ( 0.026 ) ln ⎜       ⎟
                         ⎝ I0 ⎠
By trial and error.
⇒ I 0 ≅ 8.7 μ A
VBE 2 = VBE1 − I 0 RE = 0.681 − ( 0.0087 )(12 ) ⇒ VBE 2 = 0.5766 V

10.29
VBE1 + I REF RE1 = VBE 2 + I 0 RE 2
VBE1 − VBE 2 = I 0 RE 2 − I REF RE1
For matched transistors
              ⎛I ⎞
VBE1 = VT ln ⎜ REF ⎟
              ⎝ IS ⎠
              ⎛I ⎞
VBE 2 = VT ln ⎜ 0 ⎟
              ⎝ IS ⎠
           ⎛I ⎞
Then VT ln ⎜ REF ⎟ = I 0 RE 2 − I REF RE1
           ⎝ I0 ⎠
Output resistance looking into the collector of Q2 is increased.

10.30
                      V + − VBE1 − V − 5 − 0.7 − ( −5 )
(a)         I REF =                   =                 = 0.3174 mA
                          R1 + RE1        27.3 + 2
              I O = I REF = 0.3174 mA
(b)         Using the same relation as for the widlar current source.
RO = ro 2 ⎡1 + g m 2 ( RE rπ 2 ) ⎤
          ⎣                      ⎦
         VA    80                             0.3174
ro 2 =      =       = 252 K           gm2 =          = 12.21 mA/V
         I O 0.3174                            0.026
         (100 )( 0.026 )
rπ 2 =              = 8.192 K RE || rπ 2 = 2 || 8.192 = 1.608 K
        0.3174
RO = 252 ⎡1 + (12.21)(1.608 ) ⎤ ⇒ RO = 5.2 MΩ
         ⎣                    ⎦
(c)
                5 − 0.7 − ( −5 )
I O = I REF =          = 0.3407 mA
                27.3
           V      80
RO = ro 2 = A =       ⇒ RO = 235 K
           I O 0.3407

10.31
Assume all transistors are matched.
a.
2VBE1 = VBE 3 + I 0 RE
             ⎛I ⎞
VBE1 = VT ln ⎜ REF ⎟
             ⎝ IS ⎠
              ⎛I ⎞
VBE 3 = VT ln ⎜ 0 ⎟
              ⎝ IS ⎠
       ⎛I ⎞            ⎛I ⎞
2VT ln ⎜ REF ⎟ − VT ln ⎜ 0 ⎟ = I 0 RE
       ⎝  IS ⎠         ⎝ IS ⎠
   ⎡ ⎛I ⎞        2
                     ⎛I       ⎞⎤
VT ⎢ ln ⎜ REF ⎟ − ln ⎜ 0      ⎟ ⎥ = I 0 RE
   ⎢ ⎝ IS ⎠
   ⎣                 ⎝ IS     ⎠⎥⎦
      ⎛ I 2 REF ⎞
VT ln ⎜         ⎟ = I 0 RE
      ⎝ I0 I S ⎠
b.
                                     ⎛ 0.7 ⎞
VBE = 0.7 V at 1 mA ⇒ 10−3 = I S exp ⎜                           −15
                                             ⎟ or I S = 2.03 × 10 A
                                     ⎝ 0.026 ⎠
                                      ⎛ 0.1× 10−3 ⎞
VBE at 0.1 mA ⇒ VBE = ( 0.026 ) ln ⎜             −15 ⎟
                                                       = 0.640 V
                                      ⎝ 2.03 × 10 ⎠
                                               0.640
Since I 0 = I REF , then VBE = I 0 RE ⇒ RE =           or RE = 6.4 kΩ
                                                0.1

10.32
(a)
          5 − 0.7 − ( −5 )
I REF =                      = 0.80 mA
                R1
   R1 = 11.6 K
          0.026 ⎛ 0.80 ⎞
 RE 2 =        ln ⎜     ⎟ ⇒ RE 2 = 1.44 K
          0.050 ⎝ 0.050 ⎠
          0.026 ⎛ 0.80 ⎞
 RE 3 =        ln ⎜     ⎟ ⇒ RE 2 = 4.80 K
          0.020 ⎝ 0.020 ⎠
(b)
VBE 2 = 0.7 − ( 0.05 )(1.44 ) ⇒ VBE 2 = 0.628 V
VBE 3 = 0.7 − ( 0.02 )( 4.80 ) ⇒ VBE 3 = 0.604 V
10.33
(a)
VBE1 = VBE 2
           V + − 2VBE1 − V −
I REF =
                R1 + R2
Now
2VBE1 + I REF R2 = VBE 3 + I O RE
or
I O RE = 2VBE1 − VBE 3 + I REF R2
We have
             ⎛I ⎞                      ⎛I ⎞
VBE1 = VT ln ⎜ REF ⎟ and VBE 3 = VT ln ⎜ O ⎟
             ⎝ IS ⎠                    ⎝ IS ⎠
(b)
Let R1 = R2 and I O = I REF ⇒ VBE1 = VBE 3 ≡ VBE
 Then
VBE = I O RE − I REF R2 = I O ( RE − R2 )
so
                  V + − V − − 2 I O ( RE − R2 )
I REF = I O =
                               2 R2
              +
           V −V     −
                      ⎛R ⎞
       =         − IO ⎜ E ⎟ + IO
            2 R2      ⎝ R2 ⎠
Then
       V + −V −
IO =
         2 Rε
(c)
 Want I O = 0.5 mA
              5 − ( −5 )
So RE =                    ⇒ RE = 10 k Ω
              2 ( 0.5 )
              5 − 2 ( 0.7 ) − ( −5 )
     2 R2 =                            = 17.2 k Ω
              0.5
Then R1 = R2 = 8.6 k Ω

10.34
a.
          20 − 0.7 − 0.7
I REF =                  = 1.55 mA
                12
I 01 = 2 I REF = 3.1 mA
I 02 = I REF = 1.55 mA
I 03 = 3I REF = 4.65 mA
b.
VCE1 = − I 01 RC1 − ( −10 ) = − ( 3.1)( 2 ) + 10 ⇒ VCE1 = 3.8 V
VEC 2 = 10 − I 02 RC 2 = 10 − (1.55 )( 3) ⇒ VEC 2 = 5.35 V
VEC 3 = 10 − I 03 RC 3 = 10 − ( 4.65 )(1) ⇒ VEC 3 = 5.35 V

10.35
a.            Ist approximation
20 − 1.4
I REF ≅             = 2.325 mA
              8
                                ⎛ 2.32 ⎞
Now VBE − 0.7 = ( 0.026 ) ln ⎜         ⎟ ⇒ VBE = VEB = 0.722 V
                                ⎝ 1 ⎠
Then 2nd approximation
          20 − 2 ( 0.722 )
I REF ≅                    = 2.32 mA
                 8
I 01 = 2 I REF = 4.64 mA
I 02 = I REF = 2.32 mA
I 03 = 3I REF = 6.96 mA
b.
At the edge of saturation,
VCE = VBE = 0.722 V
          0 − 0.722 − ( −10 )
RC1 =                       ⇒ RC1 = 2.0 kΩ
                4.64
         10 − 0.722
RC 2   =             ⇒ RC 2 = 4.0 kΩ
            2.32
         10 − 0.722
RC 3   =             ⇒ RC 3 = 1.33 kΩ
            6.96

10.36
                 10 − 0.7 − 0.7 − ( −10 )
I C1 = I C 2 =                              = 1.86 mA
                            10
I C 3 = I C 4 = 1.86 mA
                         ⎛ 1.86 ⎞
I C 5 ( 0.5 ) = 0.026 ln ⎜      ⎟
                         ⎝ IC 5 ⎠
By Trial and error.
⇒ I C 5 = 0.136 mA = I C 6 = I C 7
2 I C 3 ( 0.8 ) + VCE 3 = 10 ⇒ VCE 3 = 10 − 2 (1.86 )( 0.8 )
                               VCE 3 = 7.02 V
5 = VEB 6 + VCE 5 + I C 5 ( 0.5 ) − 10
VCE 5 = 5 + 10 − 0.7 − ( 0.136 )( 0.5 )
VCE 5 = 14.2 V
5 = VEC 7 + I C 7 ( 0.8 )
VEC 7 = 5 − ( 0.136 )( 0.8 )
VEC 7 = 4.89 V

10.37
                 10 − 0.7 − 0.7 − ( −10 )
I C1 = I C 2 =                              ⇒ I C1 = I C 2 = 1.86 mA
                            10
I C 4 = I C 5 = 1.86 mA
                  ⎛I ⎞                             ⎛ 1.86 ⎞
I C 3 RE1 = VT ln ⎜ C1 ⎟ ⇒ I C 3 ( 0.3) = 0.026 ln ⎜      ⎟
                  ⎝ IC 3 ⎠                         ⎝ IC 3 ⎠
By trial and error I C 3 = 0.195 mA
                   ⎛I ⎞                               ⎛ 1.86 ⎞
I C 6 RE 2 = VT ln ⎜ C 5 ⎟ ⇒ I C 6 ( 0.5 ) = 0.026 ln ⎜      ⎟
                   ⎝ IC 6 ⎠                           ⎝ IC 6 ⎠
By trial and error I C 6 = 0.136 mA
10.38
       10 − 0.7
I REF =           = 1 mA
         6.3 + 3
VBE ( QR ) = 0.7 V as assumed
VRER = I REF ⋅ RER = (1)( 3) = 3 V
                        VRE1 3
VRE1 = 3 V ⇒ RE1 =           = ⇒ RE1 = 3 kΩ
                         I 01 1
                         VRE 2 3
VRE 2 = 3 V ⇒ RE 2 =           = ⇒ RE 2 = 1.5 kΩ
                          I 02  2
                        VRE 3 3
VRE 3 = 3 V ⇒ RE 3 =          = ⇒ RE 3 = 0.75 kΩ
                         I 03  4
I 01 = 1 mA
I 02 = 2 mA
I 03 = 4 mA

10.38
VDS 2 ( sat ) = 2 V = VGS 2 − VTN 2 = VGS 2 − 1.5 ⇒ VGS 2 = 3.5 V
               ⎛1        ⎞⎛W ⎞
         I O = ⎜ μ n Cox ⎟ ⎜ ⎟ (VGS 2 − VTN 2 )
                                                2

               ⎝ 2       ⎠⎝ L ⎠2
                     ⎛W ⎞                ⎛W ⎞
        250 = ( 20 ) ⎜ ⎟ ( 3.5 − 1.5 ) ⇒ ⎜ ⎟ = 3.125
                                      2

                     ⎝ L ⎠2              ⎝ L ⎠2
                ⎛1        ⎞⎛W ⎞
        I REF = ⎜ μ n Cox ⎟ ⎜ ⎟ (VGS 2 − VTN 1 )
                ⎝2        ⎠ ⎝ L ⎠1
                     ⎛W ⎞                  ⎛W ⎞
        100 = ( 20 ) ⎜ ⎟ ( 3.5 − 1.5 ) ⇒ ⎜ ⎟ = 1.25
                                      2

                     ⎝ L ⎠2                ⎝ L ⎠1
Now VGS 3 = 10 − VGS 2 = 10 − 3.5 = 6.5 V
                   ⎛W ⎞                ⎛W ⎞
   So 100 = ( 20 ) ⎜ ⎟ ( 6.5 − 1.5 ) ⇒ ⎜ ⎟ = 0.2
                                    2

                   ⎝ L ⎠3              ⎝ L ⎠3

10.39
          2.5 − VGS ⎛ 0.08 ⎞
                           ⎟ ( 6 )(VGS − 0.5 )
                                               2
I REF =            =⎜
             15     ⎝ 2 ⎠
2.5 − VGS = 3.6 (VGS − VGS + 0.25 )
                   2


     2
3.6VGS − 2.6VGS − 1.6 = 0
          2.6 ± 6.76 + 23.04
VGS =
                2 ( 3.6 )
VGS = 1.12 V (1.1193)
        2.5 − 1.1193
I REF =              ⇒ I REF = 92.0 μ A ( 92.05 )
             15
I o = 92.0 μ A
VDS 2 ( sat ) = VGS − VTN = 1.1193 − 0.5
                VDS 2 ( sat ) = 0.619 V

10.39
a.          From Equation (10.50),
⎛      5 ⎞         ⎛        5 ⎞
                    ⎜          ⎟       ⎜ 1−       ⎟
                 =⎜       25 ⎟ 5 + ⎜           25 ⎟ 0.5
VGS1 = VGS 2                     ( )                ( )
                    ⎜        5 ⎟       ⎜        5 ⎟
                    ⎜ 1+       ⎟       ⎜ 1+       ⎟
                    ⎝       25 ⎠       ⎝       25 ⎠
                    ⎛ 0.447 ⎞           ⎛ 1 − 0.447 ⎞
                 =⎜             ⎟ (5) + ⎜            ⎟ ( 0.5 )
                    ⎝ 1 + 0.447 ⎠       ⎝ 1 + 0.447 ⎠
VGS 1 = VGS 2   = 1.74 V
I REF ≅ K n1 (VGS 1 − VTN ) = (18 )( 25 )(1.74 − 0.5 ) ⇒ I REF = 0.692 mA
                             2                            2



                 ⎛1        ⎞⎛W ⎞
           I O = ⎜ μ n Cox ⎟ ⎜ ⎟ (VGS 2 − VTN ) (1 + λVDS 2 )
                                               2
b.
                 ⎝ 2       ⎠⎝ L ⎠2
           I 0 = (18 )(15 )(1.74 − 0.5 ) ⎡1 + ( 0.02 )( 2 ) ⎤
                                           2
                                         ⎣                  ⎦
               = ( 415 )(104 ) ⇒ I 0 = 0.432 mA
c.         I 0 = ( 415 ) ⎡1 + ( 0.02 )( 4 ) ⎤ ⇒ I 0 = 0.448 mA
                         ⎣                  ⎦

10.40
(a)
             ⎛ 80 ⎞ ⎛ W ⎞
I REF = 50 = ⎜ ⎟ ⎜ ⎟ (VGS − 0.5 )
                                      2

             ⎝ 2 ⎠ ⎝ L ⎠1
                 2.0 − VGS
I REF = 0.050 =
                      R
Design such that VDS 2 ( sat ) = 0.25 = VGS − 0.5
VGS = 0.75 V
              2 − 0.75
So 0.050 =              ⇒ R = 25 K
                  R
           ⎛ 80 ⎞ ⎛ W ⎞             ⎛W ⎞
      50 = ⎜ ⎟ ⎜ ⎟ ( 0.75 − 0.5 ) ⇒ ⎜ ⎟ = 20
                                  2

           ⎝ 2 ⎠ ⎝ L ⎠1             ⎝ L ⎠1
 ⎛W ⎞
 ⎜ ⎟
 ⎝ L ⎠1 I REF        20      50     ⎛W ⎞
        =      ⇒          =     ⇒ ⎜ ⎟ = 40
 ⎛W ⎞      IO      ⎛W ⎞     100 ⎝ L ⎠ 2
 ⎜ ⎟               ⎜ ⎟
 ⎝ L ⎠2            ⎝ L ⎠2
                1            1
(b)       RO =       =               ⇒ RO = 667 K
               λ I O ( 0.015 )( 0.1)
                    ΔV   1
(c)       ΔI O =       =   ⇒ 1.5 μ A
                    RO 666
           ΔI O          ⎛ 1.5 ⎞
                × 100% = ⎜     ⎟ × 100% ⇒ 1.5%
            IO           ⎝ 100 ⎠

10.41
                        ⎛ 80 ⎞
          I REF = 250 = ⎜ ⎟ ( 3)(VGS − 1)
                                            2
(a)
                        ⎝  2⎠
          VGS = 2.44 V
          I O = 250 μ A at VDS 2 = VGS = 2.44 V
                  1            1
          RO =        =                 = 200 K
                 λ I O ( 0.02 )( 0.25 )
ΔV 3 − 2.44
(i)         ΔI O =      =        ⇒ 2.8 μ A
                     RO   200
            I O = 252.8 μ A
                     ΔV 4.5 − 2.44
(ii)        ΔI O =      =          ⇒ 10.3 μ A
                     RO    200
            I O = 260.3 μ A
                     ΔV 6 − 2.44
(iii)       ΔI O =      =        ⇒ 17.8 μ A
                     RO   200
            I O = 267.8 μ A
                 4.5
(b)          IO =     ( 250 ) = 375 μ A at VDS = 2.44 V
                  3
                  1              1
            RO =        =                 = 133.3 K
                 λ I O ( 0.02 )( 0.375 )
                     ΔV 3 − 2.44
(i)         ΔI O =      =        ⇒ 4.20 μ A
                     RO   133.3
            I O = 379.2 μ A
                     ΔV 4.5 − 2.44
(ii)        ΔI O =      =          ⇒ 15.5 μ A
                     RO   133.3
            I O = 390.5 μ A
                     ΔV 6 − 2.44
(iii)       ΔI O =      =        ⇒ 26.7 μ A
                     RO   133.3
            I O = 401.7 μ A

10.41
VSD 2 ( sat ) = 0.25 = VSG + VTP = VSG − 0.4 ⇒ VSG 2 = 0.65 V
       k′ ⎛ W ⎞
I O = ⎜ ⎟ (VSG 2 + VTP )
         p                     2

        2 ⎝ L ⎠2
       40 ⎛ W ⎞                    ⎛W ⎞
           ⎜ ⎟ ( 0.65 − 0.4 ) ⇒ ⎜ ⎟ = 20
                               2
25 =
        2 ⎝ L ⎠2                   ⎝ L ⎠2
                     (W /L )1         ⎛W ⎞
I REF = 75 μ A =              ⋅ I O ⇒ ⎜ ⎟ = 60
                     (W /L )2         ⎝ L ⎠1
          k′ ⎛W ⎞
              ⎜ ⎟ (VSG 3 + VTP )
                                 2
I REF =
            p

           2 ⎝ L ⎠3
VSG 3   = 3 − 0.65 = 2.35 V
              40 ⎛ W ⎞                ⎛W ⎞
                 ⎜ ⎟ ( 2.35 − 0.4 ) ⇒ ⎜ ⎟ = 0.986
                                   2
Then 75 =
              2 ⎝ L ⎠3                ⎝ L ⎠3

