SlideShare a Scribd company logo
Chapter 3
Exercise Solutions

EX3.1
VTN = 1 V , VGS = 3 V , VDS = 4.5 V
VDS = 4.5 > VDS ( sat ) = VGS − VTN = 3 − 1 = 2 V
Transistor biased in the saturation region
I D = K n (VGS − VTN ) ⇒ 0.8 = K n ( 3 − 1) ⇒ K n = 0.2 mA / V 2
                       2                    2


(a) VGS = 2 V, VDS = 4.5 V
Saturation region:
I D = ( 0.2 )( 2 − 1) ⇒ I D = 0.2 mA
                   2


(b) VGS = 3 V, VDS = 1 V
Nonsaturation region:
I D = ( 0.2 ) ⎡ 2 ( 3 − 1)(1) − (1) ⎤ ⇒ I D = 0.6 mA
                                   2
              ⎣                      ⎦

EX3.2
    VTP = −2 V , VSG = 3 V
VSD ( sat ) = VSG + VTP = 3 − 2 = 1 V
(a)    VSD = 0.5 V ⇒ Nonsaturation
(b)    VSD = 2 V ⇒ Saturation
(c)    VSD = 5 V ⇒ Saturation

EX3.3
     ⎛ R2 ⎞               ⎛ 160 ⎞
VG = ⎜         ⎟ (VDD ) = ⎜           ⎟ (10 ) = 3.636 V = VGS
     ⎝ R1 + R2 ⎠          ⎝ 160 + 280 ⎠
I D = 0.25 ( 3.636 − 2 ) = 0.669 mA
                           2


VDS = 10 − ( 0.669 )(10 ) = 3.31 V
P = I DVDS = ( 0.669 )( 3.31) = 2.21 mW

EX3.4
I DQ = K P (VSG + VTP )
                           2



1.2 = 0.4 (VSG − 1.2 ) ⇒ VSG = 2.932 V
                       2


      ⎛ R1 ⎞             1
VSG = ⎜         ⎟ VDD =     ⋅ VTTN − VDD
      ⎝ R1 + R2 ⎠        R2
Note K = kΩ
         1
2.932 =     ( 200 )(10 ) ⇒ R2 = 682 K
         R2
 682 R1
         = 200 ⇒ R1 = 283 K
682 + R1
       10 − 4
RD =          =5K
        1.2

EX3.5
         ⎛ R2 ⎞                   ⎛ 40 ⎞
(a) VG = ⎜          ⎟ (10 ) − 5 = ⎜         ⎟ (10 ) − 5 = −1 V
         ⎝ R1 + R2 ⎠              ⎝ 40 + 60 ⎠
    V − ( −5 )
               = K n (VGS − VTN )
                                   2
ID = S
       RS
VS = VG − VGS
( 5 − 1) − VGS = ( 0.5 )(1) (VGS − 2VGS + 1)
                               2


0.5VGS − 3.5 = 0 VGS = 7 VGS = 2.646 V
     2             2


I D = ( 0.5 )( 2.646 − 1) ⇒ I D = 1.354 mA
                         2


VDS = 10 − (1.354 )( 3) = 5.937 V
        4 − VGS = K n (1)(VGS − VTN )
                                        2
(b)
(1) K n = (1.05 )( 0.5 ) = 0.525
(2) K n = ( 0.95)( 0.5 ) = 0.475
(3) VTN = (1.05 )(1) = 1.05 V
(4) VTN = ( 0.95 )(1) = 0.95 V
(1)-(3)      4 − VGS = 0.525 (VGS − 2.1VGS + 1.1025 )
                                2


             0.525VGS − 0.1025VGS − 3.421 = 0
                    2


                     0.1025 ± 0.010506 + 7.1841
             VGS =                              = 2.652 V
                              2 ( 0.525 )
 I D = 0.525 ( 2.652 − 1.05 ) = 1.348 mA
                             2


VDS = 10 − (1.348 )( 3) = 5.957 V
(2)-(4)
 4 − VGS = 0.475 (VGS − 1.9VGS + 0.9025 )
                     2


0.475VGS + 0.0975VGS − 3.5713 = 0
       2


        −0.0975 ± 0.00950625 + 6.78547
VGS =
                   2 ( 0.475 )
VGS = 2.641 V
 I D = 0.475 ( 2.641 − 0.95 ) = 1.359 mA
                             2


VDS = 10 − (1.359 )( 3) = 5.924 V
(1)-(4)
4 −VGS = ( 0.525) (VGS −1.9VGS + 0.9025)
                     2


0.525 VGS + 0.0025VGS − 3.5262 = 0
        2


        −0.0025 ± 0.00000625 + 7.40502
VGS =
                   2 ( 0.525)
      = 2.5893 V
 I D = ( 0.525)( 2.5893 − 0.95) = 1.411
                                 2


VDS = 10 − I D ( 3) = 5.7678 V
(2)-(3)
 4 − VGS = 0.475 (VGS − 2.1VGS +1.1025 )
                       2


0.475VGS + 0.0025VGS − 3.4763 = 0
       2


        −0.0025 ± 0.00000625 + 6.60499
VGS =
                   2(0.475)
VGS   = 2.7027
 I D = (0.475)(2.7027 − 1.05) 2 = 1.2973 mA
VDS = 10 − I D (3) = 6.108 V
1.297 ≤ I DQ ≤ 1.411 mA
5.768 ≤ VDS ≤ 6.108 V

EX3.6
⎛ R2 ⎞
VG = ⎜          ⎟ (10 ) − 5
     ⎝ R1 + R2 ⎠
     ⎛ 200 ⎞
   =⎜       ⎟ (10 ) − 5 = 0.714 V
     ⎝ 350 ⎠
VS = 5 − I D RS = 5 − (1.2 ) I D
So
VSG = VS − VG = 5 − (1.2 ) I D − 0.714
    = 4.286 − (1.2 ) I D
       4.286 − VSG
ID =
           1.2
I D = K p (VSG + VTP )
                            2



                                            (
4.286 − VSG = (1.2 )( 0.25 ) × VSG − 2VSG ( −1) + ( −1)
                                 2                            2
                                                                  )
4.286 − VSG = ( 0.3) V − 0.6VSG + 0.3
                                 2
                                SG

0.3VSG + 0.4VSG − 3.986 = 0
     2



                      ( 0.4 )       + 4 ( 0.3)( 3.986 )
                                2
        −0.4 ±
VSG =
                            2 ( 0.3)
Must use + sign ⇒ VSG = 3.04 V
I D = ( 0.25 )( 3.04 − 1) ⇒ I D = 1.04 mA
                                    2



VSD = 10 − I D ( RS + RD ) = 10 − (1.04 )(1.2 + 4 ) ⇒ VSD = 4.59 V
VSD > VSD ( sat ) , Yes