10.42
(a)
                    I REF      0.5
VGS = VTN 1 +             = 1+     =2V
                    K n1       0.5
                        2
             ⎛ I       ⎞       ⎛ I REF ⎞
 I O = K n 2 ⎜ REF     ⎟ = Kn2 ⎜       ⎟
             ⎜ K       ⎟
             ⎝   n1    ⎠       ⎝ K n1 ⎠
⎛ 0.5 ⎞
 I 0 ( max ) = ( 0.5 )(1.05 ) ⎜     ⎟ ⇒ I 0 ( max ) = 0.525 mA
                              ⎝ 0.5 ⎠
                               ⎛ 0.5 ⎞
 I 0 ( min ) = ( 0.5 )( 0.95 ) ⎜     ⎟ ⇒ I 0 ( min ) = 0.475 mA
                               ⎝ 0.5 ⎠
So 0.475 ≤ I 0 ≤ 0.525 mA
(b)
                                       2
            ⎡ I                   ⎤
I O = K n 2 ⎢ REF + VTN 1 − VTN 2 ⎥
            ⎢ K n1
            ⎣                     ⎥
                                  ⎦
                                           2
                      ⎡ 0.5           ⎤
I 0 ( min ) = ( 0.5 ) ⎢     + 1 − 1.05⎥ ⇒ I 0 (min) = 0.451 mA
                      ⎣ 0.5           ⎦
                                           2
                      ⎡ 0.5           ⎤
I 0 ( max ) = ( 0.5 ) ⎢     + 1 − 0.95⎥ ⇒ I 0 (max) = 0.551 mA
                      ⎣ 0.5           ⎦
So 0.451 ≤ I 0 ≤ 0.551 mA

10.43




                  Vx − VA
(1)        Ix =           + g mVgs 2
                     ro
                   VA
(2)         Ix =      + g mVgs1
                   ro
          Vgs1 = Vx , Vgs 2 = −VA
So
                  Vx      ⎛1      ⎞
(1)        Ix =      − VA ⎜ + g m ⎟
                  ro      ⎝ ro    ⎠
                  VA
(2)        Ix =      + g mVx ⇒ VA = ro [ I x − g mVx ]
                  ro
Then
       Vx                      ⎛1      ⎞
Ix =      − ro ( I x − g mVx ) ⎜ + g m ⎟
       ro                      ⎝ ro    ⎠
       Vx      ⎡I             g           2   ⎤
Ix =      − ro ⎢ x + g m I x − m ⋅ Vx − g mVx ⎥
       ro      ⎣ ro            ro             ⎦
       Vx                                2
Ix =      − I x − g m ro I x + g mVx + g m roVx
       ro
                        ⎡1               ⎤
I x [ 2 + g m ro ] = Vx ⎢ + g m + g m ro ⎥
                                    2

                        ⎣ ro             ⎦
                    1
Since g m >>
                   ro
I x [ 2 + g m ro ] ≅ Vx ( g m )(1 + g m ro )
        Vx           2 + g m ro
Then       = Ro =
        Ix        g m (1 + g m ro )
                                               1
Usually, g m ro >> 2, so that Ro ≅
                                               gm

10.44
VDS 2 (sat) = 2 = VGS 2 − 0.8 ⇒ VGS 2 = 2.8 V
               60 ⎛ W ⎞               ⎛W ⎞
                  ⎜ ⎟ ( 2.8 − 0.8 ) ⇒ ⎜ ⎟ = 1.67
                                   2
I O = 200 =
                2 ⎝ L ⎠2              ⎝ L ⎠2
         ⎛W ⎞             ⎛W ⎞
I REF ⎜ L ⎟1
         ⎝ ⎠
                          ⎜ ⎟
                    0.4 ⎝ L ⎠1   ⎛W ⎞
      =         ⇒       =      ⇒ ⎜ ⎟ = 3.33
 IO     ⎛W ⎞        0.2 (1.67 ) ⎝ L ⎠1
        ⎜ ⎟
        ⎝  L ⎠2
VGS 3 = 6 − 2.8 = 3.2 V
              ⎛ 60 ⎞ ⎛ W ⎞            ⎛W ⎞
I REF = 400 = ⎜ ⎟ ⎜ ⎟ ( 3.2 − 0.8 ) ⇒ ⎜ ⎟ = 2.31
                                   2

              ⎝ 2 ⎠ ⎝ L ⎠3            ⎝ L ⎠3

10.45
(a)
        ⎛ 60 ⎞                     ⎛ 60 ⎞
I REF = ⎜ ⎟ ( 20 )(VGS 1 − 0.7 ) = ⎜ ⎟ ( 3)(VGS 3 − 0.7 )
                                2                         2

        ⎝ 2 ⎠                      ⎝ 2 ⎠
VGS1 + VGS 3 = 5
  20
     (VGS1 − 0.7 ) = 5 − VGS1 − 0.7
   3
3.582VGS 1 = 6.107 ⇒ VGS1 = VGS 2 = 1.705 V
      ⎛ 60 ⎞
I O = ⎜ ⎟ (12 )(1.705 − 0.7 ) = 363.6 μ A at VDS 2 = 1.705 V
                             2

      ⎝ 2 ⎠
        ⎛ 60 ⎞
I REF = ⎜ ⎟ ( 20 )(1.705 − 0.7 ) = 606 μ A
                                2

        ⎝ 2 ⎠
                       1                 1
(b)          RO =           =                       = 183.4 K
                     λ IO       ( 0.015 )( 0.3636 )
                     ΔV 1.5 − 1.705
            ΔI O =      =           ⇒ −1.12 μ A
                     RO    183.4
              I O = 362.5 μ A
ΔV 3 − 1.705
(c)       ΔI O =      =         ⇒ 7.06 μ A
                   RO   183.4
            I O = 370.7 μ A

10.46
        ⎛ 50 ⎞                    ⎛ 50 ⎞
I REF = ⎜ ⎟ (15 )(VSG1 − 0.5 ) = ⎜ ⎟ ( 3)(VSG 3 − 0.5 )
                               2                        2

        ⎝ 2⎠                      ⎝ 2⎠
VSG1 + VSG 3 = 10 ⇒ VSG 3 = 10 − VSG1
  15
     (VSG1 − 0.5) = 10 − VSG1 − 0.5
   3
3.236VSG1 = 10.618 ⇒ VSG1 = 3.28 V
         ⎛ 50 ⎞
I REF = ⎜ ⎟ (15 )( 3.28 − 0.5 ) ⇒ I REF = 2.90 mA
                               2

         ⎝ 2⎠
I O = I REF = 2.90 mA
VSD 2 (sat) = VSG 2 + VTP = 3.28 − 0.5 ⇒ VSD 2 (sat) = 2.78 V

10.47
VSD 2 (sat) = 1.2 = VSG 2 − 0.35 ⇒ VSG 2 = 1.55 V
             ⎛ 50 ⎞⎛ W ⎞                ⎛W ⎞
I O = 100 = ⎜ ⎟⎜ ⎟ (1.55 − 0.35 ) ⇒ ⎜ ⎟ = 2.78
                                    2

             ⎝ 2 ⎠⎝ L ⎠ 2               ⎝ L ⎠2

I REF
      =
        ( )
         W
             L1
                  ⇒
                     200
                          =
                            ( )
                            W
                               L1   ⎛W ⎞
                                  ⇒ ⎜ ⎟ = 5.56
  IO    ( )
         W
             L 2
                     100     2.78   ⎝ L ⎠1

VSG1 + VSG 3 = 4 ⇒ VSG 3 = 2.45 V
              ⎛ 50 ⎞⎛ W ⎞              ⎛W ⎞
I REF = 200 = ⎜ ⎟⎜ ⎟ ( 2.45 − 0.35 ) ⇒ ⎜ ⎟ = 1.81
                                    2

              ⎝ 2 ⎠⎝ L ⎠3              ⎝ L ⎠3

10.48
        ⎛ 80 ⎞                      ⎛ 80 ⎞
I REF = ⎜ ⎟ ( 25 )(VSG1 − 1.2 ) = ⎜ ⎟ ( 4 )(VSG 3 − 1.2 )
                                2                         2

        ⎝  2⎠                       ⎝  2⎠
                               10 − VSG1
VSG1 + 2VSG 3 = 10 ⇒ VSG 3 =
                                   2
          25                 10 − VSG1
Then         (VSG1 − 1.2 ) =           − 1.2
          4                      2
3VSG1 = 6.8 ⇒ VSG1 = 2.27 V
         ⎛ 80 ⎞
I REF = ⎜ ⎟ ( 25 )( 2.267 − 1.2 ) ⇒ I REF = I O = 1.14 mA
                                  2

         ⎝ 2⎠
VSD 2 (sat) = VSG 2 + VTP = 2.27 − 1.2 ⇒ VSD 2 ( sat ) = 1.07 V

10.49
VSD 2 (sat) = 1.8 = VSG 2 − 1.4 ⇒ VSG 2 = 3.2 V
      ⎛ 80 ⎞ ⎛ W ⎞                  ⎛W ⎞
I O = ⎜ ⎟ ⎜ ⎟ ( 3.2 − 1.4 ) = 100 ⇒ ⎜ ⎟ = 0.772
                           2

      ⎝ 2 ⎠ ⎝ L ⎠2                  ⎝ L ⎠2

I REF
      =
         ( )
          W
              L1
  IO     ( )
         W
              L 2

200
      =
        ( )
         W
             L1     ⎛W ⎞
                  ⇒ ⎜ ⎟ = 1.54
100 0.772           ⎝ L ⎠1
Assume M3 and M4 are matched.
                               10 − 3.2
2VSG 3 + VSG1 = 10 ⇒ VSG 3 =            = 3.4 V
                                  2
               ⎛ 80 ⎞ ⎛ W ⎞
I REF = 200 = ⎜ ⎟ ⎜ ⎟ ( 3.4 − 1.4 )
                                         2

               ⎝  2 ⎠ ⎝ L ⎠3,4
⎛W ⎞
⎜ ⎟ = 1.25
⎝ L ⎠3,4

10.50
(a)
        ⎛ k′ ⎞⎛ W ⎞
I REF = ⎜ ⎟ ⎜ ⎟ (VSG1 + VTP )
           p                  2

        ⎝ 2 ⎠ ⎝ L ⎠1
        ⎛ k′ ⎞⎛ W ⎞
      = ⎜ ⎟ ⎜ ⎟ (VSG 3 + VTP )
           p                   2

        ⎝ 2 ⎠ ⎝ L ⎠3
But VSG 3 = 3 − VSG1
So 25 (VSG1 − 0.4 ) = 5 ( 3 − VSG1 − 0.4 )
                     2                       2


which yields VSG1 = 1.08 V
and VSG 3 = 1.92 V
 I REF = 20 ( 25 )(1.08 − 0.4 ) ⇒ I REF = 231 μ A
                               2



 IO    (W / L )2 15
        =         =     = 0.6
I REF (W / L )1 25
Then I O = ( 0.6 )( 231) = 139 μ A
(b)
VDS 2 ( sat ) = 1.08 − 0.4 = 0.68 V
VR = 3 − 0.68 = 2.32 = I O R
then
        2.32
R=           ⇒ R = 16.7 k Ω
       0.139

10.51
VSD 2 (sat) = 0.35 = VSG 2 − 0.4 ⇒ VSG 2 = 0.75 V
                  ⎛W ⎞                 ⎛W ⎞
I O = 80 = ( 20 ) ⎜ ⎟ ( 0.75 − 0.4 ) ⇒ ⎜ ⎟ = 32.7
                                    2

                  ⎝ L ⎠2               ⎝ L ⎠2
          W ( )           W ( )
I REF
      =
             L1
                 ⇒
                    50
                        =
                            L1
                               ⇒ W         ( )
                                      = 20.4
 IO       W ( )
             L 2
                    80    32.7     L1

VSG 3 = 3 − 0.75 = 2.25
                    ⎛W ⎞                 ⎛W ⎞
I REF = 50 = ( 20 ) ⎜ ⎟ ( 2.25 − 0.4 ) ⇒ ⎜ ⎟ = 0.730
                                      2

                    ⎝ L ⎠3               ⎝ L ⎠3

10.52
            I REF = K n (VGS − VTN )
                                       2
a.
            100 = 100 (VGS − 2 ) ⇒ VGS = 3 V
                                   2


            For VD 4 = −3 V, I 0 = 100 μ A
b.          R0 = r04 + r02 (1 + g m r04 )
                             1          1
            r02 = r04 =          =               = 500 kΩ
                            λ I 0 ( 0.02 )( 0.1)
            g m = 2 K n (VGS − VTN ) = 2 ( 0.1)( 3 − 2 ) = 0.2 mA / V
            R0 = 500 + 500 ⎡1 + ( 0.2 )( 500 ) ⎤
                           ⎣                   ⎦
            R0 = 51 MΩ
                     1            6
            ΔI 0 =      ⋅ ΔVD 4 =    ⇒ ΔI 0 = 0.118 μ A
                     R0           51

10.53




Vgs 4 = − I X r02
VS 6 = ( I X − g mVgs 4 ) r04 + I X r02
      = ( I X + g m I X r02 ) r04 + I X r02
VS 6 = I X ⎡ r02 + (1 + g m r02 ) r04 ⎤ = −Vgs 6
           ⎣                          ⎦
                 V − VS 6 VX                  ⎛       1 ⎞
I X = g mVgs 6 + X            =        − VS 6 ⎜ g m + ⎟
                     r06          r06         ⎝      r06 ⎠
        VX      ⎛        1 ⎞
IX =        − IX⎜ g m + ⎟ ⎡ r02 + (1 + g m r02 ) r04 ⎤
        r06     ⎝       r06 ⎠ ⎣                          ⎦

    ⎧ ⎛
    ⎪             1 ⎞                            ⎫ V
                                                 ⎪
I X ⎨1 + ⎜ g m + ⎟ ⎡ r02 + (1 + g m r02 ) r04 ⎤ ⎬ = X
                      ⎣                        ⎦
    ⎪ ⎝
    ⎩           r06 ⎠                            ⎪ r06
                                                 ⎭
VX
     = R0 = r06 + (1 + g m r06 ) ⎡ r02 + (1 + g m r02 ) r04 ⎤
                                 ⎣                          ⎦
IX
I 0 ≈ I REF = 0.2 mA = 0.2 (VGS − 1)
                                              2


VGS = 2 V
g m = 2 K n (VGS − VTN ) = 2 ( 0.2 )( 2 − 1) = 0.4 mA / V
                       1              1
r02 = r04 = r06 =           =                     = 250 kΩ
                     λ I0( 0.02 )( 0.2 )
R0 = 250 + ⎡1 + ( 0.4 )( 250 ) ⎤ × {250 + ⎡1 + ( 0.4 )( 250 ) ⎤ ( 250 )}
           ⎣                   ⎦          ⎣                   ⎦
R0 = 2575750 kΩ ⇒ R0 = 2.58 × 109 Ω
10.54
  ′
 kn ⎛ W ⎞                 ′
                        kn ⎛ W ⎞
    ⎜ ⎟ (VGS1 − VTN ) = ⎜ ⎟ (VGS 3 − VTN )
                     2                     2

 2 ⎝ L ⎠1               2 ⎝ L ⎠3
                        k′ ⎛ W ⎞
                       = ⎜ ⎟ (VGS 4 + VTP )
                          p                 2

                         2 ⎝ L ⎠4
(1) 50 ( 20 )(VGS 1 − 0.5 ) = 50 ( 5 )(VGS 3 − 0.5 )
                          2                            2



(2) 50 ( 20 )(VGS 1 − 0.5 ) = 20 (10 )(VGS 4 − 0.5 )
                          2                                2


(3) VSG 4 + VGS 3 + VGS1 = 6
From (1) 4 (VGS 1 − 0.5 ) = (VGS 3 − 0.5 ) ⇒ VGS 3 = 2 (VGS 1 − 0.5 ) + 0.5
                           2                2



From (2) 5 (VGS1 − 0.5 ) = (VGS 4 − 0.5 ) ⇒ VSG 4 = 5 (VGS1 − 0.5 ) + 0.5
                          2                 2


Then (3) becomes
 5 (VGS1 − 0.5 ) + 0.5 + 2 (VGS 1 − 0.5 ) + 0.5 + VGS1 = 6
which yields VGS 1 = 1.36 V and VGS 3 = 2.22 V , VSG 4 = 2.42 V
            k′ ⎛ W ⎞
Then I REF = n ⎜ ⎟ (VGS1 − VTN ) = 50 ( 20 )(1.36 − 0.5 ) or I REF = I O = 0.740 mA
                                 2                        2

             2 ⎝ L ⎠1
       VGS 1 = VGS 2 = 1.36 V
VDS 2 ( sat ) = VGS 2 − VTN = 1.36 − 0.5 ⇒ VDS 2 ( sat ) = 0.86 V

10.55
VDS 2 ( sat ) = 0.5 V = VGS 2 − VTN = VGS 2 − 0.5 ⇒ VGS 2 = 1 V
                 ′
                kn ⎛ W ⎞
                   ⎜ ⎟ (VGS 2 − VTN )
                                      2
I O = 50 μ A =
                2 ⎝ L ⎠2
         ⎛W ⎞              ⎛W ⎞
    = 50 ⎜ ⎟ (1 − 0.5 ) ⇒ ⎜ ⎟ = 4
                         2

         ⎝ L ⎠2            ⎝ L ⎠2
                                         ′
                                        kn ⎛ W ⎞                   ⎛W ⎞             ⎛W ⎞
                                           ⎜ ⎟ (VGS 1 − VTN ) = 50 ⎜ ⎟ (1 − 0.5 ) ⇒ ⎜ ⎟ = 12
                                                             2                   2
VGS1 = VGS 2 = 1 V ⇒ I REF = 150 =
                                        2 ⎝ L ⎠1                   ⎝ L ⎠1           ⎝ L ⎠1
VGS 3 + VSG 4 + VGS 1 = 6
2VGS 3 = 6 − 1 = 5 V ⇒ VGS 3 = 2.5 V
                 ⎛W ⎞                ⎛W ⎞
I REF = 150 = 50 ⎜ ⎟ ( 2.5 − 0.5 ) ⇒ ⎜ ⎟ = 0.75
                                  2

                 ⎝ L ⎠3              ⎝ L ⎠3
       k′ ⎛ W ⎞
           ⎜ ⎟ (VSG 4 + VTP )
                              2
I REF =
        p

       2 ⎝ L ⎠4
         ⎛W ⎞                   ⎛W ⎞
150 = 20 ⎜ ⎟ ( 2.5 − 0.5 ) ⇒ ⎜ ⎟ 1.88
                          2

         ⎝  L ⎠4                ⎝ L ⎠4

10.56
a.       As a first approximation
I REF = 80 = 80 (VGS 1 − 1) ⇒ VGS 1 = 2 V
                           2


Then VDS 1 ≅ 2 ( 2 ) = 4 V
The second approximation
80 = 80 (VGS1 − 1) ⎡1 + ( 0.02 )( 4 ) ⎤
                    2
                    ⎣                 ⎦
     80
         = (VGS 1 − 1) ⇒ VGS 1 = 1.962
                      2
Or
    86.4
Then
I O = K n (VGS1 − VTN ) (1 + λnVGS 1 )
                                2



   = 80 (1.962 − 1) ⎡1 + ( 0.02 )(1.962 ) ⎤
                            2
                    ⎣                     ⎦
Or I 0 = 76.94 μ A
b.       From a PSpice analysis, I 0 = 77.09 μ A for VD 3 = −1 V and I 0 = 77.14 μ A for VD 3 = 3 V. The
change is ΔI 0 ≈ 0.05 μ A or 0.065%.