EX3.7
VSD = 10 − I DQ ( RS + RP )
VSD = 10 − K P (VSG + VTP ) ( RS + RP )
                                        2


Set VSD = VSG + VTP
VSG + VTP = 10 − ( 0.25 )(VSG + VTP ) ( 5.2 )
                                                 2



1.3 (VSG + VTP ) + (VSG + VTP ) − 10 = 0
                  2



                 −1 ± 1 + 4 (1.3)(10 )
(VSG + VTP ) =
                                2 (1.3)
                = 2.415 V
VSG = 3.415 V       ( 3.42 V )
VSD = 2.415 V ( 2.42 V )
 I D = ( 0.25 )( 2.415 ) = 1.46 mA
                         2




EX3.8
     ⎛ R2 ⎞                  ⎛ 240 ⎞
VG = ⎜         ⎟ (10 ) − 5 = ⎜           ⎟ (10 ) − 5
     ⎝ R1 + R2 ⎠             ⎝ 240 + 270 ⎠
VG = −0.294 V
       VS − ( −5 )        VG − VGS + 5
                                       = K n (VGS − VTN )
                                                          2
ID =                  =
           RS                  RS
              ⎛ 0.08 ⎞
4.706 − VGS = ⎜      ⎟ ( 4 )( 3.9 ) (VGS − 2.4VGS + 1.44 )
                                       2

              ⎝ 2 ⎠
0.624VGS − 0.4976VGS − 3.80744 = 0
       2
0.4976 ± 0.2476 + 9.50337
VGS =
                2 ( 0.624 )
VGS = 2.90 V
      ⎛ 0.08 ⎞
              ⎟ ( 4 )( 2.90 − 1.2 ) ⇒ I D = 0.463 mA
                                   2
 ID = ⎜
      ⎝   2 ⎠
VDS = 10 − I D ( 3.9 + 10 ) ⇒ VDS = 3.57 V

EX3.9
     10 − VSG
              and I D = K p (VSG + VTP )
                                         2
ID =
        RS
0.12 = ( 0.050 )(VSG − 0.8 )
                               2


 VSG = 2.35 V
     10 − 2.35
RS =            ⇒ RS = 63.75 kΩ
        0.12
VSD = 8 = 20 − I D ( RS + RD )
  8 = 20 − ( 0.12 )( 63.75 ) − ( 0.12 ) RD
        20 − ( 0.12 )( 63.75 ) − 8
 RD =                                ⇒ RD = 36.25 kΩ
                    0.12
(1)    KP    = ( 0.05 )(1.05 ) = 0.0525
(2)    KP    = ( 0.05 )( 0.95 ) = 0.0475
(3)    VTP   = −0.8 (1.05 ) = −0.84 V
(4)    VTP   = −0.8 ( 0.95 ) = −0.76 V
               10 − VSG
                          = K P (VSG + VTP )
                                             2
        ID   =
                   RS
(1)-(3)
10 − VSG = ( 63.75 )( 0.0525 ) ⎡VSG − 1.68VSG + 0.7056 ⎤
                               ⎣
                                  2
                                                       ⎦
3.347VSG − 4.623VSG − 7.6384 = 0
       2


        4.623 ± 21.372 + 102.263
VSG =
                2 ( 3.347 )
VSG = 2.352 V ⇒ I D ≅ 0.120 mA
VSD ≈ 8.0 V
(2)-(4)
10 − VSG = ( 63.75 )( 0.0475 ) ⎡VSG − 1.52VSG + 0.5776 ⎤
                               ⎣
                                  2
                                                       ⎦
3.028VSG − 3.603VSG − 8.251 = 0
       2


        3.603 ± 12.9816 + 99.936
VSG =
                2 ( 3.028 )
VSG = 2.35 V
 I D ≈ 0.120
VSD ≈ 8.0
(1)-(4)
10 − VSG = ( 63.75 )( 0.0525 ) ⎡VSG − 1.52VSG + 0.5776 ⎤
                               ⎣
                                  2
                                                       ⎦
3.347VSG − 4.087VSG − 8.06685 = 0
       2
4.087 ± 16.7036 + 107.999
VSG =
                2 ( 3.347 )
VSG = 2.279 V
 I D = 0.121 mA
VSD = 7.89 V
(2)-(3)
10 − VSG = ( 63.75 )( 0.0475 ) ⎡VSG − 1.68VSG + 0.7056 ⎤
                               ⎣
                                  2
                                                       ⎦
3.028VSG − 4.0873VSG − 7.8634 = 0
       2


        4.0873 ± 16.706 + 95.242
VSG =
                2 ( 3.028 )
VSG = 2.422 V
 I D = 0.119 mA
VSD = 8.11 V
Summary 0.119 ≤ I D ≤ 0.121 mA
         7.89 ≤ VSD ≤ 8.11 V

EX3.10
     V − VGS
                     I D = K n (VGS − VTN )
                                              2
I D = DD     ,
         RS
10 − VGS = (10 )( 0.2 ) (VGS − 2VGSVTN + VTN )
                           2               2


10 − VGS = 2VGS − 8VGS + 8
              2


2VGS − 7VGS − 2 = 0
   2



             (7) + 4 ( 2) 2
                2
        7±
VGS =
              2 ( 2)
Use + sign: VGS = VDS = 3.77 V
   10 − 3.77
ID =          ⇒ I D = 0.623 mA
       10
Power = I DVDS = ( 0.623)( 3.77 ) ⇒ Power = 2.35 mW

EX3.11
(a) VI = 4 V, Driver in Non ⋅ Sat.
K nD ⎣ 2 (VI − VTND ) VO − VO2 ⎦ = K nL [VDD − VO − VTNL ]
     ⎡                         ⎤
                                                          2



5 ⎡ 2 ( 4 − 1) VD − VD ⎤ = ( 5 − VD − 1) = ( 4 − VO ) = 16 − 8VO + VO2
                     2                2               2
  ⎣                    ⎦
6VD − 38VO + 16 = 0
  2


       38 ± 1444 − 384
VD =
            2 ( 6)
VD = 0.454 V
(b) VI = 2 V Driver: Sat
K nD [VI − VTND ] = K nL [VDD − VO − VTNL ]
                 2                                2



5 [ 2 − 1] = [5 − VO − 1]
         2               2



  5 = 4 − VO ⇒ VO = 1.76 V

EX3.12
If the transistor is biased in the saturation region
I D = K n (VGS − VTN ) = K n ( −VTN )
                               2         2



I D = ( 0.25 )( 2.5 ) ⇒ I D = 1.56 mA
                       2



VDS = VDD − I D RS = 10 − (1.56 )( 4 ) ⇒ VDS = 3.75
VDS > VGS − VTN = −VTN
3.75 > − ( −2.5 )
Yes — biased in the saturation region
Power = I DVDS = (1.56 )( 3.75 ) ⇒ Power = 5.85 mW

EX3.13
(a) For VI = 5 V, Load in saturation and driver in nonsaturation.
 I DD = I DL
K nD ⎡ 2 (VI − VTND ) VO − VO2 ⎤ = K nL ( −VTNL )
                                                    2
     ⎣                         ⎦
 K nD ⎡                                    K
        2 5 − 1)( 0.25 ) − ( 0.25 ) ⎤ = 4 ⇒ nD = 2.06
      ⎣ (
                                   2