10.57
a.          For a first approximation,
I REF = 80 = 80 (VGS 4 − 1) ⇒ VGS 4 = 2 V
                                    2


As a second approximation
I REF = 80 = 80 (VGS 4 − 1) ⎡1 + ( 0.02 )( 2 ) ⎤
                                    2
                            ⎣                  ⎦
Or VGS 4 = 1.98 V = VGS 1
I O = K n (VGS 2 − VTN ) (1 + λVGS 2 )
                                2


To a very good approximation I 0 = 80 μ A
b.       From a PSpice analysis, I 0 = 80.00 μ A for VD 3 = −1 V and the output resistance is
R0 = 76.9 MΩ.
Then
For VD = +3 V
       1            4
ΔI 0 =    ⋅ VD 3 =      = 0.052 μ A
       R0          76.9
I 0 = 80.05 μ A

10.58
(a)         VDS 3 ( sat ) = VGS 3 − VTN or VGS 3 = VDS 3 ( sat ) + VTN = 0.2 + 0.8 = 1.0
                   k′ ⎛ W ⎞
            I D = n ⎜ ⎟ (VGS 3 − VTN )
                                           2

                    2⎝L⎠
                      ⎛W ⎞              ⎛W ⎞
            50 = 48 ⎜ ⎟ ( 0.2 ) ⇒ ⎜ ⎟ = 26
                                    2

                      ⎝L⎠               ⎝ L ⎠3
(b)         VGS 5 − VTN = 2 (VGS 3 − VTN )
            VGS 5 = 0.8 + 2 ( 0.2 ) ⇒ VGS 5 = 1.2 V
(c)         VD1 ( min ) = 2VDS ( sat ) = 2 ( 0.2 ) ⇒ VD1 ( min ) = 0.4 V

10.59
(a)
          ′
         kn ⎛ W ⎞
            ⎜ ⎟ = 50 ( 5 ) = 250 μ A / V
                                         2
K n1 =
         2 ⎝ L ⎠1

           1         ⎛          (W / L )1 ⎞
R=                   ⎜1 −                 ⎟
         K n1 I D1   ⎜
                     ⎝          (W / L )2 ⎟
                                          ⎠
                1         ⎛     5 ⎞
  =                       ⎜1 −
                          ⎜       ⎟ = ( 8.944 )( 0.6838 )
         ( 0.25 )( 0.05 ) ⎝    50 ⎟
                                  ⎠
 R = 6.12 k Ω
(b)
V + − V − = VSD 3 ( sat ) + VGS 1
VSD 3 ( sat ) = VSG 3 + VTP
I D1 = 50 = 20 ( 5 )(VSG 3 − 0.5 ) ⇒ VSG 3 = 1.207 V
                                    2


Then VSD 3 ( sat ) = 1.21 − 0.5 = 0.707 V
Also I D1 = 50 = 50 ( 5 )(VGS1 − 0.5 ) ⇒ VGS 1 = 0.9472 V
                                            2


Then (V + − V − )         = 0.71 + 0.947 = 1.66 V
                    min

(c)
               ⎛W ⎞                  ⎛W ⎞
I O1 = 25 = 50 ⎜ ⎟ ( 0.947 − 0.5 ) ⇒ ⎜ ⎟ = 2.5
                                  2

               ⎝ L ⎠5                ⎝ L ⎠5
                ⎛W ⎞                 ⎛W ⎞
I O 2 = 75 = 20 ⎜ ⎟ (1.207 − 0.5 ) ⇒ ⎜ ⎟ = 7.5
                                  2

                ⎝ L ⎠6               ⎝ L ⎠6

10.60
        1
VGS 3 =   ( 5 ) = 1.667 V
        3
        ⎛1          ⎞⎛W ⎞
I REF = ⎜ μ n Cox ⎟ ⎜ ⎟ (VGS 3 − VTN )
                                       2

        ⎝2          ⎠ ⎝ L ⎠3
              ⎛W ⎞                ⎛W ⎞ ⎛W ⎞ ⎛W ⎞
100 = ( 20 ) ⎜ ⎟ (1.667 − 1) ⇒ ⎜ ⎟ = ⎜ ⎟ = ⎜ ⎟ = 11.25
                             2

              ⎝ L ⎠3              ⎝ L ⎠3 ⎝ L ⎠ 4 ⎝ L ⎠5
        ⎛1       ⎞⎛W ⎞
I O1 = ⎜ μ n Cox ⎟ ⎜ ⎟ (VGS 3 − VTN )
                                      2

        ⎝2       ⎠ ⎝ L ⎠1
             ⎛W ⎞
             ⎜ ⎟
     I REF ⎝ L ⎠3
Or         =
      I 01   ⎛W ⎞
             ⎜ ⎟
             ⎝ L ⎠1
⎛ W ⎞ ⎛ I 01      ⎞ ⎛ W ⎞ ⎛ 0.2 ⎞             ⎛W ⎞
⎜ ⎟ =⎜            ⎟⎜ ⎟ = ⎜       ⎟ (11.25 ) ⇒ ⎜ ⎟ = 22.5
⎝ L ⎠1 ⎝ I REF    ⎠ ⎝ L ⎠3 ⎝ 0.1 ⎠            ⎝ L ⎠1
    ⎛ W ⎞ ⎛ I ⎞ ⎛ W ⎞ ⎛ 0.3 ⎞                   ⎛W ⎞
And ⎜ ⎟ = ⎜ 02 ⎟ ⎜ ⎟ = ⎜           ⎟ (11.25 ) ⇒ ⎜ ⎟ = 33.75
    ⎝ L ⎠ 2 ⎝ I REF ⎠ ⎝ L ⎠3 ⎝ 0.1 ⎠            ⎝ L ⎠2

10.61
          24 − VSGP − VGSN
I REF =
                 R
Also I REF = 40 (1)(VGSN − 1.2 )
                                        2



        I REF = 18 (1)(VSGP − 1.2 )
                                      2



Then 40 (VGSN − 1.2 ) = 18 (VSGP − 1.2 )
                           6.325
which yields VSGP =              (VGSN − 1.2 ) + 1.2
                           4.243
Then ⎡ 0.040 (VGSN − 1.2 ) ⎤ ⋅ R = 24 − VGSN − 1.49 (VGSN − 1.2 ) − 1.2
                          2
     ⎣                      ⎦
which yields VGSN = 2.69 V
and VSGP = 3.43 V
                  24 − 3.42 − 2.69
Now I REF =                        ⇒ I REF = 89.4 μ A
                        200
      89.4
I1 =         = 17.9 μ A
        5
I 2 = (1.25 )( 89.4 ) = 112 μ A
I 3 = ( 0.8 )( 89.4 ) = 71.5 μ A
I 4 = 4 ( 89.4 ) = 358 μ A

10.61
a.          g m ( M 0 ) = 2 K n I REF
            gm ( M 0 ) = 2       ( 0.25)( 0.2 ) ⇒ g m ( M 0 ) = 0.447 mA/V
                       1           1
           r0 n =           =                ⇒ r0 n = 250 kΩ
                    λn I REF ( 0.02 )( 0.2 )
                         1           1
           r0 p =             =               ⇒ r0 p = 167 kΩ
                     λ p I REF ( 0.03)( 0.2 )
b.          Av = − g m ( r0 n || r0 p ) = − ( 0.447 )( 250 ||167 ) ⇒ Av = −44.8
c.         RL = 205 ||167 = r0 n || r0 p or RL = 100 kΩ

10.62
We have VGSN = 2.69 V and VSGP = 3.43 V
             10 − 2.69 − 3.43 3.88
So I REF =                     =     ⇒ I REF = 19.4 μ A
                     R           200
Then I1 = ( 0.2 )(19.4 ) = 3.88 μ A
I 2 = (1.25 )(19.4 ) = 24.3 μ A
I 3 = ( 0.8 )(19.4 ) = 15.5 μ A
I 4 = 4 (19.4 ) = 77.6 μ A

10.63

I D2   =
         (W L )2
                    ⋅ I REF =
                                 9
                                   ( 200 ) ⇒ I D 2 = 120 μ A
         (W L )1
                                15


 IO    =
         (W L )4              ⎛ 20 ⎞
                    ⋅ I D 2 = ⎜ ⎟ (120 ) ⇒ I O = 267 μ A
         (W L )3
                              ⎝ 9 ⎠

                ⎛ 40 ⎞
I O = 266.7 = ⎜ ⎟ ( 20 )(VSG 4 − 0.6 )
                                         2

                ⎝  2 ⎠
VSG 4 = 1.416 V
VSD 4 (sat) = 1.416 − 0.6 ⇒ VSD 4 ( sat ) = 0.816 V

10.64
             ⎛ 40 ⎞ ⎛ W ⎞
I REF = 50 = ⎜ ⎟ ⎜ ⎟ (VSG1 − 0.6 )
                                   2

             ⎝ 2 ⎠ ⎝ L ⎠1
        1.75 − VSG1
I REF =              = 50
             R
VSD 2 (sat) = 0.35 = VSG 2 − 0.6 ⇒ VSG 2 = 0.95 V
      1.75 − 0.95
R=                 ⇒ R = 16 K
          0.05
       ⎛ 40 ⎞⎛ W ⎞                  ⎛W ⎞
50 = ⎜ ⎟⎜ ⎟ ( 0.95 − 0.6 ) ⇒ ⎜ ⎟ = 20.4
                                 2

       ⎝ 2 ⎠⎝ L ⎠1                  ⎝ L ⎠1

 I O1 120
      =    =
              W ( )
                 L 2
                     ⇒
                       ⎛W ⎞
                             = 49
I REF   50   ( 20.4 ) ⎜ L ⎟2
                       ⎝ ⎠

 I D 3 25
      =   =
            W  ( )
              L 3   ⎛W ⎞
                  ⇒ ⎜ ⎟ = 10.2
I REF 50 ( 20.4 )   ⎝ L ⎠3
VDS 5 (sat) = 0.35 = VGS 5 − 0.4 ⇒ VGS 5 = 0.75 V
       ⎛ 100 ⎞⎛ W ⎞                      ⎛W ⎞
             ⎟⎜ ⎟ ( 0.75 − 0.4 ) = 150 ⇒ ⎜ ⎟ = 24.5
                                2
IO 2 = ⎜
       ⎝  2 ⎠⎝ L ⎠5                      ⎝ L ⎠5

I D4 I D3
     =      =
               25
                   =
                     W
                       L 4   ( )⎛W ⎞
                            ⇒ ⎜ ⎟ = 4.08
I O 2 I O 2 150      24.5       ⎝ L ⎠4

10.65
For vGS = 0, iD = I DSS (1 + λ vDS )
a.        VD = −5 V, vDS = 5
           iD = ( 2 ) ⎡1 + ( 0.05 )( 5 ) ⎤ ⇒ iD = 2.5 mA
                      ⎣                  ⎦
b.        VD = 0, vDS = 10
           iD = ( 2 ) ⎡1 + ( 0.05 )(10 ) ⎤ ⇒ iD = 3 mA
                      ⎣                    ⎦
c.        VD = 5 V, vDS = 15 V
           iD = ( 2 ) ⎡1 + ( 0.05 )(15 ) ⎤ ⇒ iD = 3.5 mA
                      ⎣                  ⎦

10.66
                         2
            ⎛ V ⎞
I 0 = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                   2
      ⎛ V ⎞
2 = 4 ⎜ 1 − GS ⎟
      ⎝    VP ⎠
VGS      2
    = 1−   = 0.293
VP       4
So VGS = ( 0.293)( −4 ) = −1.17 V
           VS
Then I 0 =     and VS = −VGS
            R
     −V        ( −1.17 )
R = GS = −               ⇒ R = 0.586 kΩ
      I0           2
Finish solution:
See solution

10.66
Completion of solution
Need vDS ≥ vDS ( sat ) = vGS − VP
= −1.17 − ( −4 )
vDS ≥ 2.83 V
So VD ≥ vDS ( sat ) + VS = 2.83 + 1.17 ⇒ VD ≥ 4 V
10.67
                                ⎛V ⎞
a.            I REF = I S 1 exp ⎜ EB1 ⎟
                                ⎝ VT ⎠
                              ⎛I ⎞                   ⎛ 1× 10−3 ⎞
              or VEB1 = VT ln ⎜ REF ⎟ = ( 0.026 ) ln ⎜       −13 ⎟
                                                                   ⇒ VEB1 = 0.5568
                              ⎝ I S1 ⎠               ⎝ 5 × 10 ⎠
                   5 − 0.5568
b.            R1 =             ⇒ R1 = 4.44 kΩ
                        1
c.            From Equations (10.79) and (10.80) and letting VCE 0 = VEC 2 = 2.5 V
                                     ⎛     2.5 ⎞
     −12       ⎛ VI ⎞ ⎡ 2.5 ⎤     −3
                                     ⎜ 1 + 80 ⎟
10         exp ⎜ ⎟ ⎢1 +     ⎥ = 10 ⎜ 0.5568 ⎟
               ⎝ VT ⎠ ⎣ 120 ⎦        ⎜1+
                                     ⎜         ⎟
                                               ⎟
                                     ⎝     80 ⎠
                      ⎛V ⎞            ⎛ 1.03125 ⎞
1.0208333 × 10−12 exp ⎜ I ⎟ = (10−3 ) ⎜         ⎟
                      ⎝ VT ⎠          ⎝ 1.00696 ⎠
Then VI = 0.026 ln (1.003222 × 109 )
So VI = 0.5389 V
                          − (1/ VT )
d.            Av =
                     (1/ VAN ) + (1/ VAP )
                       1
                     −
                                −38.46
              Av = 0.026 =
                    1    1 0.00833 + 0.0125
                      +
                   120 80
              Av = −1846

10.68
                          ⎛I ⎞                   ⎛ 0.5 × 10−3 ⎞
a.            VBE = VT ln ⎜ REF ⎟ = ( 0.026 ) ln ⎜      −12   ⎟ ⇒ VBE = 0.5208
                          ⎝ I S1 ⎠               ⎝ 10         ⎠
                   5 − 0.5208
b.            R1 =              ⇒ R1 = 8.96 kΩ
                       0.5
c.            Modify Eqs. 10.79 and 10.80 to apply to pnp and npn, and set the two equation equal to each
other.
                ⎛ V ⎞⎛ V                  ⎞                     ⎛ VBE ⎞ ⎛ VCE 2 ⎞
I CO = I SO exp ⎜ EBO ⎟⎜ 1 + ECO          ⎟ = I C 2 = I S 2 exp ⎜     ⎟ ⎜1 +    ⎟
                ⎝ VT ⎠⎝      VAP          ⎠                     ⎝ VT ⎠ ⎝ VAN ⎠
              ⎛ V ⎞ ⎛ 2.5 ⎞               ⎛ VBE ⎞ ⎛    2.5 ⎞
5 × 10−13 exp ⎜ EBO ⎟ ⎜ 1 +          −12
                               ⎟ = 10 exp ⎜     ⎟ ⎜1 +     ⎟
              ⎝  VT ⎠ ⎝     80 ⎠          ⎝ VT ⎠ ⎝ 120 ⎠
                     ⎛V ⎞                           ⎛V ⎞
5.15625 × 10−13 exp ⎜ EBO ⎟ = 1.020833 × 10−12 exp ⎜ BE ⎟
                     ⎝  VT ⎠                        ⎝ VT ⎠
    ⎛V ⎞
exp ⎜ EBO ⎟
    ⎝ VT ⎠ = 1.9798 = exp ⎛ VEBO − VBE ⎞
                          ⎜            ⎟
     ⎛V ⎞                 ⎝     VT     ⎠
exp ⎜ BE ⎟
     ⎝ VT ⎠
VEBO = VBE + VT ln (1.9798 ) = 0.5208 + ( 0.026 ) ln (1.9798 )
VEBO = 0.5386 ⇒ VI = 5 − 0.5386 ⇒ VI = 4.461 V
− (1/ VT )
d.              Av =
                       (1/ VAN ) + (1/ VAP )
                         1
                         −
                       0.026 =      −38.46
                Av =
                      1    1   0.00833 + 0.0125
                         +
                     120 80
                Av = −1846

10.69
a.        M1 and M2 matched.
For I REF = I 0 , we have VSD 2 = VSG = VSG 3 = VDS 0 = 2.5 V
For M1 and M3:
        ⎛1         ⎞⎛W ⎞
I REF = ⎜ μ p Cox ⎟ ⎜ ⎟ (VSG + VTP ) (1 + λPVSD )
                                      2

        ⎝2         ⎠ ⎝ L ⎠1
          ⎛W ⎞                                   ⎛W ⎞         ⎛W ⎞ ⎛W ⎞
100 = 10 ⎜ ⎟ ( 2.5 − 1) ⎡1 + ( 0.02 )( 2.5 ) ⎤ ⇒ ⎜ ⎟ = 4.23 = ⎜ ⎟ = ⎜ ⎟
                           2
                             ⎣               ⎦
          ⎝ L ⎠1                                 ⎝ L ⎠1       ⎝ L ⎠3 ⎝ L ⎠ 2
For M0:
       ⎛1        ⎞⎛W ⎞
 I O = ⎜ μ n Cox ⎟ ⎜ ⎟ (VGS − VTN ) (1 + λnVDS )
                                    2

       ⎝2        ⎠ ⎝ L ⎠0
          ⎛W ⎞                                 ⎛W ⎞
100 = 20 ⎜ ⎟ ( 2 − 1) ⎡1 + ( 0.02 )( 2.5 ) ⎤ ⇒ ⎜ ⎟ = 4.76
                        2
                          ⎣                ⎦
          ⎝ L ⎠0                               ⎝ L ⎠0
b.
                   1                1
r0 n = r0 p =            =                      = 500 kΩ
                  λ I0        ( 0.02 )( 0.1)
                    ⎛1        ⎞⎛W ⎞
g m = 2 K n I O = 2 ⎜ μ n Cox ⎟ ⎜ ⎟ I O
                    ⎝ 2       ⎠ ⎝ L ⎠o
     =2        ( 0.02 )( 4.76 )( 0.1)
g m = 0.195 mA/V
 Av = − g m ( r0 n || r0 p ) = − ( 0.195 )( 500 || 500 ) ⇒ Av = −48.8

10.70
               I REF = K p1 (VSG + VTP )
                                                2
a.
                100 = 100 (VSG − 1) ⇒ VSG = 2 V
                                            2


b.       From Eq. 10.89
     ⎡1 + λ p (V + − VSG ) ⎤ K (V − V )2
VO = ⎣                     ⎦− n I        TN

            λn + λ p         I REF ( λn + λ p )
   ⎡1 + ( 0.02 )(10 − 2 ) ⎤
                          ⎦ − 100 (VI − 1)
                                                       2

5= ⎣
        0.02 + 0.02          100 ( 0.02 + 0.02 )
               (VI − 1)
                          2

5 = 29 −
                 0.04
(VI − 1)
           2
               = 0.96
VI = 1.98 V
c.           Av = − g m ( r0 n || r0 p )
                               1                 1
             r0 n = r0 p =             =                  = 500 kΩ
                             λ I REF       ( 0.02 )( 0.1)
             g m = 2 K n I REF = 2    ( 0.1)( 0.1) = 0.2 mA / V
             Av = − ( 0.2 )( 500 || 500 ) ⇒ Av = −50

10.71
       5 − 0.6 5 − 0.6
I REF =         =          = 0.22 mA
         R1          20
From Eq. 10.96
              ⎛I ⎞                  0.22
           −⎜ C ⎟                 −
Av =          ⎝ VT ⎠       =        0.026
     ⎛ IC       1    I C ⎞ 0.22 + 1 + 0.22
     ⎜      +      +     ⎟
     ⎝ VAN RL VAP ⎠ 140 RL                90
                  −8.4615              −8.4615
      =                            =
                      1                        1
          0.0015714 +    + 0.002444 0.004016 +
                      RL                       RL
(a)          RL = ∞, Av = −2107
(b)          RL = 250 K, Av = −1056
(c)          RL = 100 K, Av = −604

10.72
           5 − 0.6
I REF =            = 0.1257 mA
             35
Then
I CO = 2 I REF = 0.2514 mA
From Eq. 10.96
               −0.2514
                0.026                   −9.6692
Av =                         =
      0.2514 0.2514 1                                 1
                +       +      0.002095 + 0.0031425 +
        120         80    RL                          RL
             −9.6692
Av =
                      1
          0.0052375 +
                     RL
(a)          RL = ∞ Av = −1846
(b)          RL = 250 K, Av = −1047

10.73
(a)        To a good approximation, output resistance is the same as the widlar current source.
 R0 = r02 ⎡1 + g m 2 ( rπ 2 || RE ) ⎤
          ⎣                         ⎦
(b)          Av = − g m 0 ( r0 || RL || R0 )

10.74
Output resistance of Wilson source
β r03
R0 ≅
         2
Then
 Av = − g m ( r0 || R0 )
      V         80
r03 = AP =           = 400 kΩ
      I REF 0.2
        VAN 120
r0 =         =    = 600 kΩ
        I REF 0.2
         I REF    0.2
gm =           =       = 7.692 mA/V
          VT     0.026
           ⎡    (80 )( 400 ) ⎤
Av = −7.69 ⎢600              ⎥ = −7.69 [ 600 ||16, 000] ⇒ Av = −4448
           ⎢
           ⎣         2       ⎥
                             ⎦

10.75
(a)           I D 2 = I D 0 = I REF = 200 μ A
                          1                 1
For M 2 ; ro 2 =                  =                   = 250 K
                       λP I D 2       ( 0.02 )( 0.2 )
                                  ⎛ 0.04 ⎞
          gm2 = 2 K P I D2 = 2 ⎜          ⎟ ( 35 )( 0.2 )
                                  ⎝ 2 ⎠
          g m 2 = 0.748 mA/V
                   1           1
For M 0 ; r∞ =          =                 = 333 K
                 λn I Do ( 0.015 )( 0.2 )
                          ⎛ 0.08 ⎞
                 g mo = 2 ⎜      ⎟ ( 20 )( 0.2 ) ⇒ g mo = 0.80 mA/V
                          ⎝ 2 ⎠
(b)           Av = − g mo ( ro 2 || roo ) = − ( 0.80 )( 250 || 333)
              Av = −114.3
               Want Av = −57.15 = −0.80 (142.8 || RL )
(c)                                   142.8 RL
              142.8 || RL = 71.375 =            ⇒ RL = 143 K
                                     142.8 + RL

10.76
Assume M1, M2 matched
  I REF = I D 2 = I Do = 200 μ A
               1            1
     ro 2 =          =                = 250 K
            λ p I D 2 ( 0.02 )( 0.2 )
                1            1
      roo =           =                 = 333 K
              λn I D 0 ( 0.015 )( 0.2 )
       Av = − g mo ( ro 2 roo )
 −100 = − g mo ( 250 333) ⇒ g mo = 0.70 mA/V

               ⎛ 0.08 ⎞⎛ W ⎞
      g mo = 2 ⎜      ⎟⎜ ⎟ ( 0.2 ) = 0.70
               ⎝ 2 ⎠⎝ L ⎠0
⎛W ⎞
⎜ ⎟ = 15.3
⎝ L ⎠0
⎛ k ′ ⎞⎛ W ⎞ ⎛ k ′ ⎞ ⎛ W ⎞
Now ⎜ n ⎟ ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟
                     p

    ⎝ 2 ⎠ ⎝ L ⎠0 ⎝ 2 ⎠ ⎝ L ⎠2
    ⎛ 80 ⎞       ⎛ 40 ⎞⎛ W ⎞
    ⎜ ⎟ (15.3) = ⎜ ⎟⎜ ⎟
    ⎝ 2⎠         ⎝ 2 ⎠⎝ L ⎠ 2
           ⎛W ⎞ ⎛W ⎞
           ⎜ ⎟ = ⎜ ⎟ = 30.6
           ⎝ L ⎠ 2 ⎝ L ⎠1

10.77




Since Vsg 3 = 0, the circuit becomes
Vx − Vsg 2
          ′
I x = − g mVsg 2 +                 and Vsg 2 = I x ro 3
                        r02
Then
    ⎛              r ⎞ V
            ′
I x ⎜ 1 + g m ro3 + o3 ⎟ = x
    ⎝              ro 2 ⎠ ro 2
so that
Vx             ⎛              r ⎞
                      ′
   = Ro = ro 2 ⎜1 + g m ro 3 + o 3 ⎟
Ix             ⎝              ro 2 ⎠
or
Ro = ro 2 + ro 3 (1 + g m ro 2 )
                        ′
        vo
Av =       = − g m1 ( ro1 Ro )
        vi
Now
g m1 = 2    ( 0.050 )( 20 )( 0.10 ) = 0.632 mA / V
           1           1
ro1 =          =                 = 500 k Ω
        λn I DQ ( 0.02 )( 0.10 )
  ′
g m = 2 K p I DQ = 2          ( 0.020 )(80 )( 0.1) = 0.80 mA / V
                   1           1
ro 2 = ro 3 =           =                = 500 k Ω
                λ p I DQ ( 0.020 )( 0.1)
Then
Ro = 500 + 500 ⎡1 + ( 0.8 )( 500 ) ⎤ ⇒ 201 M Ω
               ⎣                   ⎦
Av = − ( 0.632 ) ( 500 201000 ) ⇒ Av = −315

10.78
From Eq. 10.105
                 2
             − gm
 Av =
         1         1
               +
      ro3 ro 4 ro1 ro 2
        ⎛ k′ ⎞⎛W ⎞
g m = 2 ⎜ n ⎟ ⎜ ⎟ I D1
        ⎝ 2 ⎠⎝ L ⎠
     =2    ( 0.050 ) ( 20 ) ( 0.08 )
g m = 0.5657 mA / V
         1           1
 ro =        =                 = 625 K
        λ I D ( 0.02 )( 0.08 )
        − ( 0.5657 )
                         2
                              −0.3200
Av =                   =
        1
               +
                   1     2 ( 0.00000256 )
     ( 625) ( 625)
             2       2


Av = −62,500

10.79
Vπ 2 Vπ 2              V − ( −Vπ 2 )
(1)           g m1Vi =       +     + g m 2Vπ 2 + O
                         rπ 2 ro1                  ro 2
              VO VO − ( −Vπ 2 )
(2)                +            + g m 2Vπ 2 = 0
              RO 3   ro 2
                            ⎛ 1     1       1 ⎞ V
(1)           g m1Vi = Vπ 2 ⎜     + + gm2 + ⎟ + O
                            ⎝ rπ 2 ro1     ro 2 ⎠ ro 2
                 ⎛ 1     1 ⎞      ⎛ 1          ⎞
(2)           VO ⎜     + ⎟ + Vπ 2 ⎜      + gm2 ⎟ = 0
                 ⎝ RO 3 ro 2 ⎠    ⎝ ro 2       ⎠
         1
g m >>
         ro
                            ⎛ 1 + β ⎞ VO
(1)           g m1Vi = Vπ 2 ⎜       ⎟+
                            ⎝ rπ 2 ⎠ ro 2
                 ⎛ 1     1 ⎞
(2)           VO ⎜     + ⎟ + Vπ 2 ⋅ g m 2 = 0
                 ⎝ RO 3 ro 2 ⎠
                         VO    ⎛ 1     1 ⎞
(3)           Vπ 2 = −         ⎜     + ⎟
                         gm2   ⎝ RO 3 ro 2 ⎠
Then
                    VO ⎛ 1      1 ⎞⎛ 1 + β ⎞ VO
(1) g m1Vi = −         ⎜     + ⎟⎜          ⎟+
                    gm2⎝ RO 3 ro 2 ⎠⎝ rπ 2 ⎠ ro 2
                     ⎛ 1      1 ⎞ ⎛ 1 + β ⎞ VO
               = −VO ⎜     + ⎟⎜           ⎟+
                     ⎝ RO 3 ro 2 ⎠ ⎝ β ⎠ ro 2
              VO ⎛ 1 + β ⎞
               ≈−  ⎜      ⎟
             RO 3 ⎝ β ⎠
      VO               ⎛ β ⎞
         = − g m1 RO 3 ⎜     ⎟
      Vi               ⎝1+ β ⎠
From Equation (10.20) RO 3 ≈ β rO 3
So
VO − g m1ro3 β 2                 0.25
Av =      =                 gm =             = 9.615 mA/V
       Vi    1+ β                      0.026
                                       80
                            ro3 =          = 320 K
                                      0.25
       − ( 9.615 )( 320 )(120 )
                                  2

Av =                                  = −366,165
                 121

More Related Content

PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF

Similar to Ch10s (20)

PDF
Ch17p 3rd Naemen
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
Ch17s 3rd Naemen
PDF
PDF
PDF
PDF
PDF
PDF
Ch17p 3rd Naemen
Ch17s 3rd Naemen
Ad

More from Bilal Sarwar (6)

DOCX
Rameysoft-ftp client server, and others+
DOCX
Ramey soft
DOCX
Ramey soft
PDF
PDF
PDF
Rameysoft-ftp client server, and others+
Ramey soft
Ramey soft
Ad

Recently uploaded (20)

PPTX
ILO Code 174 .pptx
PDF
Module-3-Week005-to-Week006-PPT.pdf hahahgs
PPTX
G.A.M.E. O.N.! (General — Art — Mythology — Entertainment — Obscure Naata) [2...
PDF
Overlord Volume 06 - The Men in the Kingdom Part II.pdf
PDF
Plot Dive – Movie Plots, Reviews & Celeb Insights
PDF
D009 - Lahoo Ke Pyaase. its a hindi comics
PPTX
703293-Porters Five Forces Model With Example PPT.pptx
PPTX
Difference Between Saving slides And Investment Slides.pptx
PDF
WKA #29: "FALLING FOR CUPID" TRANSCRIPT.pdf
PDF
Watch Eddington (2025) – A Town Torn in Two
PPTX
Social Awareness on Municipal Solid Waste.pptx
PPTX
SWweredddddaregqrgWWEQEwqdewf final.pptx
PDF
Lucky_MangA chapter 2. Story and Art by Enaji Studio
DOC
UNG毕业证学历认证,阿莱恩特国际大学毕业证文凭证书
PDF
Fortnite: Eminem Battles Robot Slim Shady
PPTX
continuous_steps_relay.pptx. Another activity
PDF
KarolG CarRace Sequence...why a 40 character minimum for a title?
PPTX
Health_System_in_India_Oasrganization_BSc_Nursing.pptx
PPTX
AEN 302 - Brinjal, Bhendi, Tomato Pests - PPT 1 - Agri Junction.pptx.pptx
PPTX
The Pearl - project of Advanced Reading course
ILO Code 174 .pptx
Module-3-Week005-to-Week006-PPT.pdf hahahgs
G.A.M.E. O.N.! (General — Art — Mythology — Entertainment — Obscure Naata) [2...
Overlord Volume 06 - The Men in the Kingdom Part II.pdf
Plot Dive – Movie Plots, Reviews & Celeb Insights
D009 - Lahoo Ke Pyaase. its a hindi comics
703293-Porters Five Forces Model With Example PPT.pptx
Difference Between Saving slides And Investment Slides.pptx
WKA #29: "FALLING FOR CUPID" TRANSCRIPT.pdf
Watch Eddington (2025) – A Town Torn in Two
Social Awareness on Municipal Solid Waste.pptx
SWweredddddaregqrgWWEQEwqdewf final.pptx
Lucky_MangA chapter 2. Story and Art by Enaji Studio
UNG毕业证学历认证,阿莱恩特国际大学毕业证文凭证书
Fortnite: Eminem Battles Robot Slim Shady
continuous_steps_relay.pptx. Another activity
KarolG CarRace Sequence...why a 40 character minimum for a title?
Health_System_in_India_Oasrganization_BSc_Nursing.pptx
AEN 302 - Brinjal, Bhendi, Tomato Pests - PPT 1 - Agri Junction.pptx.pptx
The Pearl - project of Advanced Reading course