 K nL                                ⎦     K nL
(b)
 I DL = K nL ( −VTNL ) ⇒ 0.2 = K nL ⎡ − ( −2 ) ⎤
                           2                        2
                                    ⎣          ⎦
K nL = 50 μ A / V 2 and K nD = 103 μ A / V 2

EX3.14
For M N
I DN = I DP
K n (VGSN − VTN ) = K p (Vscop + VTP )
                   2                         2



VGSN = 1 + ( 5 − 3.25 − 1) = 1.75 V = VI
Vo = VDSN ( sat ) = 1.75 − 1 ⇒ Vo = 0.75 V
For M P : VI = 1.75 V
              VDD − VO = VSD ( sat ) = VSGP + VTP = ( 5 − 3.25 ) − 1 = 0.75 V
              So Vot = 5 − 0.75 ⇒ Vot = 4.25 V

EX3.15
For RD = 10 k Ω, VDD = 5 V, and Vo = 1 V
      5 −1
ID =         = 0.4 mA
       10
I D = K n ⎡ 2 (VGS − VTN ) VDS − VDS ⎤
          ⎣
                                  2
                                     ⎦
I D = 0.4 = K n ⎡ 2 ( 5 − 1)(1) − (1) ⎤ ⇒ K n = 0.057 mA / V 2
                                     2
                ⎣                      ⎦
P = I D ⋅ VDS = ( 0.4 )(1) ⇒ P = 0.4 mW

EX3.16
a.  V1 = 5 V, V2 = 0, M 2 cutoff ⇒ I D 2 = 0
                                         5 − VO
I D = K n ⎣ 2 (VI − VTN ) VO − VO2 ⎦ =
          ⎡                        ⎤
                                           RD
( 0.05 )( 30 ) ⎡ 2 ( 5 − 1)V0 − V02 ⎤ = 5 − V0
               ⎣                    ⎦
1.5V02 − 13V0 + 5 = 0

               (13) − 4 (1.5 )( 5)
                    2
        13 ±
V0 =                               ⇒ V0 = 0.40 V
                 2 (1.5 )
              5 − 0.40
I R = I D1 =           ⇒ I R = I D1 = 0.153 mA
                 30
b.      V1 = V2 = 5 V
5 − VO
  RD
               {
       = 2 K n ⎡ 2 (VI − VTN ) VO − VO2 ⎤
               ⎣                        ⎦         }
5 − V0 = 2 ( 0.05 )( 30 ) ⎡ 2 ( 5 − 1)V0 − V02 ⎤
                          ⎣                    ⎦
3V02 − 25V0 + 5 = 0

               ( 25) − 4 ( 3)( 5 )
                    2
        25 ±
V0 =                               ⇒ V0 = 0.205 V
                  2 ( 3)
        5 − 0.205
IR =                ⇒ I R = 0.160 mA
             30
I D1   = I D 2 = 0.080 mA

EX3.17
M 2 & M 3 watched ⇒ I Q1 = I REF 1 = 0.4 mA
0.4 = 0.3 (VGS 3 − 1) ⇒ VGS 3 = VGS 2 = 2.15 V
                        2



0.4 = 0.6 (VGS 1 − 1) ⇒ VGS1 = 1.82 V
                        2




EX3.18
      ⎛ 0.04 ⎞
             ⎟ (15 )(VSGC − 0.6 )
                                  2
0.1 = ⎜
      ⎝ 2 ⎠
VSGC = 1.177 V = VSGB
      ⎛ 0.04 ⎞ ⎛ W ⎞
             ⎟ ⎜ ⎟ (1.177 − 0.6 )
                                  2
0.2 = ⎜
      ⎝ 2 ⎠ ⎝ L ⎠B
        ⎛W ⎞
        ⎜ ⎟ = 30
        ⎝ L ⎠B
      ⎛ 0.04 ⎞
             ⎟ ( 25 )(VSGA − 0.6 )
                                   2
0.2 = ⎜
      ⎝ 2 ⎠
      VSGA = 1.23 V

EX3.19
            I REF = K n 3 (VGS 3 − VTN ) = K n 4 (VGS 4 − VTN )
                                       2                          2
(a)
            VGS 3 = 2 V ⇒ VGS 4 = 3 V
                    K                   K      1
        ( 2 − 1) = n 4 ( 3 − 1) ⇒ n 4 =
                2                 2

                    K n3                K n3 4
              I Q = K n 2 (VGS 2 − VTN )
                                           2
(b)
        But VGS 2 = VGS 3 = 2 V
               0.1 = K n 2 ( 2 − 1) ⇒
                                  2
                                               K n 2 = 0.1 mA / V 2

        0.2 = K n 3 ( 2 − 1) ⇒ K n 3 = 0.2 mA / V 2
                            2
(c)
        0.2 = K n 4 ( 3 − 1) ⇒ K n 4 = 0.05 mA / V 2
                            2




EX3.20
5
VS 2 = 5 − 5 = 0         RS 2 =                 = 16.7 K
                                            0.3
I D 2 = K n 2 (VGS 2 − VTN 2 )
                                        2



0.3 = 0.2 (VGS 2 − 1.2 ) ⇒ VGS 2 = 2.425 V ⇒ VG 2 = VGS 2 + VS = 2.425 V
                                2


        5 − 2.425
RD1 =              = 25.8 K
            0.1
VS 1 = VG 2 − VDSQ1 = 2.425 − 5 = −2.575 V
         −2.575 − ( −5 )
RS 1 =                      ⇒ RS 1 = 24.3 K
               0.1
I D1 = K n1 (VGS 1 − VTN 1 )
                                    2



0.1 = 0.5 (VGS1 − 1.2 ) ⇒ VGS 1 = 1.647 V
                            2


VG1 = VGS 1 + VS 1 = 1.647 + ( −2.575 ) ⇒ VG1 = −0.928 V
      ⎛ R2 ⎞                 1
VG1 = ⎜         ⎟ (10 ) − 5 = ⋅ RTN ⋅ (10 ) − 5
      ⎝ R1 + R2 ⎠            R1
           1
−0.928 = ( 200 )(10 ) − 5 ⇒ R1 = 491 K
           R1
           491 R2
                   = 200 ⇒ R2 = 337 K
          491 + R2

EX3.21
VS1 = I D RS − 5 = (0.25)(16) − 5 = −1 V
I DQ = K n (VGS1 − VTN ) 2 ⇒ 0.25 = 0.5(VGS 1 − 0.8) 2 ⇒ VGS 1 = 1.507 V
VG1 = VGS 1 + VS 1 = 1.507 − 1 = 0.507 V
       ⎛       R3     ⎞                R3
VG1 = ⎜               ⎟ (5) ⇒ 0.507 =     (5) ⇒ R3 = 50.7 K
       ⎝ R1 + R2 + R3 ⎠               500
VS 2 = VS 1 + VDS1 = −1 + 2.5 = 1.5 V
VG 2 = VS 2 + VGS = 1.5 + 1.507 = 3.007 V
       ⎛ R2 + R3 ⎞                    ⎛ R2 + R3 ⎞
VG 2 = ⎜              ⎟ (5) ⇒ 3.007 = ⎜         ⎟ (5)
       ⎝ R1 + R2 + R3 ⎠               ⎝ 500 ⎠
R2 + R3 = 300.7
      R2 = 300.7 − 50.7 ⇒ R2 = 250 K
R1 = 500 − 250 − 50.7 ⇒ R1 = 199.3 K
VD 2 = VS 2 + VDS 2 = 1.5 + 2.5 = 4 V
            5−4
      RD =         ⇒ RD = 4 K
             0.25

EX3.22
VDS ( sat ) = VGS − VP = −1.2 − ( −4.5 ) ⇒ VDS ( sat ) = 3.3 V

                            ⎛ ( −1.2 ) ⎞
                        2                             2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟ = 12 ⎜ 1 −        ⇒ I D = 6.45 mA
                            ⎜ ( −4.5 ) ⎟
                                       ⎟
            ⎝    VP ⎠       ⎝          ⎠

EX3.23
Assume the transistor is biased in the saturation region.
2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                           2
       ⎛      V      ⎞
8 = 18 ⎜ 1 − GS ⎟ ⇒ VGS = −1.17 V ⇒ VS = −VGS = 1.17
       ⎜ ( −3.5 ) ⎟
       ⎝             ⎠
VD = 15 − ( 8 )( 0.8 ) = 8.6
VDS = 8.6 − (1.17 ) = 7.43 V
VDS = 7.43 > VGS − VP = −1.17 − ( −3.5 ) = 2.33
Yes, the transistor is biased in the saturation region.

EX3.24
I D = 2.5 mA
                           2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                       2
        ⎛     V ⎞
2.5 = 6 ⎜1 − GS ⎟ ⇒ VGS = −1.42 V
        ⎜ ( −4 ) ⎟
        ⎝          ⎠
VS = I D RS − 5 = ( 2.5 )( 0.25 ) − 5
VS = −4.375
 VDS = 6 ⇒ VD = 6 − 4.375 = 1.625
      5 − 1625
RD =            ⇒ RD = 1.35 kΩ
          2.5
 ( 20 )
          2

              = 2 ⇒ R1 + R2 = 200 kΩ
R1 + R2
VG = VGS + VS = −1.42 − 4.375 = −5.795
     ⎛ R2 ⎞
VG = ⎜         ⎟ ( 20 ) − 10
     ⎝ R1 + R2 ⎠
          ⎛ R ⎞
−5.795 = ⎜ 2 ⎟ ( 20 ) − 10 ⇒ R2 = 42.05 kΩ → 42 kΩ
          ⎝ 200 ⎠
R1 = 157.95 kΩ → 158 kΩ

EX3.25
                       0 − VS VGS
VS = −VGS . I D =            =
                         RS    RS
                           2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                       ⎛ V       V2 ⎞
                       2
VGS     ⎛ V ⎞
    = 6 ⎜ 1 − GS ⎟ = 6 ⎜ 1 − GS + GS ⎟
 1      ⎝     4 ⎠      ⎝     2    16 ⎠
0.375VGS − 4VGS + 6 = 0
       2


          4 ± 16 − 4 ( 0.375 )( 6 )
VGS =
                  2 ( 0.375 )
VGS = 8.86 or VGS = 1.806 V
  impossible

       VGS
ID =       = 1.806 mA
       RS
VD = I D RD − 5 = (1.81)( 0.4 ) − 5 = −4.278
VSD = VS − V0 = −1.81 − ( −4.276 ) ⇒ VSD = 2.47 V
VSD ( sat ) = VP − VGS = 4 − 1.81 = 2.19
So VSD > VSD ( sat )

EX3.26
                    R1 R2
Rin = R1 R2 =              = 100 kΩ
                   R1 + R2
I DQ = 5 mA, VS = − I DQ RS = − ( 5 )(1.2 ) = −6 V
VSDQ = 12 V ⇒ VD = VS − VSDQ
                        = −6 − 12 = −18 V
        −18 − ( −20 )
 RD =                   ⇒ RD = 0.4 kΩ
               5
                         2
             ⎛ V ⎞
                                             2
                                ⎛ V ⎞
I DQ = I DSS ⎜ 1 − GS ⎟ ⇒ 5 = 8 ⎜ 1 − GS ⎟
             ⎝    VP ⎠          ⎝     4 ⎠
VGS = 0.838 V
 VG = VGS + VS = 0.838 − 6 = −5.162
      ⎛ R2 ⎞
 VG = ⎜         ⎟ ( −20 )
      ⎝ R1 + R2 ⎠
           1
−5.162 = (100 )( −20 ) ⇒ R1 = 387 kΩ
          R1
 R1 R2
        = 100 ⇒ ( 387 ) R2 = 100 ( 387 ) + 100 R2
R1 + R2
( 387 − 100 ) R2 = (100 )( 387 ) ⇒ R2 = 135 kΩ

TYU3.1
(a)        VTN = 1.2 V , VGS = 2 V
    V DS ( sat ) = VGS − VTN = 2 − 1.2 = 0.8 V
(i) VDS = 0.4 ⇒ Nonsaturation
(ii) VDS = 1 ⇒ Saturation
(iii) VDS = 5 ⇒ Saturation
(b)          VTN = −1.2 V , VGS = 2 V
      V DS ( sat ) = VGS − VTN = 2 − ( −1.2 ) = 3.2 V
(i) VDS = 0.4 ⇒ Nonsaturation
(ii) VDS = 1 ⇒ Nonsaturation
(iii) VDS = 5 ⇒ Saturation

TYU3.2
            W μ n Cox
(a)     Kn =
                2L
            ∈ox ( 3.9 ) ( 8.85 × 10 )
                                    −14

      Cox =      =               −8
                                        = 7.67 × 10−8 F / cm
            tox       450 × 10
               (100 )( 500 ) ( 7.67 ×10−8 )
        Kn =                                ⇒ K n = 0.274 mA / V 2
                         2 (7)
(b) VTN = 1.2 V, VGS = 2 V
(i)    VDS = 0.4 V ⇒ Nonsaturation
       I D = ( 0.274 ) ⎡ 2 ( 2 − 1.2 )( 0.4 ) − ( 0.4 ) ⎤ ⇒ I D = 0.132 mA
                                                       2
                       ⎣                                 ⎦
(ii)   VDS = 1 V ⇒ Saturation
       I D = ( 0.274 )( 2 − 1.2 ) ⇒ I D = 0.175 mA
                                   2



(iii) VDS = 5 V ⇒ Saturation
       I D = ( 0.274 )( 2 − 1.2 ) ⇒ I D = 0.175 mA
                                   2



       VTN = −1.2 V , VGS = 2 V
(i)    VDS = 0.4 V ⇒ Nonsaturation
       I D = ( 0.274 ) ⎡ 2 ( 2 + 1.2 )( 0.4 ) − ( 0.4 ) ⎤ ⇒ I D = 0.658 mA
                                                       2
                       ⎣                                 ⎦
(ii)   VDS = 1 V ⇒ Nonsaturation
      I D = ( 0.274 ) ⎡ 2 ( 2 + 1.2 )(1) − (1) ⎤ ⇒ I D = 1.48 mA
                                              2
                      ⎣                         ⎦
(iii) VDS = 5 V ⇒ Saturation
       I D = ( 0.274 )( 2 + 1.2 ) ⇒ I D = 2.81 mA
                                   2