Ch10s

  • 1. Chapter 10 Problem Solutions 10.1 0 − 2Vγ − V − a. I1 = I 2 = R1 + R2 2Vγ + I 2 R2 = VBE + I C R3 2Vγ + R2 R1 + R2 ( −2Vγ − V − ) = VBE + IC R3 1⎧ ⎪ − ⎛ R2 ⎞ ⎫ ⎪ IC = ⎨2Vγ − ( 2Vγ + V ) ⎜ ⎟ − VBE ⎬ ⎪ R3 ⎩ ⎝ R1 + R2 ⎠ ⎪ ⎭ b. Vγ = VBE and R1 = R2 1 ⎧ 1 ⎫ ⎨2Vγ − ( 2Vγ + V ) − VBE ⎬ − IC = R3 ⎩ 2 ⎭ −V − or I C = 2 R3 − ( −10 ) c. I C = 2 mA = ⇒ R3 = 2.5 kΩ 2 R3 −2 ( 0.7 ) − ( −10 ) I1 = I 2 = 2 mA = ⇒ R1 + R2 = 4.3 kΩ ⇒ R1 = R2 = 2.15 kΩ R1 + R2 10.2 ⎛I ⎞ (a) VBE1 = VT ln ⎜ C1 ⎟ ⎝ IS ⎠ ⎛ 10 × 10−6 ⎞ (i) I REF = I C1 = 10 μ A, VBE1 = ( 0.026 ) ln ⎜ −14 ⎟ = 0.5388 V ⎝ 10 ⎠ I O = 10 μ A ⎛ 100 × 10−6 ⎞ (ii) I REF = I C1 = 100 μ A, VBE1 = ( 0.026 ) ln ⎜ −14 ⎟ = 0.5987 V ⎝ 10 ⎠ I O = 100 μ A ⎛ 10−3 ⎞ (iii) I REF = I C1 = 1 mA, VBE1 = ( 0.026 ) ln ⎜ −14 ⎟ = 0.6585 V ⎝ 10 ⎠ I O = 1 mA I REF (b) IO = 2 1+ β 10 ⎛I ⎞ (i) IO = ⇒ I O = 9.615 μ A VBE1 = VBE 2 = VT ln ⎜ O ⎟ 2 ⎝ IS ⎠ 1+ 50 ⎛ 9.615 × 10−6 ⎞ = ( 0.026 ) ln ⎜ −14 ⎟ ⎝ 10 ⎠ = 0.5378 V 100 ⎛ 96.15 × 10−6 ⎞ (ii) IO = ⇒ I O = 96.15 μ A VBE1 = ( 0.026 ) ln ⎜ ⎟ 2 ⎝ 10 −14 ⎠ 1+ 50 = 0.5977 V
  • 2. 1 ⎛ 0.9615 × 10−3 ⎞ (iii) IO = ⇒ I O = 0.9615 mA VBE1 = ( 0.026 ) ln ⎜ ⎟ 2 ⎝ 10−14 ⎠ 1+ 50 = 0.6575 V 10.3 V + − VBE ( on ) − V − 3 − 0.7 − ( −3) I REF = ⇒ 0.250 = R1 R1 R1 = 21.2 K I REF 0.250 I C1 = I C 2 = = ⇒ I C1 = I C 2 = 0.2419 mA 2 2 1+ 1+ β 60 I B1 = I B 2 = 4.03 μ A 10.4 V + − VBE ( on ) − V − 5 − 0.7 − ( −5 ) I REF = = R1 18.3 I REF = 0.5082 mA I REF 0.5082 I C1 = I C 2 = = ⇒ I C1 = I C 2 = 0.4958 mA 2 2 1+ 1+ β 80 I B1 = I B 2 = ( 6.198 μ A ) 10.5 V + − VBE ( on ) − V − 15 − 0.7 − ( −15 ) (a) I REF = or R1 = ⇒ R1 = 58.6 k Ω R1 0.5 V + − VBE ( on ) − V − 0 − 0.7 − ( −15 ) (b) R1 = = ⇒ R1 = 28.6 k Ω I REF 0.5 Advantage: Requires smaller resistance. (c) For part (a): 29.3 I O ( max ) = = 0.526 mA ( 58.6 )( 0.95 ) 29.3 I O ( min ) = = 0.476 mA ( 58.6 )(1.05 ) ΔI O = 0.526 − 0.476 = 0.05 mA ⇒ ±5% For part (b): 14.3 I O ( max ) = = 0.526 mA ( 28.6 )( 0.95) 14.3 I O ( min ) = = 0.476 mA ( 28.6 )(1.05 ) ΔI O = 0.05 mA ⇒ ±5% 10.6 ⎛ 2⎞ ⎛ 2 ⎞ a. I REF = I 0 ⎜ 1 + ⎟ = 2 ⎜ 1 + ⎟ or I REF = 2.04 mA ⎝ β⎠ ⎝ 100 ⎠ 15 − 0.7 R1 = ⇒ R1 = 7.01 kΩ 2.04
  • 3. VA 80 b. r0 = = = 40 kΩ I0 2 ΔI 0 1 ⎛ 1 ⎞ = ⇒ ΔI 0 = ⎜ ⎟ ( 9.3) = 0.2325 mA ΔVCE r0 ⎝ 40 ⎠ ΔI 0 0.2325 ΔI = ⇒ 0 = 11.6% I0 2 I0 10.7 I 0 = nI C1 I C1 I0 I REF = I C1 + I B1 + I B 2 = I C1 + + β β ⎛ 1 n⎞ ⎛ 1+ n ⎞ I REF = I C1 ⎜ 1 + + ⎟ = I C1 ⎜ 1 + ⎟ ⎝ β β⎠ ⎝ β ⎠ I0 ⎛ 1 + n ⎞ nI REF = ⎜1 + ⎟ or I 0 = n⎝ β ⎠ ⎛ 1+ n ⎞ ⎜1 + ⎝ β ⎟⎠ 10.8 I REF ⎛ 2 ⎞ IO = ⇒ I REF = ( 0.20 ) ⎜ 1 + ⎟ = 0.210 mA 2 ⎝ 40 ⎠ 1+ β 5 − 0.7 4.3 R1 = = ⇒ R1 = 20.5 K I REF 0.21 10.9 5 − 0.7 a. I REF = = 0.239 mA 18 0.239 I0 = ⇒ I 0 = 0.230 mA 2 1+ 50 VA 50 b. r0 = = = 218 kΩ I 0 0.230 1 ⎛ 1 ⎞ ΔI 0 = ⋅ ΔVEC = ⎜ ⎟ (1.3) = 0.00597 mA ⇒ I 0 = 0.236 mA r0 ⎝ 217 ⎠ ⎛ 1 ⎞ c. ΔI 0 = ⎜ ⎟ ( 3.3) = 0.01516 mA ⇒ I 0 = 0.245 mA ⎝ 217 ⎠ 10.10 5 − 0.7 − ( −5 ) a. I REF = 1 = ⇒ R1 = 9.3 kΩ R1 b. I 0 = 2 I REF ⇒ I 0 = 2 mA 5 − 0.7 c. For VEC 2 ( min ) = 0.7 ⇒ RC 2 = ⇒ RC 2 = 2.15 kΩ 2 10.11
  • 4. I O = 0.50 mA ⇒ I OA = I OB = 0.25 mA ⎛ 3⎞ ⎛ 3 ⎞ I REF = I OA ⎜ 1 + ⎟ = 0.25 ⎜ 1 + ⎟ ⎝ β⎠ ⎝ 60 ⎠ I REF = 0.2625 mA 2.5 − 0.7 R1 = ⇒ R1 = 6.86 K 0.2625 10.12 10 − 0.7 R1 = = 37.2 K 0.25 10.13 I 2 = 2 I1 and I3 = 3I1 (a) I 2 = 1.0 mA, I 3 = 1.5 mA (b) I1 = 0.25 mA, I 3 = 0.75 mA (c) I1 = 0.167 mA, I 2 = 0.333 mA 10.14 a.
  • 5. IE3 I 0 = I C1 and I REF = I C1 + I B 3 = I C1 + 1+ β VBE 2 I C1 VBE I E 3 = I B1 + I B 2 + = + R2 β R2 2 I C1 VBE I REF = I C1 + + β (1 + β ) (1 + β ) R2 VBE ⎛ 2 ⎞ I REF − = I 0 ⎜1 + ⎜ β (1 + β ) ⎟ ⎟ (1 + β ) R2 ⎝ ⎠ VBE I REF − (1 + β ) R2 I0 = ⎛ 2 ⎞ ⎜1 + ⎜ β (1 + β ) ⎟ ⎟ ⎝ ⎠ ⎛ 2 ⎞ 0.7 b. I REF = ( 0.70 ) ⎜ 1 + ⎜ ( 80 )( 81) ⎟ + ( 81)(10 ) ⎟ ⎝ ⎠ I REF = 0.700216 + 0.000864 10 − 2 ( 0.7 ) I REF = 0.7011 mA = ⇒ R1 = 12.27 kΩ R1 10.15 a. I ES I 0i = I CR and I REF = I CR + I BS = I CR + 1+ β I ES = I BR + I B1 + I B 2 + ... + I BN = (1 + N ) I BR (1 + N ) I CR = β (1 + N ) I CR Then I REF = I CR + β (1 + β ) I REF or I 0i = ⎛ (1 + N ) ⎞ ⎜1 + β (1 + β ) ⎟ ⎜ ⎟ ⎝ ⎠ ⎡ 6 ⎤ b. I REF = ( 0.5 ) ⎢1 + ⎥ = 0.5012 mA ⎢ ( 50 )( 51) ⎥ ⎣ ⎦ 5 − 2 ( 0.7 ) − ( −5 ) R1 = ⇒ R1 = 17.16 kΩ 0.5012 10.16
  • 6. 2 ⎞ ⎡ 2 ⎤ ⎜ β (1 + β ) ⎟ = ( 0.5 ) ⎢1 + ( 50 )( 51) ⎥ ⇒ I REF = 0.5004 mA I REF = I 0 ⎜ 1 + ⎟ ⎢ ⎥ ⎝ ⎠ ⎣ ⎦ 5 − 2 ( 0.7 ) − ( −5 ) R1 = ⇒ R1 = 17.19 kΩ 0.5004 10.17 1 I 0 = I REF ⋅ ⎛ 2 ⎞ ⎜1 + ⎜ β (2 + β ) ⎟ ⎟ ⎝ ⎠ For I 0 = 0.8 mA ⎛ 2 ⎞ I REF = ( 0.8 ) ⎜ 1 + ⎜ 25 ( 27 ) ⎟ ⇒ I REF = 0.8024 mA ⎟ ⎝ ⎠ 18 − 2 ( 0.7 ) R1 = ⇒ R1 = 20.69 kΩ 0.8024 10.18
  • 7. The analysis is exactly the same as in the text. We have 1 I 0 = I REF ⋅ ⎛ 2 ⎞ ⎜1 + ⎜ β (2 + β ) ⎟ ⎟ ⎝ ⎠ 10.19 2 I 0 = 2 mA, I B 2 = = 0.0267 mA 75 1 I C1 = 1 mA, I B1 = = 0.0133 mA 75 I E 3 = I B1 + I B 2 = 0.0133 + 0.0267 = 0.04 mA I E3 0.04 I B3 = = = 0.000526 mA 1+ β 76 I REF = I C1 + I B 3 ⇒ I REF = 1.000526 ≈ 1 mA 10 − 2 ( 0.7 ) 8.6 R1 = = ⇒ R1 = 8.6 kΩ I REF 1 10.20 (a) β ro3 Assuming RO ≈ 2 VA V 100 rO 3 = = A = = 400 K I O I REF 0.25 (100 )( 400 ) RO = ⇒ RO = 20 MΩ 2 (b) ΔV ΔV 5 RO = ⇒ ΔI O = = ΔI O 20 MΩ 20 MΩ ΔI O = 0.25 μ A 10.21 V + − VBE1 − V − 5 − 0.7 I REF = = R1 9.3 I REF = 0.4624 mA VT ⎛ I REF ⎞ 0.026 ⎛ 0.4624 ⎞ IO = ln ⎜ ⎟= ln ⎜ ⎟ RE ⎝ I O ⎠ 1.5 ⎝ IO ⎠ ⎛ 0.4624 ⎞ I O = 0.01733ln ⎜ ⎟ ⎝ IO ⎠ By trial and error I O 41.7 μ A VBE 2 = 0.7 − I O RE VBE 2 = 0.7 − ( 0.0417 )(1.5 ) VBE 2 = 0.6375 V 10.22 (a)
  • 8. V + − VBE1 − V − 5 − 0.7 − ( −5 ) I REF = = ⇒ I REF = 93 μ A R1 100 ⎛I ⎞ ⎛ 93 × 10−3 mA ⎞ I O RE = VT ln ⎜ REF ⎟ ⇒ I O (10 ) = 0.026 ln ⎜ ⎟ ⎝ IO ⎠ ⎝ IO ⎠ By trial and error, I O ≅ 6.8 μ A Ro = ro 2 (1 + g m 2 RE ) ′ Now 30 ro 2 = = 4.41 M Ω 6.8 0.0068 gm2 = = 0.2615 mA / V 0.026 (100 )( 0.026 ) rπ 2 = = 382.4 k Ω 0.0068 So ′ RE = rπ 2 || RE = 382 || 10 = 9.74 k Ω Then Ro = 4.41 ⎡1 + ( 0.262 )( 9.74 ) ⎤ ⇒ Ro = 15.6 M Ω ⎣ ⎦ (b) VBE1 − VBE 2 = I o RE = ( 0.0068 )(10 ) ⇒ VBE1 − VBE 2 = 0.068 V 10.23 I ΔI 0 = ⋅ ΔVC R0 R0 = r02 (1 + g m 2 RE ) ′ V 80 r02 = A = = 11.76 MΩ I 0 6.8 I 0 0.0068 gm2 = = = 0.2615 mA/V VT 0.026 (80 )( 0.026 ) rπ 2 = = 306 kΩ 0.0068 ′ RE = RE rπ 2 = 10 306 = 9.68 K R0 = (11.76 ) ⎡1 + ( 0.2615 )( 9.68 ) ⎤ = 41.54 MΩ ⎣ ⎦ Now ⎛ 1 ⎞ ΔI 0 = ⎜ ⎟ ( 5 ) ⇒ ΔI 0 = 0.120 μ A ⎝ 41.54 ⎠ 10.24 5 − 0.7 − ( −5 ) (a) I REF = = 0.50 R1 R1 = 18.6 K ⎛I ⎞ I O RE = VT ln ⎜ REF ⎟ ⎝ IO ⎠ 0.026 ⎛ 0.50 ⎞ RE = ln ⎜ ⎟ 0.050 ⎝ 0.050 ⎠ RE = 1.20 K
  • 9. (b) RO = rc 2 [1 + RE g m 2 ] ′ ′ RE = RE rπ 2 ( 75 )( 0.026 ) 0.050 rπ 2 = = 39 K gm2 = = 1.923 mA/V 0.050 0.026 VA 100 ro 2 = = ⇒ 2 MΩ ′ RE = 1.20 39 = 1.164 K I O 0.05 RO = 2 ⎡1 + (1.164 )(1.923) ⎤ ⇒ RO = ( 6.477 ) MΩ ⎣ ⎦ ΔV 5 (c) ΔI O = = = 0.772 μ A RO 6.477 ΔI O 0.772 × 100% = × 100 = 1.54% IO 50 10.25 Let R1 = 5 k Ω, Then 12 − 0.7 − ( −12 ) I REF = ⇒ I REF = 4.66 mA 5 Now ⎛I ⎞ 0.026 ⎛ 4.66 ⎞ I O RE = VT ln ⎜ REF ⎟ ⇒ RE = ln ⎜ ⎟ ⇒ RE ≅ 1 k Ω ⎝ IO ⎠ 0.10 ⎝ 0.10 ⎠ 10.26 ⎛I ⎞ VBE = VT ln ⎜ REF ⎟ ⎝ IS ⎠ ⎛ 10−3 ⎞ 0.7 = ( 0.026 ) ln ⎜ ⎟ ⇒ I S = 2.03 × 10 A −15 ⎝ IS ⎠ ⎛ 2 × 10−3 ⎞ At 2 mA, VBE = ( 0.026 ) ln ⎜ −15 ⎟ ⎝ 2.03 × 10 ⎠ = 0.718 V 15 − 0.718 R1 = ⇒ R1 = 7.14 kΩ 2 V ⎛ I ⎞ 0.026 ⎛ 2 ⎞ RE = T ln ⎜ REF ⎟ = ⋅ ln ⎜ ⎟ ⇒ RE = 1.92 kΩ I 0 ⎝ I 0 ⎠ 0.050 ⎝ 0.050 ⎠ 10.27 a. 10 − 0.7 I REF ≈ = 0.465 mA 20 Let V − = 0 ⎛I ⎞ VBE ≅ VT ln ⎜ REF ⎟ ⎝ IS ⎠ ⎛ 10−3 ⎞ 0.7 = ( 0.026 ) ln ⎜ ⎟ ⇒ I S = 2.03 ×10 A −15 ⎝ IS ⎠ Then ⎛ 0.465 × 10−3 ⎞ VBE ≅ ( 0.026 ) ln ⎜ −15 ⎟ = 0.680 V ⎝ 2.03 × 10 ⎠ Then
  • 10. 10 − 0.680 I REF ≅ ⇒ I REF = 0.466 mA 20 VT ⎛ I REF ⎞ 0.026 ⎛ 0.466 ⎞ b. RE = ln ⎜ ⎟= ⋅ ln ⎜ ⎟ ⇒ RE = 400Ω I0 ⎝ I0 ⎠ 0.10 ⎝ 0.10 ⎠ 10.28 10 − 0.7 − ( −10 ) I REF ≈ = 0.4825 mA 40 ⎛I ⎞ VBE ≅ VT ln ⎜ REF ⎟ ⎝ IS ⎠ ⎛ 10−3 ⎞ 0.7 = ( 0.026 ) ln ⎜ ⎟ ⇒ I S = 2.03 × 10 A −15 ⎝ IS ⎠ Now ⎛ 0.4825 × 10−3 ⎞ VBE = ( 0.026 ) ln ⎜ −15 ⎟ = 0.681 V ⎝ 2.03 × 10 ⎠ VBE1 = 0.681 V So 10 − 0.681 − ( −10 ) I REF ≅ ⇒ I REF = 0.483 mA 40 ⎛I ⎞ I 0 RE = VT ln ⎜ REF ⎟ ⎝ I0 ⎠ ⎛ 0.483 ⎞ I 0 (12 ) = ( 0.026 ) ln ⎜ ⎟ ⎝ I0 ⎠ By trial and error. ⇒ I 0 ≅ 8.7 μ A VBE 2 = VBE1 − I 0 RE = 0.681 − ( 0.0087 )(12 ) ⇒ VBE 2 = 0.5766 V 10.29 VBE1 + I REF RE1 = VBE 2 + I 0 RE 2 VBE1 − VBE 2 = I 0 RE 2 − I REF RE1 For matched transistors ⎛I ⎞ VBE1 = VT ln ⎜ REF ⎟ ⎝ IS ⎠ ⎛I ⎞ VBE 2 = VT ln ⎜ 0 ⎟ ⎝ IS ⎠ ⎛I ⎞ Then VT ln ⎜ REF ⎟ = I 0 RE 2 − I REF RE1 ⎝ I0 ⎠ Output resistance looking into the collector of Q2 is increased. 10.30 V + − VBE1 − V − 5 − 0.7 − ( −5 ) (a) I REF = = = 0.3174 mA R1 + RE1 27.3 + 2 I O = I REF = 0.3174 mA (b) Using the same relation as for the widlar current source.