TYU3.3
(a) VSD (sat) = VSG + VTP = 2 − 1.2 = 0.8 V
       (i) Non Sat (ii) Sat      (iii) Sat
(b) VSD (sat) = 2 + 1.2 = 3.2 V
       (i) Non Sat (ii) Non Sat         (iii) Sat

TYU3.4
(a)
      ⎛ W ⎞ ⎛ μ p Cox ⎞       (3.9)(8.85 × 10−14 )
 KP = ⎜ ⎟ ⎜           ⎟ Cox =
      ⎝ L ⎠⎝ Z ⎠                  350 × 10−8
                            = 9.861× 10−8

       (40) ⎛ ( 300 ) ( 9.861× 10           )⎞
                                       −8

KP =        ⎜                                ⎟
        (2) ⎜             2                  ⎟
            ⎝                                ⎠
K P = 0.296 mA / V
                      2


(b)
(i)    I D = (0.296) ⎡ 2(2 − 1.2)(0.4) − (0.4) 2 ⎤
                     ⎣                           ⎦
          = 0.142 mA
       I D = (0.296) [ 2 − 1.2] ⇒ I D = 0.189 mA
                                2
(ii)
(iii) ID = 0.189 mA
(i) I D = (0.296) ⎡ 2 ( 2 + 1.2 )( 0.4 ) − ( 0.4 ) ⎤
                                                  2
                   ⎣                                ⎦
          = 0.710 mA
       I D = (0.296) ⎡ 2 ( 2 + 1.2 )(1) − (1) ⎤
                                             2
(ii)
                     ⎣                         ⎦
           =1.60 mA
(iii) I D = ( 0.296 )( 2 + 1.2 )
                                   2


          = 3.03 mA

TYU3.5
(a)   λ = 0, VDS ( sat ) = 2.5 − 0.8 = 1.7 V
      For VDS = 2 V , VDS = 10 V ⇒ Saturation Region
      I D = ( 0.1)( 2.5 − 0.8 ) ⇒ I D = 0.289 mA
                                      2



(b)   λ = 0.02 V −1
      I D = K n (VGS − VTN ) (1 + λVDS )
                                  2


      For VDS = 2 V
      I D = ( 0.1)( 2.5 − 0.8 ) ⎡1 + ( 0.02 )( 2 ) ⎤ ⇒ I D = 0.300 mA
                                      2
                                ⎣                  ⎦
      VDS = 10 V
      I D = ( 0.1) ⎡( 2.5 − 0.8 ) (1 + ( 0.02 )(10 ) ) ⎤ ⇒ I D = 0.347 mA
                                 2
                   ⎣                                   ⎦
(c)   For part (a), λ = 0 ⇒ ro = ∞
For part (b), λ = 0.02 V −1 ,
                                 −1                            −1
ro = ⎡λ K n (VGS − VTN ) ⎤ = ⎡( 0.02 )( 0.1)( 2.5 − 0.8 ) ⎤
                        2                                2
                                                                    or ro = 173 k Ω
     ⎣                    ⎦  ⎣                             ⎦

TYU3.6
VTN = VTNO + γ ⎡ 2φ f + VSB − 2φ f ⎤
               ⎣                   ⎦
2φ f = 0.70 V , VTNO = 1 V
(a)   VSB = 0 ⇒, VTN = 1 V
(b)   VSB = 1 V , VTN = 1 + ( 0.35 ) ⎣ 0.7 + 1 − 0.7 ⎦ ⇒ VTN = 1.16 V
                                     ⎡               ⎤

(c)   VSB = 4 V , VTN = 1 + ( 0.35 ) ⎡ 0.7 + 4 − 0.7 ⎤ ⇒ VTN = 1.47 V
                                     ⎣                ⎦

TYU3.7
I D = K n (VGS − VTN )
                         2



0.4 = 0.25 (VGS − 0.8 ) ⇒ VGS = 2.06 V
                             2


      ⎛ R2 ⎞
VGS = ⎜         ⎟ VDD
      ⎝ R1 + R2 ⎠
        ⎛ R ⎞
2.06 = ⎜ 2 ⎟ ( 7.5 ) ⇒ R2 = 68.8 kΩ
        ⎝ 250 ⎠
R1 = 181.2 kΩ
VDS = 4 = VDD − I D RD
      7.5 − 4
RD =          ⇒ RD = 8.75 kΩ
        0.4
VDS > VDS ( sat ) , Yes

TYU3.8
VS − ( −5 )
ID =                   and VS = −VGS
            RS
            5 − VGS
So RS =
              0.1
I D = K n (VGS − VTN )
                              2



0.1 = ( 0.080 )(VGS − 1.2 ) ⇒ VGS = 2.32 V
                                       2


          5 − 2.32
So RS =            ⇒ RS = 26.8 kΩ
             0.1
VDS = VD − VS ⇒ VD = VDS + VS = 4.5 − 2.32
VD = 2.18
     5 − VD 5 − 2.18
RD =       =         ⇒ RD = 28.2 kΩ
       ID      0.1
VDS > VDS ( sat ) , Yes

TYU3.9
For VDS = 2.2 V
     5 − 2.2
ID =         ⇒ I D = 0.56 mA
        5
I D = K n (VGS − VTN )
                              2



0.56 = K n ( 2.2 − 1)
                          2


                                  W μ n Cox
K n = 0.389 mA / V =                ⋅
                                  L    2
W ( 389 )( 2 )   W
  =            ⇒   = 19.4
L    ( 40 )      L

TYU3.10
(a) The transition point is

VIt =
                                   (
        VDD − VTNL + VTND 1 + K nD / K nL              )
                      1 + K nD /K nL

=
             (
     5 − 1 + 1 1 + 0.05/ 0.01              )
       1 + 0.05/ 0.01
  7.236
=         ⇒ VIt = 2.236 V
  3.236
VOt = VIt − VTND = 2.24 − 1 ⇒ VOt = 1.24 V
(b) We may write
I D = K n D (VGSD − VTND ) = ( 0.05 )( 2.236 − 1) ⇒ I D = 76.4 μ A
                                   2                       2




TYU3.11

VIt =
                                   (
        VDD − VTNL + VTND 1 + K nD /K nL           )
                      1 + K nD /K nL

2.5 =
                 (
        5 − 1 + 1 1 + K nD /K nL               )
              1 + K nD /K nL
                                                               5 − 2.5
2.5 + 2.5 K nD /K nL = 5 + K nD /K nL ⇒ K nD /K nL =                   = 1.67 ⇒ K nD /K nL = 2.78
                                                                 1.5
b.      For VI = 5, driver in nonsaturated region.
I DD = I DL
K nD ⎡ 2 (VI − VTND ) VO − VO2 ⎤ = K nL (VGSL − VTNL )
                                                         2
     ⎣                         ⎦
K nD
     ⎡ 2 (VI − VTND ) VO − VO2 ⎤ = [VDD − VO − VTNL ]
                                                     2

K nL ⎣                         ⎦

2.78 ⎡ 2 ( 5 − 1) V0 − V02 ⎤ = [5 − V0 − 1]
                                            2
     ⎣                     ⎦
22.24V0 − 2.78V02 = ( 4 − V0 )
                                   2


                         = 16 − 8V0 + V02
3.78V02 − 30.24V0 + 16 = 0

                  ( 30.24 ) − 4 ( 3.78 )(16 )
                             2
       30.24 ±
V0 =                                          ⇒ V0 = 0.57 V
                      2 ( 3.78 )

TYU3.12
We have VDS = 1.2 V < VGS − VTN = −VTN = 1.8 V
Transistor is biased in the nonsaturation region.
                                                V − VDS 5 − 1.2
I D = K n ⎣ 2 (VGS − VTN ) VDS − VDS ⎦ and I D = DD
          ⎡                       2
                                     ⎤                 =        ⇒ I D = 0.475 mA
                                                    RS     8
0.475 = K n ⎡ 2 ( 0 − ( −1.8 ) ) (1.2 ) − (1.2 ) ⎤
                                                2
            ⎣                                    ⎦
0.475 = K n ( 2.88 ) ⇒ K n = 0.165 mA/V 2
    W μ n Cox
Kn =  ⋅
    L     2
W ( 165 )( 2 )   W
  =            ⇒   = 9.43
L     35         L

TYU3.13
(a) Transition point for the load transistor – Driver is in the saturation region.
 I DD = I DL
K nD (VGSD − VTND ) = K nL (VGSL − VTNL )
                     2                          2


VDSL ( sat ) = VGSL − VTNL = −VTNL ⇒ VDSL = VDD − VOt = 2 V
Then VOt = 5 − 2 = 3 V , VOt = 3 V
  K nD
       (VIt − 1) = ( −VTNL )
  K nL
  0.08
       (VIt − 1) = 2 ⇒ VIt = 1.89 V
  0.01
(b) For the driver:
VOt = VIt − VTND
VIt = 1.89 V , VOt = 0.89 V

TYU3.14
 I D = K n ⎡ 2 (VGS − VTN ) VDS − VDS ⎤
           ⎣
                                   2
                                      ⎦
     = ( 0.050 ) ⎡ 2 (10 − 0.7 )( 0.35 ) − ( 0.35 ) ⎤
                                                   2
                 ⎣                                   ⎦
 I D = 0.319 mA
       VDD − Vo 10 − 0.35
RD =           =          ⇒ RD = 30.3 kΩ
          ID     0.319

TYU3.15
(a) Transistor biased in the nonsaturation region
5 − 1.5 − VDS
ID =                 = 12
             R
I D = K n ⎡ 2 (VGS − VTN ) VDS − VDS ⎤
          ⎣
                                  2
                                     ⎦
12 = 4 ⎡ 2 ( 5 − 0.8 ) VDS − VDS ⎤
       ⎣
                              2
                                 ⎦
4VDS − 33.6VDS + 12 = 0 ⇒ VDS = 0.374 V
  2


              5 − 1.5 − 0.374
Then R =                      ⇒ R = 261 Ω
                     12

TYU3.16
              5 − VO
a.     ID =          = K n ⎡ 2 (V2 − VTN ) VO − VO2 ⎤
                           ⎣                        ⎦
                RD
       5 − ( 0.10 )
                      = K n ⎡ 2 ( 5 − 1)( 0.10 ) − ( 0.10 ) ⎤ ⇒ K n = 0.248 mA / V 2
                                                           2

           25               ⎣                                ⎦
       5 − V0
b.            = 2 ( 0.248 ) ⎡ 2 ( 5 − 1) V0 − V02 ⎤
                            ⎣                     ⎦
         25
       5 − V0 = 12.4 ⎡8V0 − V0 ⎤
                      ⎣
                                 2
                                   ⎦
       12.4V02 − 100.2V0 + 5 = 0

                          (100.2 ) − 4 (12.4 )( 5 )
                                  2
              100.2 ±
       V0 =                                         ⇒ V0 = 0.0502 V
                            2 (12.4 )

TYU3.17
I DQ = K (VGS − VTN ) ⇒ 5 = 50 (VGS − 0.15 ) ⇒ VGS = 0.466 V
                     2                      2



VS = ( 0.005 )(10 ) = 0.050 V ⇒ VGG = VGS + VS = 0.466 + 0.050 ⇒ VGG = 0.516 V
VD = 5 − ( 0.005 )(100 ) ⇒ VD = 4.5 V
VDS = VD − VS = 4.5 − 0.050 ⇒ VDS = 4.45 V

TYU3.18
 I D = K ⎡ 2 (VGS − VTN ) VDS − VDS ⎤
         ⎣
                                 2
                                    ⎦
    = 100 ⎡ 2 ( 0.7 − 0.2 )( 0.1) − ( 0.1) ⎤
                                          2
          ⎣                                 ⎦
 ID = 9 μA
       2.5 − 0.1
RD =             ⇒ RD = 267 kΩ
        0.009

More Related Content

PDF
PDF
PDF
PDF
PDF
130 problemas dispositivos electronicos lopez meza brayan
PDF
2 a modelo 1er parcial de fisicoquimica, semestre i-2020
PDF
Defendiendo Nuestro Router CISCO
PDF
A study on mhd boundary layer flow over a nonlinear
130 problemas dispositivos electronicos lopez meza brayan
2 a modelo 1er parcial de fisicoquimica, semestre i-2020
Defendiendo Nuestro Router CISCO
A study on mhd boundary layer flow over a nonlinear

Viewers also liked (15)

PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
Ad

Similar to Ch03p (20)

PDF
PDF
PDF
PDF
PDF
PDF
PDF
05777828
PDF
Ch17p 3rd Naemen
PDF
PDF
PDF
PPS
กิจกรรมการทดลอง
PPT
Unit i
PDF
SPICE MODEL of NJM2711 in SPICE PARK
PDF
PDF
Ch17s 3rd Naemen
PDF
SPICE MODEL of NJM2741 in SPICE PARK
PDF
SPICE MODEL of KGH15N120NDA (Professional+FWDP Model) in SPICE PARK
DOC
Standard formula
PDF
SPICE MODEL of NJM2742 in SPICE PARK
05777828
Ch17p 3rd Naemen
กิจกรรมการทดลอง
Unit i
SPICE MODEL of NJM2711 in SPICE PARK
Ch17s 3rd Naemen
SPICE MODEL of NJM2741 in SPICE PARK
SPICE MODEL of KGH15N120NDA (Professional+FWDP Model) in SPICE PARK
Standard formula
SPICE MODEL of NJM2742 in SPICE PARK
Ad

Recently uploaded (20)