  • 11. RO = ro 2 ⎡1 + g m 2 ( RE rπ 2 ) ⎤ ⎣ ⎦ VA 80 0.3174 ro 2 = = = 252 K gm2 = = 12.21 mA/V I O 0.3174 0.026 (100 )( 0.026 ) rπ 2 = = 8.192 K RE || rπ 2 = 2 || 8.192 = 1.608 K 0.3174 RO = 252 ⎡1 + (12.21)(1.608 ) ⎤ ⇒ RO = 5.2 MΩ ⎣ ⎦ (c) 5 − 0.7 − ( −5 ) I O = I REF = = 0.3407 mA 27.3 V 80 RO = ro 2 = A = ⇒ RO = 235 K I O 0.3407 10.31 Assume all transistors are matched. a. 2VBE1 = VBE 3 + I 0 RE ⎛I ⎞ VBE1 = VT ln ⎜ REF ⎟ ⎝ IS ⎠ ⎛I ⎞ VBE 3 = VT ln ⎜ 0 ⎟ ⎝ IS ⎠ ⎛I ⎞ ⎛I ⎞ 2VT ln ⎜ REF ⎟ − VT ln ⎜ 0 ⎟ = I 0 RE ⎝ IS ⎠ ⎝ IS ⎠ ⎡ ⎛I ⎞ 2 ⎛I ⎞⎤ VT ⎢ ln ⎜ REF ⎟ − ln ⎜ 0 ⎟ ⎥ = I 0 RE ⎢ ⎝ IS ⎠ ⎣ ⎝ IS ⎠⎥⎦ ⎛ I 2 REF ⎞ VT ln ⎜ ⎟ = I 0 RE ⎝ I0 I S ⎠ b. ⎛ 0.7 ⎞ VBE = 0.7 V at 1 mA ⇒ 10−3 = I S exp ⎜ −15 ⎟ or I S = 2.03 × 10 A ⎝ 0.026 ⎠ ⎛ 0.1× 10−3 ⎞ VBE at 0.1 mA ⇒ VBE = ( 0.026 ) ln ⎜ −15 ⎟ = 0.640 V ⎝ 2.03 × 10 ⎠ 0.640 Since I 0 = I REF , then VBE = I 0 RE ⇒ RE = or RE = 6.4 kΩ 0.1 10.32 (a) 5 − 0.7 − ( −5 ) I REF = = 0.80 mA R1 R1 = 11.6 K 0.026 ⎛ 0.80 ⎞ RE 2 = ln ⎜ ⎟ ⇒ RE 2 = 1.44 K 0.050 ⎝ 0.050 ⎠ 0.026 ⎛ 0.80 ⎞ RE 3 = ln ⎜ ⎟ ⇒ RE 2 = 4.80 K 0.020 ⎝ 0.020 ⎠ (b) VBE 2 = 0.7 − ( 0.05 )(1.44 ) ⇒ VBE 2 = 0.628 V VBE 3 = 0.7 − ( 0.02 )( 4.80 ) ⇒ VBE 3 = 0.604 V
  • 12. 10.33 (a) VBE1 = VBE 2 V + − 2VBE1 − V − I REF = R1 + R2 Now 2VBE1 + I REF R2 = VBE 3 + I O RE or I O RE = 2VBE1 − VBE 3 + I REF R2 We have ⎛I ⎞ ⎛I ⎞ VBE1 = VT ln ⎜ REF ⎟ and VBE 3 = VT ln ⎜ O ⎟ ⎝ IS ⎠ ⎝ IS ⎠ (b) Let R1 = R2 and I O = I REF ⇒ VBE1 = VBE 3 ≡ VBE Then VBE = I O RE − I REF R2 = I O ( RE − R2 ) so V + − V − − 2 I O ( RE − R2 ) I REF = I O = 2 R2 + V −V − ⎛R ⎞ = − IO ⎜ E ⎟ + IO 2 R2 ⎝ R2 ⎠ Then V + −V − IO = 2 Rε (c) Want I O = 0.5 mA 5 − ( −5 ) So RE = ⇒ RE = 10 k Ω 2 ( 0.5 ) 5 − 2 ( 0.7 ) − ( −5 ) 2 R2 = = 17.2 k Ω 0.5 Then R1 = R2 = 8.6 k Ω 10.34 a. 20 − 0.7 − 0.7 I REF = = 1.55 mA 12 I 01 = 2 I REF = 3.1 mA I 02 = I REF = 1.55 mA I 03 = 3I REF = 4.65 mA b. VCE1 = − I 01 RC1 − ( −10 ) = − ( 3.1)( 2 ) + 10 ⇒ VCE1 = 3.8 V VEC 2 = 10 − I 02 RC 2 = 10 − (1.55 )( 3) ⇒ VEC 2 = 5.35 V VEC 3 = 10 − I 03 RC 3 = 10 − ( 4.65 )(1) ⇒ VEC 3 = 5.35 V 10.35 a. Ist approximation
  • 13. 20 − 1.4 I REF ≅ = 2.325 mA 8 ⎛ 2.32 ⎞ Now VBE − 0.7 = ( 0.026 ) ln ⎜ ⎟ ⇒ VBE = VEB = 0.722 V ⎝ 1 ⎠ Then 2nd approximation 20 − 2 ( 0.722 ) I REF ≅ = 2.32 mA 8 I 01 = 2 I REF = 4.64 mA I 02 = I REF = 2.32 mA I 03 = 3I REF = 6.96 mA b. At the edge of saturation, VCE = VBE = 0.722 V 0 − 0.722 − ( −10 ) RC1 = ⇒ RC1 = 2.0 kΩ 4.64 10 − 0.722 RC 2 = ⇒ RC 2 = 4.0 kΩ 2.32 10 − 0.722 RC 3 = ⇒ RC 3 = 1.33 kΩ 6.96 10.36 10 − 0.7 − 0.7 − ( −10 ) I C1 = I C 2 = = 1.86 mA 10 I C 3 = I C 4 = 1.86 mA ⎛ 1.86 ⎞ I C 5 ( 0.5 ) = 0.026 ln ⎜ ⎟ ⎝ IC 5 ⎠ By Trial and error. ⇒ I C 5 = 0.136 mA = I C 6 = I C 7 2 I C 3 ( 0.8 ) + VCE 3 = 10 ⇒ VCE 3 = 10 − 2 (1.86 )( 0.8 ) VCE 3 = 7.02 V 5 = VEB 6 + VCE 5 + I C 5 ( 0.5 ) − 10 VCE 5 = 5 + 10 − 0.7 − ( 0.136 )( 0.5 ) VCE 5 = 14.2 V 5 = VEC 7 + I C 7 ( 0.8 ) VEC 7 = 5 − ( 0.136 )( 0.8 ) VEC 7 = 4.89 V 10.37 10 − 0.7 − 0.7 − ( −10 ) I C1 = I C 2 = ⇒ I C1 = I C 2 = 1.86 mA 10 I C 4 = I C 5 = 1.86 mA ⎛I ⎞ ⎛ 1.86 ⎞ I C 3 RE1 = VT ln ⎜ C1 ⎟ ⇒ I C 3 ( 0.3) = 0.026 ln ⎜ ⎟ ⎝ IC 3 ⎠ ⎝ IC 3 ⎠ By trial and error I C 3 = 0.195 mA ⎛I ⎞ ⎛ 1.86 ⎞ I C 6 RE 2 = VT ln ⎜ C 5 ⎟ ⇒ I C 6 ( 0.5 ) = 0.026 ln ⎜ ⎟ ⎝ IC 6 ⎠ ⎝ IC 6 ⎠ By trial and error I C 6 = 0.136 mA
  • 14. 10.38 10 − 0.7 I REF = = 1 mA 6.3 + 3 VBE ( QR ) = 0.7 V as assumed VRER = I REF ⋅ RER = (1)( 3) = 3 V VRE1 3 VRE1 = 3 V ⇒ RE1 = = ⇒ RE1 = 3 kΩ I 01 1 VRE 2 3 VRE 2 = 3 V ⇒ RE 2 = = ⇒ RE 2 = 1.5 kΩ I 02 2 VRE 3 3 VRE 3 = 3 V ⇒ RE 3 = = ⇒ RE 3 = 0.75 kΩ I 03 4 I 01 = 1 mA I 02 = 2 mA I 03 = 4 mA 10.38 VDS 2 ( sat ) = 2 V = VGS 2 − VTN 2 = VGS 2 − 1.5 ⇒ VGS 2 = 3.5 V ⎛1 ⎞⎛W ⎞ I O = ⎜ μ n Cox ⎟ ⎜ ⎟ (VGS 2 − VTN 2 ) 2 ⎝ 2 ⎠⎝ L ⎠2 ⎛W ⎞ ⎛W ⎞ 250 = ( 20 ) ⎜ ⎟ ( 3.5 − 1.5 ) ⇒ ⎜ ⎟ = 3.125 2 ⎝ L ⎠2 ⎝ L ⎠2 ⎛1 ⎞⎛W ⎞ I REF = ⎜ μ n Cox ⎟ ⎜ ⎟ (VGS 2 − VTN 1 ) ⎝2 ⎠ ⎝ L ⎠1 ⎛W ⎞ ⎛W ⎞ 100 = ( 20 ) ⎜ ⎟ ( 3.5 − 1.5 ) ⇒ ⎜ ⎟ = 1.25 2 ⎝ L ⎠2 ⎝ L ⎠1 Now VGS 3 = 10 − VGS 2 = 10 − 3.5 = 6.5 V ⎛W ⎞ ⎛W ⎞ So 100 = ( 20 ) ⎜ ⎟ ( 6.5 − 1.5 ) ⇒ ⎜ ⎟ = 0.2 2 ⎝ L ⎠3 ⎝ L ⎠3 10.39 2.5 − VGS ⎛ 0.08 ⎞ ⎟ ( 6 )(VGS − 0.5 ) 2 I REF = =⎜ 15 ⎝ 2 ⎠ 2.5 − VGS = 3.6 (VGS − VGS + 0.25 ) 2 2 3.6VGS − 2.6VGS − 1.6 = 0 2.6 ± 6.76 + 23.04 VGS = 2 ( 3.6 ) VGS = 1.12 V (1.1193) 2.5 − 1.1193 I REF = ⇒ I REF = 92.0 μ A ( 92.05 ) 15 I o = 92.0 μ A VDS 2 ( sat ) = VGS − VTN = 1.1193 − 0.5 VDS 2 ( sat ) = 0.619 V 10.39 a. From Equation (10.50),
  • 15. 5 ⎞ ⎛ 5 ⎞ ⎜ ⎟ ⎜ 1− ⎟ =⎜ 25 ⎟ 5 + ⎜ 25 ⎟ 0.5 VGS1 = VGS 2 ( ) ( ) ⎜ 5 ⎟ ⎜ 5 ⎟ ⎜ 1+ ⎟ ⎜ 1+ ⎟ ⎝ 25 ⎠ ⎝ 25 ⎠ ⎛ 0.447 ⎞ ⎛ 1 − 0.447 ⎞ =⎜ ⎟ (5) + ⎜ ⎟ ( 0.5 ) ⎝ 1 + 0.447 ⎠ ⎝ 1 + 0.447 ⎠ VGS 1 = VGS 2 = 1.74 V I REF ≅ K n1 (VGS 1 − VTN ) = (18 )( 25 )(1.74 − 0.5 ) ⇒ I REF = 0.692 mA 2 2 ⎛1 ⎞⎛W ⎞ I O = ⎜ μ n Cox ⎟ ⎜ ⎟ (VGS 2 − VTN ) (1 + λVDS 2 ) 2 b. ⎝ 2 ⎠⎝ L ⎠2 I 0 = (18 )(15 )(1.74 − 0.5 ) ⎡1 + ( 0.02 )( 2 ) ⎤ 2 ⎣ ⎦ = ( 415 )(104 ) ⇒ I 0 = 0.432 mA c. I 0 = ( 415 ) ⎡1 + ( 0.02 )( 4 ) ⎤ ⇒ I 0 = 0.448 mA ⎣ ⎦ 10.40 (a) ⎛ 80 ⎞ ⎛ W ⎞ I REF = 50 = ⎜ ⎟ ⎜ ⎟ (VGS − 0.5 ) 2 ⎝ 2 ⎠ ⎝ L ⎠1 2.0 − VGS I REF = 0.050 = R Design such that VDS 2 ( sat ) = 0.25 = VGS − 0.5 VGS = 0.75 V 2 − 0.75 So 0.050 = ⇒ R = 25 K R ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ 50 = ⎜ ⎟ ⎜ ⎟ ( 0.75 − 0.5 ) ⇒ ⎜ ⎟ = 20 2 ⎝ 2 ⎠ ⎝ L ⎠1 ⎝ L ⎠1 ⎛W ⎞ ⎜ ⎟ ⎝ L ⎠1 I REF 20 50 ⎛W ⎞ = ⇒ = ⇒ ⎜ ⎟ = 40 ⎛W ⎞ IO ⎛W ⎞ 100 ⎝ L ⎠ 2 ⎜ ⎟ ⎜ ⎟ ⎝ L ⎠2 ⎝ L ⎠2 1 1 (b) RO = = ⇒ RO = 667 K λ I O ( 0.015 )( 0.1) ΔV 1 (c) ΔI O = = ⇒ 1.5 μ A RO 666 ΔI O ⎛ 1.5 ⎞ × 100% = ⎜ ⎟ × 100% ⇒ 1.5% IO ⎝ 100 ⎠ 10.41 ⎛ 80 ⎞ I REF = 250 = ⎜ ⎟ ( 3)(VGS − 1) 2 (a) ⎝ 2⎠ VGS = 2.44 V I O = 250 μ A at VDS 2 = VGS = 2.44 V 1 1 RO = = = 200 K λ I O ( 0.02 )( 0.25 )
  • 16. ΔV 3 − 2.44 (i) ΔI O = = ⇒ 2.8 μ A RO 200 I O = 252.8 μ A ΔV 4.5 − 2.44 (ii) ΔI O = = ⇒ 10.3 μ A RO 200 I O = 260.3 μ A ΔV 6 − 2.44 (iii) ΔI O = = ⇒ 17.8 μ A RO 200 I O = 267.8 μ A 4.5 (b) IO = ( 250 ) = 375 μ A at VDS = 2.44 V 3 1 1 RO = = = 133.3 K λ I O ( 0.02 )( 0.375 ) ΔV 3 − 2.44 (i) ΔI O = = ⇒ 4.20 μ A RO 133.3 I O = 379.2 μ A ΔV 4.5 − 2.44 (ii) ΔI O = = ⇒ 15.5 μ A RO 133.3 I O = 390.5 μ A ΔV 6 − 2.44 (iii) ΔI O = = ⇒ 26.7 μ A RO 133.3 I O = 401.7 μ A 10.41 VSD 2 ( sat ) = 0.25 = VSG + VTP = VSG − 0.4 ⇒ VSG 2 = 0.65 V k′ ⎛ W ⎞ I O = ⎜ ⎟ (VSG 2 + VTP ) p 2 2 ⎝ L ⎠2 40 ⎛ W ⎞ ⎛W ⎞ ⎜ ⎟ ( 0.65 − 0.4 ) ⇒ ⎜ ⎟ = 20 2 25 = 2 ⎝ L ⎠2 ⎝ L ⎠2 (W /L )1 ⎛W ⎞ I REF = 75 μ A = ⋅ I O ⇒ ⎜ ⎟ = 60 (W /L )2 ⎝ L ⎠1 k′ ⎛W ⎞ ⎜ ⎟ (VSG 3 + VTP ) 2 I REF = p 2 ⎝ L ⎠3 VSG 3 = 3 − 0.65 = 2.35 V 40 ⎛ W ⎞ ⎛W ⎞ ⎜ ⎟ ( 2.35 − 0.4 ) ⇒ ⎜ ⎟ = 0.986 2 Then 75 = 2 ⎝ L ⎠3 ⎝ L ⎠3 10.42 (a) I REF 0.5 VGS = VTN 1 + = 1+ =2V K n1 0.5 2 ⎛ I ⎞ ⎛ I REF ⎞ I O = K n 2 ⎜ REF ⎟ = Kn2 ⎜ ⎟ ⎜ K ⎟ ⎝ n1 ⎠ ⎝ K n1 ⎠
  • 17. ⎛ 0.5 ⎞ I 0 ( max ) = ( 0.5 )(1.05 ) ⎜ ⎟ ⇒ I 0 ( max ) = 0.525 mA ⎝ 0.5 ⎠ ⎛ 0.5 ⎞ I 0 ( min ) = ( 0.5 )( 0.95 ) ⎜ ⎟ ⇒ I 0 ( min ) = 0.475 mA ⎝ 0.5 ⎠ So 0.475 ≤ I 0 ≤ 0.525 mA (b) 2 ⎡ I ⎤ I O = K n 2 ⎢ REF + VTN 1 − VTN 2 ⎥ ⎢ K n1 ⎣ ⎥ ⎦ 2 ⎡ 0.5 ⎤ I 0 ( min ) = ( 0.5 ) ⎢ + 1 − 1.05⎥ ⇒ I 0 (min) = 0.451 mA ⎣ 0.5 ⎦ 2 ⎡ 0.5 ⎤ I 0 ( max ) = ( 0.5 ) ⎢ + 1 − 0.95⎥ ⇒ I 0 (max) = 0.551 mA ⎣ 0.5 ⎦ So 0.451 ≤ I 0 ≤ 0.551 mA 10.43 Vx − VA (1) Ix = + g mVgs 2 ro VA (2) Ix = + g mVgs1 ro Vgs1 = Vx , Vgs 2 = −VA So Vx ⎛1 ⎞ (1) Ix = − VA ⎜ + g m ⎟ ro ⎝ ro ⎠ VA (2) Ix = + g mVx ⇒ VA = ro [ I x − g mVx ] ro
  • 18. Then Vx ⎛1 ⎞ Ix = − ro ( I x − g mVx ) ⎜ + g m ⎟ ro ⎝ ro ⎠ Vx ⎡I g 2 ⎤ Ix = − ro ⎢ x + g m I x − m ⋅ Vx − g mVx ⎥ ro ⎣ ro ro ⎦ Vx 2 Ix = − I x − g m ro I x + g mVx + g m roVx ro ⎡1 ⎤ I x [ 2 + g m ro ] = Vx ⎢ + g m + g m ro ⎥ 2 ⎣ ro ⎦ 1 Since g m >> ro I x [ 2 + g m ro ] ≅ Vx ( g m )(1 + g m ro ) Vx 2 + g m ro Then = Ro = Ix g m (1 + g m ro ) 1 Usually, g m ro >> 2, so that Ro ≅ gm 10.44 VDS 2 (sat) = 2 = VGS 2 − 0.8 ⇒ VGS 2 = 2.8 V 60 ⎛ W ⎞ ⎛W ⎞ ⎜ ⎟ ( 2.8 − 0.8 ) ⇒ ⎜ ⎟ = 1.67 2 I O = 200 = 2 ⎝ L ⎠2 ⎝ L ⎠2 ⎛W ⎞ ⎛W ⎞ I REF ⎜ L ⎟1 ⎝ ⎠ ⎜ ⎟ 0.4 ⎝ L ⎠1 ⎛W ⎞ = ⇒ = ⇒ ⎜ ⎟ = 3.33 IO ⎛W ⎞ 0.2 (1.67 ) ⎝ L ⎠1 ⎜ ⎟ ⎝ L ⎠2 VGS 3 = 6 − 2.8 = 3.2 V ⎛ 60 ⎞ ⎛ W ⎞ ⎛W ⎞ I REF = 400 = ⎜ ⎟ ⎜ ⎟ ( 3.2 − 0.8 ) ⇒ ⎜ ⎟ = 2.31 2 ⎝ 2 ⎠ ⎝ L ⎠3 ⎝ L ⎠3 10.45 (a) ⎛ 60 ⎞ ⎛ 60 ⎞ I REF = ⎜ ⎟ ( 20 )(VGS 1 − 0.7 ) = ⎜ ⎟ ( 3)(VGS 3 − 0.7 ) 2 2 ⎝ 2 ⎠ ⎝ 2 ⎠ VGS1 + VGS 3 = 5 20 (VGS1 − 0.7 ) = 5 − VGS1 − 0.7 3 3.582VGS 1 = 6.107 ⇒ VGS1 = VGS 2 = 1.705 V ⎛ 60 ⎞ I O = ⎜ ⎟ (12 )(1.705 − 0.7 ) = 363.6 μ A at VDS 2 = 1.705 V 2 ⎝ 2 ⎠ ⎛ 60 ⎞ I REF = ⎜ ⎟ ( 20 )(1.705 − 0.7 ) = 606 μ A 2 ⎝ 2 ⎠ 1 1 (b) RO = = = 183.4 K λ IO ( 0.015 )( 0.3636 ) ΔV 1.5 − 1.705 ΔI O = = ⇒ −1.12 μ A RO 183.4 I O = 362.5 μ A
  • 19. ΔV 3 − 1.705 (c) ΔI O = = ⇒ 7.06 μ A RO 183.4 I O = 370.7 μ A 10.46 ⎛ 50 ⎞ ⎛ 50 ⎞ I REF = ⎜ ⎟ (15 )(VSG1 − 0.5 ) = ⎜ ⎟ ( 3)(VSG 3 − 0.5 ) 2 2 ⎝ 2⎠ ⎝ 2⎠ VSG1 + VSG 3 = 10 ⇒ VSG 3 = 10 − VSG1 15 (VSG1 − 0.5) = 10 − VSG1 − 0.5 3 3.236VSG1 = 10.618 ⇒ VSG1 = 3.28 V ⎛ 50 ⎞ I REF = ⎜ ⎟ (15 )( 3.28 − 0.5 ) ⇒ I REF = 2.90 mA 2 ⎝ 2⎠ I O = I REF = 2.90 mA VSD 2 (sat) = VSG 2 + VTP = 3.28 − 0.5 ⇒ VSD 2 (sat) = 2.78 V 10.47 VSD 2 (sat) = 1.2 = VSG 2 − 0.35 ⇒ VSG 2 = 1.55 V ⎛ 50 ⎞⎛ W ⎞ ⎛W ⎞ I O = 100 = ⎜ ⎟⎜ ⎟ (1.55 − 0.35 ) ⇒ ⎜ ⎟ = 2.78 2 ⎝ 2 ⎠⎝ L ⎠ 2 ⎝ L ⎠2 I REF = ( ) W L1 ⇒ 200 = ( ) W L1 ⎛W ⎞ ⇒ ⎜ ⎟ = 5.56 IO ( ) W L 2 100 2.78 ⎝ L ⎠1 VSG1 + VSG 3 = 4 ⇒ VSG 3 = 2.45 V ⎛ 50 ⎞⎛ W ⎞ ⎛W ⎞ I REF = 200 = ⎜ ⎟⎜ ⎟ ( 2.45 − 0.35 ) ⇒ ⎜ ⎟ = 1.81 2 ⎝ 2 ⎠⎝ L ⎠3 ⎝ L ⎠3 10.48 ⎛ 80 ⎞ ⎛ 80 ⎞ I REF = ⎜ ⎟ ( 25 )(VSG1 − 1.2 ) = ⎜ ⎟ ( 4 )(VSG 3 − 1.2 ) 2 2 ⎝ 2⎠ ⎝ 2⎠ 10 − VSG1 VSG1 + 2VSG 3 = 10 ⇒ VSG 3 = 2 25 10 − VSG1 Then (VSG1 − 1.2 ) = − 1.2 4 2 3VSG1 = 6.8 ⇒ VSG1 = 2.27 V ⎛ 80 ⎞ I REF = ⎜ ⎟ ( 25 )( 2.267 − 1.2 ) ⇒ I REF = I O = 1.14 mA 2 ⎝ 2⎠ VSD 2 (sat) = VSG 2 + VTP = 2.27 − 1.2 ⇒ VSD 2 ( sat ) = 1.07 V 10.49 VSD 2 (sat) = 1.8 = VSG 2 − 1.4 ⇒ VSG 2 = 3.2 V ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ I O = ⎜ ⎟ ⎜ ⎟ ( 3.2 − 1.4 ) = 100 ⇒ ⎜ ⎟ = 0.772 2 ⎝ 2 ⎠ ⎝ L ⎠2 ⎝ L ⎠2 I REF = ( ) W L1 IO ( ) W L 2 200 = ( ) W L1 ⎛W ⎞ ⇒ ⎜ ⎟ = 1.54 100 0.772 ⎝ L ⎠1
  • 20. Assume M3 and M4 are matched. 10 − 3.2 2VSG 3 + VSG1 = 10 ⇒ VSG 3 = = 3.4 V 2 ⎛ 80 ⎞ ⎛ W ⎞ I REF = 200 = ⎜ ⎟ ⎜ ⎟ ( 3.4 − 1.4 ) 2 ⎝ 2 ⎠ ⎝ L ⎠3,4 ⎛W ⎞ ⎜ ⎟ = 1.25 ⎝ L ⎠3,4 10.50 (a) ⎛ k′ ⎞⎛ W ⎞ I REF = ⎜ ⎟ ⎜ ⎟ (VSG1 + VTP ) p 2 ⎝ 2 ⎠ ⎝ L ⎠1 ⎛ k′ ⎞⎛ W ⎞ = ⎜ ⎟ ⎜ ⎟ (VSG 3 + VTP ) p 2 ⎝ 2 ⎠ ⎝ L ⎠3 But VSG 3 = 3 − VSG1 So 25 (VSG1 − 0.4 ) = 5 ( 3 − VSG1 − 0.4 ) 2 2 which yields VSG1 = 1.08 V and VSG 3 = 1.92 V I REF = 20 ( 25 )(1.08 − 0.4 ) ⇒ I REF = 231 μ A 2 IO (W / L )2 15 = = = 0.6 I REF (W / L )1 25 Then I O = ( 0.6 )( 231) = 139 μ A (b) VDS 2 ( sat ) = 1.08 − 0.4 = 0.68 V VR = 3 − 0.68 = 2.32 = I O R then 2.32 R= ⇒ R = 16.7 k Ω 0.139 10.51 VSD 2 (sat) = 0.35 = VSG 2 − 0.4 ⇒ VSG 2 = 0.75 V ⎛W ⎞ ⎛W ⎞ I O = 80 = ( 20 ) ⎜ ⎟ ( 0.75 − 0.4 ) ⇒ ⎜ ⎟ = 32.7 2 ⎝ L ⎠2 ⎝ L ⎠2 W ( ) W ( ) I REF = L1 ⇒ 50 = L1 ⇒ W ( ) = 20.4 IO W ( ) L 2 80 32.7 L1 VSG 3 = 3 − 0.75 = 2.25 ⎛W ⎞ ⎛W ⎞ I REF = 50 = ( 20 ) ⎜ ⎟ ( 2.25 − 0.4 ) ⇒ ⎜ ⎟ = 0.730 2 ⎝ L ⎠3 ⎝ L ⎠3 10.52 I REF = K n (VGS − VTN ) 2 a. 100 = 100 (VGS − 2 ) ⇒ VGS = 3 V 2 For VD 4 = −3 V, I 0 = 100 μ A
  • 21. b. R0 = r04 + r02 (1 + g m r04 ) 1 1 r02 = r04 = = = 500 kΩ λ I 0 ( 0.02 )( 0.1) g m = 2 K n (VGS − VTN ) = 2 ( 0.1)( 3 − 2 ) = 0.2 mA / V R0 = 500 + 500 ⎡1 + ( 0.2 )( 500 ) ⎤ ⎣ ⎦ R0 = 51 MΩ 1 6 ΔI 0 = ⋅ ΔVD 4 = ⇒ ΔI 0 = 0.118 μ A R0 51 10.53 Vgs 4 = − I X r02 VS 6 = ( I X − g mVgs 4 ) r04 + I X r02 = ( I X + g m I X r02 ) r04 + I X r02 VS 6 = I X ⎡ r02 + (1 + g m r02 ) r04 ⎤ = −Vgs 6 ⎣ ⎦ V − VS 6 VX ⎛ 1 ⎞ I X = g mVgs 6 + X = − VS 6 ⎜ g m + ⎟ r06 r06 ⎝ r06 ⎠ VX ⎛ 1 ⎞ IX = − IX⎜ g m + ⎟ ⎡ r02 + (1 + g m r02 ) r04 ⎤ r06 ⎝ r06 ⎠ ⎣ ⎦ ⎧ ⎛ ⎪ 1 ⎞ ⎫ V ⎪ I X ⎨1 + ⎜ g m + ⎟ ⎡ r02 + (1 + g m r02 ) r04 ⎤ ⎬ = X ⎣ ⎦ ⎪ ⎝ ⎩ r06 ⎠ ⎪ r06 ⎭ VX = R0 = r06 + (1 + g m r06 ) ⎡ r02 + (1 + g m r02 ) r04 ⎤ ⎣ ⎦ IX I 0 ≈ I REF = 0.2 mA = 0.2 (VGS − 1) 2 VGS = 2 V g m = 2 K n (VGS − VTN ) = 2 ( 0.2 )( 2 − 1) = 0.4 mA / V 1 1 r02 = r04 = r06 = = = 250 kΩ λ I0( 0.02 )( 0.2 ) R0 = 250 + ⎡1 + ( 0.4 )( 250 ) ⎤ × {250 + ⎡1 + ( 0.4 )( 250 ) ⎤ ( 250 )} ⎣ ⎦ ⎣ ⎦ R0 = 2575750 kΩ ⇒ R0 = 2.58 × 109 Ω
  • 22. 10.54 ′ kn ⎛ W ⎞ ′ kn ⎛ W ⎞ ⎜ ⎟ (VGS1 − VTN ) = ⎜ ⎟ (VGS 3 − VTN ) 2 2 2 ⎝ L ⎠1 2 ⎝ L ⎠3 k′ ⎛ W ⎞ = ⎜ ⎟ (VGS 4 + VTP ) p 2 2 ⎝ L ⎠4 (1) 50 ( 20 )(VGS 1 − 0.5 ) = 50 ( 5 )(VGS 3 − 0.5 ) 2 2 (2) 50 ( 20 )(VGS 1 − 0.5 ) = 20 (10 )(VGS 4 − 0.5 ) 2 2 (3) VSG 4 + VGS 3 + VGS1 = 6 From (1) 4 (VGS 1 − 0.5 ) = (VGS 3 − 0.5 ) ⇒ VGS 3 = 2 (VGS 1 − 0.5 ) + 0.5 2 2 From (2) 5 (VGS1 − 0.5 ) = (VGS 4 − 0.5 ) ⇒ VSG 4 = 5 (VGS1 − 0.5 ) + 0.5 2 2 Then (3) becomes 5 (VGS1 − 0.5 ) + 0.5 + 2 (VGS 1 − 0.5 ) + 0.5 + VGS1 = 6 which yields VGS 1 = 1.36 V and VGS 3 = 2.22 V , VSG 4 = 2.42 V k′ ⎛ W ⎞ Then I REF = n ⎜ ⎟ (VGS1 − VTN ) = 50 ( 20 )(1.36 − 0.5 ) or I REF = I O = 0.740 mA 2 2 2 ⎝ L ⎠1 VGS 1 = VGS 2 = 1.36 V VDS 2 ( sat ) = VGS 2 − VTN = 1.36 − 0.5 ⇒ VDS 2 ( sat ) = 0.86 V 10.55 VDS 2 ( sat ) = 0.5 V = VGS 2 − VTN = VGS 2 − 0.5 ⇒ VGS 2 = 1 V ′ kn ⎛ W ⎞ ⎜ ⎟ (VGS 2 − VTN ) 2 I O = 50 μ A = 2 ⎝ L ⎠2 ⎛W ⎞ ⎛W ⎞ = 50 ⎜ ⎟ (1 − 0.5 ) ⇒ ⎜ ⎟ = 4 2 ⎝ L ⎠2 ⎝ L ⎠2 ′ kn ⎛ W ⎞ ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ (VGS 1 − VTN ) = 50 ⎜ ⎟ (1 − 0.5 ) ⇒ ⎜ ⎟ = 12 2 2 VGS1 = VGS 2 = 1 V ⇒ I REF = 150 = 2 ⎝ L ⎠1 ⎝ L ⎠1 ⎝ L ⎠1 VGS 3 + VSG 4 + VGS 1 = 6 2VGS 3 = 6 − 1 = 5 V ⇒ VGS 3 = 2.5 V ⎛W ⎞ ⎛W ⎞ I REF = 150 = 50 ⎜ ⎟ ( 2.5 − 0.5 ) ⇒ ⎜ ⎟ = 0.75 2 ⎝ L ⎠3 ⎝ L ⎠3 k′ ⎛ W ⎞ ⎜ ⎟ (VSG 4 + VTP ) 2 I REF = p 2 ⎝ L ⎠4 ⎛W ⎞ ⎛W ⎞ 150 = 20 ⎜ ⎟ ( 2.5 − 0.5 ) ⇒ ⎜ ⎟ 1.88 2 ⎝ L ⎠4 ⎝ L ⎠4 10.56 a. As a first approximation I REF = 80 = 80 (VGS 1 − 1) ⇒ VGS 1 = 2 V 2 Then VDS 1 ≅ 2 ( 2 ) = 4 V The second approximation 80 = 80 (VGS1 − 1) ⎡1 + ( 0.02 )( 4 ) ⎤ 2 ⎣ ⎦ 80 = (VGS 1 − 1) ⇒ VGS 1 = 1.962 2 Or 86.4
  • 23. Then I O = K n (VGS1 − VTN ) (1 + λnVGS 1 ) 2 = 80 (1.962 − 1) ⎡1 + ( 0.02 )(1.962 ) ⎤ 2 ⎣ ⎦ Or I 0 = 76.94 μ A b. From a PSpice analysis, I 0 = 77.09 μ A for VD 3 = −1 V and I 0 = 77.14 μ A for VD 3 = 3 V. The change is ΔI 0 ≈ 0.05 μ A or 0.065%. 10.57 a. For a first approximation, I REF = 80 = 80 (VGS 4 − 1) ⇒ VGS 4 = 2 V 2 As a second approximation I REF = 80 = 80 (VGS 4 − 1) ⎡1 + ( 0.02 )( 2 ) ⎤ 2 ⎣ ⎦ Or VGS 4 = 1.98 V = VGS 1 I O = K n (VGS 2 − VTN ) (1 + λVGS 2 ) 2 To a very good approximation I 0 = 80 μ A b. From a PSpice analysis, I 0 = 80.00 μ A for VD 3 = −1 V and the output resistance is R0 = 76.9 MΩ. Then For VD = +3 V 1 4 ΔI 0 = ⋅ VD 3 = = 0.052 μ A R0 76.9 I 0 = 80.05 μ A 10.58 (a) VDS 3 ( sat ) = VGS 3 − VTN or VGS 3 = VDS 3 ( sat ) + VTN = 0.2 + 0.8 = 1.0 k′ ⎛ W ⎞ I D = n ⎜ ⎟ (VGS 3 − VTN ) 2 2⎝L⎠ ⎛W ⎞ ⎛W ⎞ 50 = 48 ⎜ ⎟ ( 0.2 ) ⇒ ⎜ ⎟ = 26 2 ⎝L⎠ ⎝ L ⎠3 (b) VGS 5 − VTN = 2 (VGS 3 − VTN ) VGS 5 = 0.8 + 2 ( 0.2 ) ⇒ VGS 5 = 1.2 V (c) VD1 ( min ) = 2VDS ( sat ) = 2 ( 0.2 ) ⇒ VD1 ( min ) = 0.4 V 10.59 (a) ′ kn ⎛ W ⎞ ⎜ ⎟ = 50 ( 5 ) = 250 μ A / V 2 K n1 = 2 ⎝ L ⎠1 1 ⎛ (W / L )1 ⎞ R= ⎜1 − ⎟ K n1 I D1 ⎜ ⎝ (W / L )2 ⎟ ⎠ 1 ⎛ 5 ⎞ = ⎜1 − ⎜ ⎟ = ( 8.944 )( 0.6838 ) ( 0.25 )( 0.05 ) ⎝ 50 ⎟ ⎠ R = 6.12 k Ω (b)
  • 24. V + − V − = VSD 3 ( sat ) + VGS 1 VSD 3 ( sat ) = VSG 3 + VTP I D1 = 50 = 20 ( 5 )(VSG 3 − 0.5 ) ⇒ VSG 3 = 1.207 V 2 Then VSD 3 ( sat ) = 1.21 − 0.5 = 0.707 V Also I D1 = 50 = 50 ( 5 )(VGS1 − 0.5 ) ⇒ VGS 1 = 0.9472 V 2 Then (V + − V − ) = 0.71 + 0.947 = 1.66 V min (c) ⎛W ⎞ ⎛W ⎞ I O1 = 25 = 50 ⎜ ⎟ ( 0.947 − 0.5 ) ⇒ ⎜ ⎟ = 2.5 2 ⎝ L ⎠5 ⎝ L ⎠5 ⎛W ⎞ ⎛W ⎞ I O 2 = 75 = 20 ⎜ ⎟ (1.207 − 0.5 ) ⇒ ⎜ ⎟ = 7.5 2 ⎝ L ⎠6 ⎝ L ⎠6 10.60 1 VGS 3 = ( 5 ) = 1.667 V 3 ⎛1 ⎞⎛W ⎞ I REF = ⎜ μ n Cox ⎟ ⎜ ⎟ (VGS 3 − VTN ) 2 ⎝2 ⎠ ⎝ L ⎠3 ⎛W ⎞ ⎛W ⎞ ⎛W ⎞ ⎛W ⎞ 100 = ( 20 ) ⎜ ⎟ (1.667 − 1) ⇒ ⎜ ⎟ = ⎜ ⎟ = ⎜ ⎟ = 11.25 2 ⎝ L ⎠3 ⎝ L ⎠3 ⎝ L ⎠ 4 ⎝ L ⎠5 ⎛1 ⎞⎛W ⎞ I O1 = ⎜ μ n Cox ⎟ ⎜ ⎟ (VGS 3 − VTN ) 2 ⎝2 ⎠ ⎝ L ⎠1 ⎛W ⎞ ⎜ ⎟ I REF ⎝ L ⎠3 Or = I 01 ⎛W ⎞ ⎜ ⎟ ⎝ L ⎠1 ⎛ W ⎞ ⎛ I 01 ⎞ ⎛ W ⎞ ⎛ 0.2 ⎞ ⎛W ⎞ ⎜ ⎟ =⎜ ⎟⎜ ⎟ = ⎜ ⎟ (11.25 ) ⇒ ⎜ ⎟ = 22.5 ⎝ L ⎠1 ⎝ I REF ⎠ ⎝ L ⎠3 ⎝ 0.1 ⎠ ⎝ L ⎠1 ⎛ W ⎞ ⎛ I ⎞ ⎛ W ⎞ ⎛ 0.3 ⎞ ⎛W ⎞ And ⎜ ⎟ = ⎜ 02 ⎟ ⎜ ⎟ = ⎜ ⎟ (11.25 ) ⇒ ⎜ ⎟ = 33.75 ⎝ L ⎠ 2 ⎝ I REF ⎠ ⎝ L ⎠3 ⎝ 0.1 ⎠ ⎝ L ⎠2 10.61 24 − VSGP − VGSN I REF = R Also I REF = 40 (1)(VGSN − 1.2 ) 2 I REF = 18 (1)(VSGP − 1.2 ) 2 Then 40 (VGSN − 1.2 ) = 18 (VSGP − 1.2 ) 6.325 which yields VSGP = (VGSN − 1.2 ) + 1.2 4.243