PDF
STKI Israel Market Study 2025 version august
PPT
What is a Computer? Input Devices /output devices
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
DP Operators-handbook-extract for the Mautical Institute
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PPTX
Chapter 5: Probability Theory and Statistics
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Web App vs Mobile App What Should You Build First.pdf
PDF
August Patch Tuesday
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
Getting Started with Data Integration: FME Form 101
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
WOOl fibre morphology and structure.pdf for textiles
STKI Israel Market Study 2025 version august
What is a Computer? Input Devices /output devices
A contest of sentiment analysis: k-nearest neighbor versus neural network
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Developing a website for English-speaking practice to English as a foreign la...
1 - Historical Antecedents, Social Consideration.pdf
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
DP Operators-handbook-extract for the Mautical Institute
gpt5_lecture_notes_comprehensive_20250812015547.pdf
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Chapter 5: Probability Theory and Statistics
Programs and apps: productivity, graphics, security and other tools
Web App vs Mobile App What Should You Build First.pdf
August Patch Tuesday
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
Zenith AI: Advanced Artificial Intelligence
Getting Started with Data Integration: FME Form 101
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
WOOl fibre morphology and structure.pdf for textiles

Ch03p

  • 1. Chapter 3 Exercise Solutions EX3.1 VTN = 1 V , VGS = 3 V , VDS = 4.5 V VDS = 4.5 > VDS ( sat ) = VGS − VTN = 3 − 1 = 2 V Transistor biased in the saturation region I D = K n (VGS − VTN ) ⇒ 0.8 = K n ( 3 − 1) ⇒ K n = 0.2 mA / V 2 2 2 (a) VGS = 2 V, VDS = 4.5 V Saturation region: I D = ( 0.2 )( 2 − 1) ⇒ I D = 0.2 mA 2 (b) VGS = 3 V, VDS = 1 V Nonsaturation region: I D = ( 0.2 ) ⎡ 2 ( 3 − 1)(1) − (1) ⎤ ⇒ I D = 0.6 mA 2 ⎣ ⎦ EX3.2 VTP = −2 V , VSG = 3 V VSD ( sat ) = VSG + VTP = 3 − 2 = 1 V (a) VSD = 0.5 V ⇒ Nonsaturation (b) VSD = 2 V ⇒ Saturation (c) VSD = 5 V ⇒ Saturation EX3.3 ⎛ R2 ⎞ ⎛ 160 ⎞ VG = ⎜ ⎟ (VDD ) = ⎜ ⎟ (10 ) = 3.636 V = VGS ⎝ R1 + R2 ⎠ ⎝ 160 + 280 ⎠ I D = 0.25 ( 3.636 − 2 ) = 0.669 mA 2 VDS = 10 − ( 0.669 )(10 ) = 3.31 V P = I DVDS = ( 0.669 )( 3.31) = 2.21 mW EX3.4 I DQ = K P (VSG + VTP ) 2 1.2 = 0.4 (VSG − 1.2 ) ⇒ VSG = 2.932 V 2 ⎛ R1 ⎞ 1 VSG = ⎜ ⎟ VDD = ⋅ VTTN − VDD ⎝ R1 + R2 ⎠ R2 Note K = kΩ 1 2.932 = ( 200 )(10 ) ⇒ R2 = 682 K R2 682 R1 = 200 ⇒ R1 = 283 K 682 + R1 10 − 4 RD = =5K 1.2 EX3.5 ⎛ R2 ⎞ ⎛ 40 ⎞ (a) VG = ⎜ ⎟ (10 ) − 5 = ⎜ ⎟ (10 ) − 5 = −1 V ⎝ R1 + R2 ⎠ ⎝ 40 + 60 ⎠ V − ( −5 ) = K n (VGS − VTN ) 2 ID = S RS VS = VG − VGS
  • 2. ( 5 − 1) − VGS = ( 0.5 )(1) (VGS − 2VGS + 1) 2 0.5VGS − 3.5 = 0 VGS = 7 VGS = 2.646 V 2 2 I D = ( 0.5 )( 2.646 − 1) ⇒ I D = 1.354 mA 2 VDS = 10 − (1.354 )( 3) = 5.937 V 4 − VGS = K n (1)(VGS − VTN ) 2 (b) (1) K n = (1.05 )( 0.5 ) = 0.525 (2) K n = ( 0.95)( 0.5 ) = 0.475 (3) VTN = (1.05 )(1) = 1.05 V (4) VTN = ( 0.95 )(1) = 0.95 V (1)-(3) 4 − VGS = 0.525 (VGS − 2.1VGS + 1.1025 ) 2 0.525VGS − 0.1025VGS − 3.421 = 0 2 0.1025 ± 0.010506 + 7.1841 VGS = = 2.652 V 2 ( 0.525 ) I D = 0.525 ( 2.652 − 1.05 ) = 1.348 mA 2 VDS = 10 − (1.348 )( 3) = 5.957 V (2)-(4) 4 − VGS = 0.475 (VGS − 1.9VGS + 0.9025 ) 2 0.475VGS + 0.0975VGS − 3.5713 = 0 2 −0.0975 ± 0.00950625 + 6.78547 VGS = 2 ( 0.475 ) VGS = 2.641 V I D = 0.475 ( 2.641 − 0.95 ) = 1.359 mA 2 VDS = 10 − (1.359 )( 3) = 5.924 V (1)-(4) 4 −VGS = ( 0.525) (VGS −1.9VGS + 0.9025) 2 0.525 VGS + 0.0025VGS − 3.5262 = 0 2 −0.0025 ± 0.00000625 + 7.40502 VGS = 2 ( 0.525) = 2.5893 V I D = ( 0.525)( 2.5893 − 0.95) = 1.411 2 VDS = 10 − I D ( 3) = 5.7678 V (2)-(3) 4 − VGS = 0.475 (VGS − 2.1VGS +1.1025 ) 2 0.475VGS + 0.0025VGS − 3.4763 = 0 2 −0.0025 ± 0.00000625 + 6.60499 VGS = 2(0.475) VGS = 2.7027 I D = (0.475)(2.7027 − 1.05) 2 = 1.2973 mA VDS = 10 − I D (3) = 6.108 V 1.297 ≤ I DQ ≤ 1.411 mA 5.768 ≤ VDS ≤ 6.108 V EX3.6