  • 25. Then ⎡ 0.040 (VGSN − 1.2 ) ⎤ ⋅ R = 24 − VGSN − 1.49 (VGSN − 1.2 ) − 1.2 2 ⎣ ⎦ which yields VGSN = 2.69 V and VSGP = 3.43 V 24 − 3.42 − 2.69 Now I REF = ⇒ I REF = 89.4 μ A 200 89.4 I1 = = 17.9 μ A 5 I 2 = (1.25 )( 89.4 ) = 112 μ A I 3 = ( 0.8 )( 89.4 ) = 71.5 μ A I 4 = 4 ( 89.4 ) = 358 μ A 10.61 a. g m ( M 0 ) = 2 K n I REF gm ( M 0 ) = 2 ( 0.25)( 0.2 ) ⇒ g m ( M 0 ) = 0.447 mA/V 1 1 r0 n = = ⇒ r0 n = 250 kΩ λn I REF ( 0.02 )( 0.2 ) 1 1 r0 p = = ⇒ r0 p = 167 kΩ λ p I REF ( 0.03)( 0.2 ) b. Av = − g m ( r0 n || r0 p ) = − ( 0.447 )( 250 ||167 ) ⇒ Av = −44.8 c. RL = 205 ||167 = r0 n || r0 p or RL = 100 kΩ 10.62 We have VGSN = 2.69 V and VSGP = 3.43 V 10 − 2.69 − 3.43 3.88 So I REF = = ⇒ I REF = 19.4 μ A R 200 Then I1 = ( 0.2 )(19.4 ) = 3.88 μ A I 2 = (1.25 )(19.4 ) = 24.3 μ A I 3 = ( 0.8 )(19.4 ) = 15.5 μ A I 4 = 4 (19.4 ) = 77.6 μ A 10.63 I D2 = (W L )2 ⋅ I REF = 9 ( 200 ) ⇒ I D 2 = 120 μ A (W L )1 15 IO = (W L )4 ⎛ 20 ⎞ ⋅ I D 2 = ⎜ ⎟ (120 ) ⇒ I O = 267 μ A (W L )3 ⎝ 9 ⎠ ⎛ 40 ⎞ I O = 266.7 = ⎜ ⎟ ( 20 )(VSG 4 − 0.6 ) 2 ⎝ 2 ⎠ VSG 4 = 1.416 V VSD 4 (sat) = 1.416 − 0.6 ⇒ VSD 4 ( sat ) = 0.816 V 10.64 ⎛ 40 ⎞ ⎛ W ⎞ I REF = 50 = ⎜ ⎟ ⎜ ⎟ (VSG1 − 0.6 ) 2 ⎝ 2 ⎠ ⎝ L ⎠1 1.75 − VSG1 I REF = = 50 R
  • 26. VSD 2 (sat) = 0.35 = VSG 2 − 0.6 ⇒ VSG 2 = 0.95 V 1.75 − 0.95 R= ⇒ R = 16 K 0.05 ⎛ 40 ⎞⎛ W ⎞ ⎛W ⎞ 50 = ⎜ ⎟⎜ ⎟ ( 0.95 − 0.6 ) ⇒ ⎜ ⎟ = 20.4 2 ⎝ 2 ⎠⎝ L ⎠1 ⎝ L ⎠1 I O1 120 = = W ( ) L 2 ⇒ ⎛W ⎞ = 49 I REF 50 ( 20.4 ) ⎜ L ⎟2 ⎝ ⎠ I D 3 25 = = W ( ) L 3 ⎛W ⎞ ⇒ ⎜ ⎟ = 10.2 I REF 50 ( 20.4 ) ⎝ L ⎠3 VDS 5 (sat) = 0.35 = VGS 5 − 0.4 ⇒ VGS 5 = 0.75 V ⎛ 100 ⎞⎛ W ⎞ ⎛W ⎞ ⎟⎜ ⎟ ( 0.75 − 0.4 ) = 150 ⇒ ⎜ ⎟ = 24.5 2 IO 2 = ⎜ ⎝ 2 ⎠⎝ L ⎠5 ⎝ L ⎠5 I D4 I D3 = = 25 = W L 4 ( )⎛W ⎞ ⇒ ⎜ ⎟ = 4.08 I O 2 I O 2 150 24.5 ⎝ L ⎠4 10.65 For vGS = 0, iD = I DSS (1 + λ vDS ) a. VD = −5 V, vDS = 5 iD = ( 2 ) ⎡1 + ( 0.05 )( 5 ) ⎤ ⇒ iD = 2.5 mA ⎣ ⎦ b. VD = 0, vDS = 10 iD = ( 2 ) ⎡1 + ( 0.05 )(10 ) ⎤ ⇒ iD = 3 mA ⎣ ⎦ c. VD = 5 V, vDS = 15 V iD = ( 2 ) ⎡1 + ( 0.05 )(15 ) ⎤ ⇒ iD = 3.5 mA ⎣ ⎦ 10.66 2 ⎛ V ⎞ I 0 = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 2 = 4 ⎜ 1 − GS ⎟ ⎝ VP ⎠ VGS 2 = 1− = 0.293 VP 4 So VGS = ( 0.293)( −4 ) = −1.17 V VS Then I 0 = and VS = −VGS R −V ( −1.17 ) R = GS = − ⇒ R = 0.586 kΩ I0 2 Finish solution: See solution 10.66 Completion of solution Need vDS ≥ vDS ( sat ) = vGS − VP = −1.17 − ( −4 ) vDS ≥ 2.83 V So VD ≥ vDS ( sat ) + VS = 2.83 + 1.17 ⇒ VD ≥ 4 V
  • 27. 10.67 ⎛V ⎞ a. I REF = I S 1 exp ⎜ EB1 ⎟ ⎝ VT ⎠ ⎛I ⎞ ⎛ 1× 10−3 ⎞ or VEB1 = VT ln ⎜ REF ⎟ = ( 0.026 ) ln ⎜ −13 ⎟ ⇒ VEB1 = 0.5568 ⎝ I S1 ⎠ ⎝ 5 × 10 ⎠ 5 − 0.5568 b. R1 = ⇒ R1 = 4.44 kΩ 1 c. From Equations (10.79) and (10.80) and letting VCE 0 = VEC 2 = 2.5 V ⎛ 2.5 ⎞ −12 ⎛ VI ⎞ ⎡ 2.5 ⎤ −3 ⎜ 1 + 80 ⎟ 10 exp ⎜ ⎟ ⎢1 + ⎥ = 10 ⎜ 0.5568 ⎟ ⎝ VT ⎠ ⎣ 120 ⎦ ⎜1+ ⎜ ⎟ ⎟ ⎝ 80 ⎠ ⎛V ⎞ ⎛ 1.03125 ⎞ 1.0208333 × 10−12 exp ⎜ I ⎟ = (10−3 ) ⎜ ⎟ ⎝ VT ⎠ ⎝ 1.00696 ⎠ Then VI = 0.026 ln (1.003222 × 109 ) So VI = 0.5389 V − (1/ VT ) d. Av = (1/ VAN ) + (1/ VAP ) 1 − −38.46 Av = 0.026 = 1 1 0.00833 + 0.0125 + 120 80 Av = −1846 10.68 ⎛I ⎞ ⎛ 0.5 × 10−3 ⎞ a. VBE = VT ln ⎜ REF ⎟ = ( 0.026 ) ln ⎜ −12 ⎟ ⇒ VBE = 0.5208 ⎝ I S1 ⎠ ⎝ 10 ⎠ 5 − 0.5208 b. R1 = ⇒ R1 = 8.96 kΩ 0.5 c. Modify Eqs. 10.79 and 10.80 to apply to pnp and npn, and set the two equation equal to each other. ⎛ V ⎞⎛ V ⎞ ⎛ VBE ⎞ ⎛ VCE 2 ⎞ I CO = I SO exp ⎜ EBO ⎟⎜ 1 + ECO ⎟ = I C 2 = I S 2 exp ⎜ ⎟ ⎜1 + ⎟ ⎝ VT ⎠⎝ VAP ⎠ ⎝ VT ⎠ ⎝ VAN ⎠ ⎛ V ⎞ ⎛ 2.5 ⎞ ⎛ VBE ⎞ ⎛ 2.5 ⎞ 5 × 10−13 exp ⎜ EBO ⎟ ⎜ 1 + −12 ⎟ = 10 exp ⎜ ⎟ ⎜1 + ⎟ ⎝ VT ⎠ ⎝ 80 ⎠ ⎝ VT ⎠ ⎝ 120 ⎠ ⎛V ⎞ ⎛V ⎞ 5.15625 × 10−13 exp ⎜ EBO ⎟ = 1.020833 × 10−12 exp ⎜ BE ⎟ ⎝ VT ⎠ ⎝ VT ⎠ ⎛V ⎞ exp ⎜ EBO ⎟ ⎝ VT ⎠ = 1.9798 = exp ⎛ VEBO − VBE ⎞ ⎜ ⎟ ⎛V ⎞ ⎝ VT ⎠ exp ⎜ BE ⎟ ⎝ VT ⎠ VEBO = VBE + VT ln (1.9798 ) = 0.5208 + ( 0.026 ) ln (1.9798 ) VEBO = 0.5386 ⇒ VI = 5 − 0.5386 ⇒ VI = 4.461 V
  • 28. − (1/ VT ) d. Av = (1/ VAN ) + (1/ VAP ) 1 − 0.026 = −38.46 Av = 1 1 0.00833 + 0.0125 + 120 80 Av = −1846 10.69 a. M1 and M2 matched. For I REF = I 0 , we have VSD 2 = VSG = VSG 3 = VDS 0 = 2.5 V For M1 and M3: ⎛1 ⎞⎛W ⎞ I REF = ⎜ μ p Cox ⎟ ⎜ ⎟ (VSG + VTP ) (1 + λPVSD ) 2 ⎝2 ⎠ ⎝ L ⎠1 ⎛W ⎞ ⎛W ⎞ ⎛W ⎞ ⎛W ⎞ 100 = 10 ⎜ ⎟ ( 2.5 − 1) ⎡1 + ( 0.02 )( 2.5 ) ⎤ ⇒ ⎜ ⎟ = 4.23 = ⎜ ⎟ = ⎜ ⎟ 2 ⎣ ⎦ ⎝ L ⎠1 ⎝ L ⎠1 ⎝ L ⎠3 ⎝ L ⎠ 2 For M0: ⎛1 ⎞⎛W ⎞ I O = ⎜ μ n Cox ⎟ ⎜ ⎟ (VGS − VTN ) (1 + λnVDS ) 2 ⎝2 ⎠ ⎝ L ⎠0 ⎛W ⎞ ⎛W ⎞ 100 = 20 ⎜ ⎟ ( 2 − 1) ⎡1 + ( 0.02 )( 2.5 ) ⎤ ⇒ ⎜ ⎟ = 4.76 2 ⎣ ⎦ ⎝ L ⎠0 ⎝ L ⎠0 b. 1 1 r0 n = r0 p = = = 500 kΩ λ I0 ( 0.02 )( 0.1) ⎛1 ⎞⎛W ⎞ g m = 2 K n I O = 2 ⎜ μ n Cox ⎟ ⎜ ⎟ I O ⎝ 2 ⎠ ⎝ L ⎠o =2 ( 0.02 )( 4.76 )( 0.1) g m = 0.195 mA/V Av = − g m ( r0 n || r0 p ) = − ( 0.195 )( 500 || 500 ) ⇒ Av = −48.8 10.70 I REF = K p1 (VSG + VTP ) 2 a. 100 = 100 (VSG − 1) ⇒ VSG = 2 V 2 b. From Eq. 10.89 ⎡1 + λ p (V + − VSG ) ⎤ K (V − V )2 VO = ⎣ ⎦− n I TN λn + λ p I REF ( λn + λ p ) ⎡1 + ( 0.02 )(10 − 2 ) ⎤ ⎦ − 100 (VI − 1) 2 5= ⎣ 0.02 + 0.02 100 ( 0.02 + 0.02 ) (VI − 1) 2 5 = 29 − 0.04 (VI − 1) 2 = 0.96 VI = 1.98 V
  • 29. c. Av = − g m ( r0 n || r0 p ) 1 1 r0 n = r0 p = = = 500 kΩ λ I REF ( 0.02 )( 0.1) g m = 2 K n I REF = 2 ( 0.1)( 0.1) = 0.2 mA / V Av = − ( 0.2 )( 500 || 500 ) ⇒ Av = −50 10.71 5 − 0.6 5 − 0.6 I REF = = = 0.22 mA R1 20 From Eq. 10.96 ⎛I ⎞ 0.22 −⎜ C ⎟ − Av = ⎝ VT ⎠ = 0.026 ⎛ IC 1 I C ⎞ 0.22 + 1 + 0.22 ⎜ + + ⎟ ⎝ VAN RL VAP ⎠ 140 RL 90 −8.4615 −8.4615 = = 1 1 0.0015714 + + 0.002444 0.004016 + RL RL (a) RL = ∞, Av = −2107 (b) RL = 250 K, Av = −1056 (c) RL = 100 K, Av = −604 10.72 5 − 0.6 I REF = = 0.1257 mA 35 Then I CO = 2 I REF = 0.2514 mA From Eq. 10.96 −0.2514 0.026 −9.6692 Av = = 0.2514 0.2514 1 1 + + 0.002095 + 0.0031425 + 120 80 RL RL −9.6692 Av = 1 0.0052375 + RL (a) RL = ∞ Av = −1846 (b) RL = 250 K, Av = −1047 10.73 (a) To a good approximation, output resistance is the same as the widlar current source. R0 = r02 ⎡1 + g m 2 ( rπ 2 || RE ) ⎤ ⎣ ⎦ (b) Av = − g m 0 ( r0 || RL || R0 ) 10.74 Output resistance of Wilson source
  • 30. β r03 R0 ≅ 2 Then Av = − g m ( r0 || R0 ) V 80 r03 = AP = = 400 kΩ I REF 0.2 VAN 120 r0 = = = 600 kΩ I REF 0.2 I REF 0.2 gm = = = 7.692 mA/V VT 0.026 ⎡ (80 )( 400 ) ⎤ Av = −7.69 ⎢600 ⎥ = −7.69 [ 600 ||16, 000] ⇒ Av = −4448 ⎢ ⎣ 2 ⎥ ⎦ 10.75 (a) I D 2 = I D 0 = I REF = 200 μ A 1 1 For M 2 ; ro 2 = = = 250 K λP I D 2 ( 0.02 )( 0.2 ) ⎛ 0.04 ⎞ gm2 = 2 K P I D2 = 2 ⎜ ⎟ ( 35 )( 0.2 ) ⎝ 2 ⎠ g m 2 = 0.748 mA/V 1 1 For M 0 ; r∞ = = = 333 K λn I Do ( 0.015 )( 0.2 ) ⎛ 0.08 ⎞ g mo = 2 ⎜ ⎟ ( 20 )( 0.2 ) ⇒ g mo = 0.80 mA/V ⎝ 2 ⎠ (b) Av = − g mo ( ro 2 || roo ) = − ( 0.80 )( 250 || 333) Av = −114.3 Want Av = −57.15 = −0.80 (142.8 || RL ) (c) 142.8 RL 142.8 || RL = 71.375 = ⇒ RL = 143 K 142.8 + RL 10.76 Assume M1, M2 matched I REF = I D 2 = I Do = 200 μ A 1 1 ro 2 = = = 250 K λ p I D 2 ( 0.02 )( 0.2 ) 1 1 roo = = = 333 K λn I D 0 ( 0.015 )( 0.2 ) Av = − g mo ( ro 2 roo ) −100 = − g mo ( 250 333) ⇒ g mo = 0.70 mA/V ⎛ 0.08 ⎞⎛ W ⎞ g mo = 2 ⎜ ⎟⎜ ⎟ ( 0.2 ) = 0.70 ⎝ 2 ⎠⎝ L ⎠0 ⎛W ⎞ ⎜ ⎟ = 15.3 ⎝ L ⎠0
  • 31. ⎛ k ′ ⎞⎛ W ⎞ ⎛ k ′ ⎞ ⎛ W ⎞ Now ⎜ n ⎟ ⎜ ⎟ = ⎜ ⎟ ⎜ ⎟ p ⎝ 2 ⎠ ⎝ L ⎠0 ⎝ 2 ⎠ ⎝ L ⎠2 ⎛ 80 ⎞ ⎛ 40 ⎞⎛ W ⎞ ⎜ ⎟ (15.3) = ⎜ ⎟⎜ ⎟ ⎝ 2⎠ ⎝ 2 ⎠⎝ L ⎠ 2 ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ = ⎜ ⎟ = 30.6 ⎝ L ⎠ 2 ⎝ L ⎠1 10.77 Since Vsg 3 = 0, the circuit becomes
  • 32. Vx − Vsg 2 ′ I x = − g mVsg 2 + and Vsg 2 = I x ro 3 r02 Then ⎛ r ⎞ V ′ I x ⎜ 1 + g m ro3 + o3 ⎟ = x ⎝ ro 2 ⎠ ro 2 so that Vx ⎛ r ⎞ ′ = Ro = ro 2 ⎜1 + g m ro 3 + o 3 ⎟ Ix ⎝ ro 2 ⎠ or Ro = ro 2 + ro 3 (1 + g m ro 2 ) ′ vo Av = = − g m1 ( ro1 Ro ) vi Now g m1 = 2 ( 0.050 )( 20 )( 0.10 ) = 0.632 mA / V 1 1 ro1 = = = 500 k Ω λn I DQ ( 0.02 )( 0.10 ) ′ g m = 2 K p I DQ = 2 ( 0.020 )(80 )( 0.1) = 0.80 mA / V 1 1 ro 2 = ro 3 = = = 500 k Ω λ p I DQ ( 0.020 )( 0.1) Then Ro = 500 + 500 ⎡1 + ( 0.8 )( 500 ) ⎤ ⇒ 201 M Ω ⎣ ⎦ Av = − ( 0.632 ) ( 500 201000 ) ⇒ Av = −315 10.78 From Eq. 10.105 2 − gm Av = 1 1 + ro3 ro 4 ro1 ro 2 ⎛ k′ ⎞⎛W ⎞ g m = 2 ⎜ n ⎟ ⎜ ⎟ I D1 ⎝ 2 ⎠⎝ L ⎠ =2 ( 0.050 ) ( 20 ) ( 0.08 ) g m = 0.5657 mA / V 1 1 ro = = = 625 K λ I D ( 0.02 )( 0.08 ) − ( 0.5657 ) 2 −0.3200 Av = = 1 + 1 2 ( 0.00000256 ) ( 625) ( 625) 2 2 Av = −62,500 10.79
  • 33. Vπ 2 Vπ 2 V − ( −Vπ 2 ) (1) g m1Vi = + + g m 2Vπ 2 + O rπ 2 ro1 ro 2 VO VO − ( −Vπ 2 ) (2) + + g m 2Vπ 2 = 0 RO 3 ro 2 ⎛ 1 1 1 ⎞ V (1) g m1Vi = Vπ 2 ⎜ + + gm2 + ⎟ + O ⎝ rπ 2 ro1 ro 2 ⎠ ro 2 ⎛ 1 1 ⎞ ⎛ 1 ⎞ (2) VO ⎜ + ⎟ + Vπ 2 ⎜ + gm2 ⎟ = 0 ⎝ RO 3 ro 2 ⎠ ⎝ ro 2 ⎠ 1 g m >> ro ⎛ 1 + β ⎞ VO (1) g m1Vi = Vπ 2 ⎜ ⎟+ ⎝ rπ 2 ⎠ ro 2 ⎛ 1 1 ⎞ (2) VO ⎜ + ⎟ + Vπ 2 ⋅ g m 2 = 0 ⎝ RO 3 ro 2 ⎠ VO ⎛ 1 1 ⎞ (3) Vπ 2 = − ⎜ + ⎟ gm2 ⎝ RO 3 ro 2 ⎠ Then VO ⎛ 1 1 ⎞⎛ 1 + β ⎞ VO (1) g m1Vi = − ⎜ + ⎟⎜ ⎟+ gm2⎝ RO 3 ro 2 ⎠⎝ rπ 2 ⎠ ro 2 ⎛ 1 1 ⎞ ⎛ 1 + β ⎞ VO = −VO ⎜ + ⎟⎜ ⎟+ ⎝ RO 3 ro 2 ⎠ ⎝ β ⎠ ro 2 VO ⎛ 1 + β ⎞ ≈− ⎜ ⎟ RO 3 ⎝ β ⎠ VO ⎛ β ⎞ = − g m1 RO 3 ⎜ ⎟ Vi ⎝1+ β ⎠ From Equation (10.20) RO 3 ≈ β rO 3 So
  • 34. VO − g m1ro3 β 2 0.25 Av = = gm = = 9.615 mA/V Vi 1+ β 0.026 80 ro3 = = 320 K 0.25 − ( 9.615 )( 320 )(120 ) 2 Av = = −366,165 121