  • 3. ⎛ R2 ⎞ VG = ⎜ ⎟ (10 ) − 5 ⎝ R1 + R2 ⎠ ⎛ 200 ⎞ =⎜ ⎟ (10 ) − 5 = 0.714 V ⎝ 350 ⎠ VS = 5 − I D RS = 5 − (1.2 ) I D So VSG = VS − VG = 5 − (1.2 ) I D − 0.714 = 4.286 − (1.2 ) I D 4.286 − VSG ID = 1.2 I D = K p (VSG + VTP ) 2 ( 4.286 − VSG = (1.2 )( 0.25 ) × VSG − 2VSG ( −1) + ( −1) 2 2 ) 4.286 − VSG = ( 0.3) V − 0.6VSG + 0.3 2 SG 0.3VSG + 0.4VSG − 3.986 = 0 2 ( 0.4 ) + 4 ( 0.3)( 3.986 ) 2 −0.4 ± VSG = 2 ( 0.3) Must use + sign ⇒ VSG = 3.04 V I D = ( 0.25 )( 3.04 − 1) ⇒ I D = 1.04 mA 2 VSD = 10 − I D ( RS + RD ) = 10 − (1.04 )(1.2 + 4 ) ⇒ VSD = 4.59 V VSD > VSD ( sat ) , Yes EX3.7 VSD = 10 − I DQ ( RS + RP ) VSD = 10 − K P (VSG + VTP ) ( RS + RP ) 2 Set VSD = VSG + VTP VSG + VTP = 10 − ( 0.25 )(VSG + VTP ) ( 5.2 ) 2 1.3 (VSG + VTP ) + (VSG + VTP ) − 10 = 0 2 −1 ± 1 + 4 (1.3)(10 ) (VSG + VTP ) = 2 (1.3) = 2.415 V VSG = 3.415 V ( 3.42 V ) VSD = 2.415 V ( 2.42 V ) I D = ( 0.25 )( 2.415 ) = 1.46 mA 2 EX3.8 ⎛ R2 ⎞ ⎛ 240 ⎞ VG = ⎜ ⎟ (10 ) − 5 = ⎜ ⎟ (10 ) − 5 ⎝ R1 + R2 ⎠ ⎝ 240 + 270 ⎠ VG = −0.294 V VS − ( −5 ) VG − VGS + 5 = K n (VGS − VTN ) 2 ID = = RS RS ⎛ 0.08 ⎞ 4.706 − VGS = ⎜ ⎟ ( 4 )( 3.9 ) (VGS − 2.4VGS + 1.44 ) 2 ⎝ 2 ⎠ 0.624VGS − 0.4976VGS − 3.80744 = 0 2
  • 4. 0.4976 ± 0.2476 + 9.50337 VGS = 2 ( 0.624 ) VGS = 2.90 V ⎛ 0.08 ⎞ ⎟ ( 4 )( 2.90 − 1.2 ) ⇒ I D = 0.463 mA 2 ID = ⎜ ⎝ 2 ⎠ VDS = 10 − I D ( 3.9 + 10 ) ⇒ VDS = 3.57 V EX3.9 10 − VSG and I D = K p (VSG + VTP ) 2 ID = RS 0.12 = ( 0.050 )(VSG − 0.8 ) 2 VSG = 2.35 V 10 − 2.35 RS = ⇒ RS = 63.75 kΩ 0.12 VSD = 8 = 20 − I D ( RS + RD ) 8 = 20 − ( 0.12 )( 63.75 ) − ( 0.12 ) RD 20 − ( 0.12 )( 63.75 ) − 8 RD = ⇒ RD = 36.25 kΩ 0.12 (1) KP = ( 0.05 )(1.05 ) = 0.0525 (2) KP = ( 0.05 )( 0.95 ) = 0.0475 (3) VTP = −0.8 (1.05 ) = −0.84 V (4) VTP = −0.8 ( 0.95 ) = −0.76 V 10 − VSG = K P (VSG + VTP ) 2 ID = RS (1)-(3) 10 − VSG = ( 63.75 )( 0.0525 ) ⎡VSG − 1.68VSG + 0.7056 ⎤ ⎣ 2 ⎦ 3.347VSG − 4.623VSG − 7.6384 = 0 2 4.623 ± 21.372 + 102.263 VSG = 2 ( 3.347 ) VSG = 2.352 V ⇒ I D ≅ 0.120 mA VSD ≈ 8.0 V (2)-(4) 10 − VSG = ( 63.75 )( 0.0475 ) ⎡VSG − 1.52VSG + 0.5776 ⎤ ⎣ 2 ⎦ 3.028VSG − 3.603VSG − 8.251 = 0 2 3.603 ± 12.9816 + 99.936 VSG = 2 ( 3.028 ) VSG = 2.35 V I D ≈ 0.120 VSD ≈ 8.0 (1)-(4) 10 − VSG = ( 63.75 )( 0.0525 ) ⎡VSG − 1.52VSG + 0.5776 ⎤ ⎣ 2 ⎦ 3.347VSG − 4.087VSG − 8.06685 = 0 2
  • 5. 4.087 ± 16.7036 + 107.999 VSG = 2 ( 3.347 ) VSG = 2.279 V I D = 0.121 mA VSD = 7.89 V (2)-(3) 10 − VSG = ( 63.75 )( 0.0475 ) ⎡VSG − 1.68VSG + 0.7056 ⎤ ⎣ 2 ⎦ 3.028VSG − 4.0873VSG − 7.8634 = 0 2 4.0873 ± 16.706 + 95.242 VSG = 2 ( 3.028 ) VSG = 2.422 V I D = 0.119 mA VSD = 8.11 V Summary 0.119 ≤ I D ≤ 0.121 mA 7.89 ≤ VSD ≤ 8.11 V EX3.10 V − VGS I D = K n (VGS − VTN ) 2 I D = DD , RS 10 − VGS = (10 )( 0.2 ) (VGS − 2VGSVTN + VTN ) 2 2 10 − VGS = 2VGS − 8VGS + 8 2 2VGS − 7VGS − 2 = 0 2 (7) + 4 ( 2) 2 2 7± VGS = 2 ( 2) Use + sign: VGS = VDS = 3.77 V 10 − 3.77 ID = ⇒ I D = 0.623 mA 10 Power = I DVDS = ( 0.623)( 3.77 ) ⇒ Power = 2.35 mW EX3.11 (a) VI = 4 V, Driver in Non ⋅ Sat. K nD ⎣ 2 (VI − VTND ) VO − VO2 ⎦ = K nL [VDD − VO − VTNL ] ⎡ ⎤ 2 5 ⎡ 2 ( 4 − 1) VD − VD ⎤ = ( 5 − VD − 1) = ( 4 − VO ) = 16 − 8VO + VO2 2 2 2 ⎣ ⎦ 6VD − 38VO + 16 = 0 2 38 ± 1444 − 384 VD = 2 ( 6) VD = 0.454 V (b) VI = 2 V Driver: Sat K nD [VI − VTND ] = K nL [VDD − VO − VTNL ] 2 2 5 [ 2 − 1] = [5 − VO − 1] 2 2 5 = 4 − VO ⇒ VO = 1.76 V EX3.12 If the transistor is biased in the saturation region
  • 6. I D = K n (VGS − VTN ) = K n ( −VTN ) 2 2 I D = ( 0.25 )( 2.5 ) ⇒ I D = 1.56 mA 2 VDS = VDD − I D RS = 10 − (1.56 )( 4 ) ⇒ VDS = 3.75 VDS > VGS − VTN = −VTN 3.75 > − ( −2.5 ) Yes — biased in the saturation region Power = I DVDS = (1.56 )( 3.75 ) ⇒ Power = 5.85 mW EX3.13 (a) For VI = 5 V, Load in saturation and driver in nonsaturation. I DD = I DL K nD ⎡ 2 (VI − VTND ) VO − VO2 ⎤ = K nL ( −VTNL ) 2 ⎣ ⎦ K nD ⎡ K 2 5 − 1)( 0.25 ) − ( 0.25 ) ⎤ = 4 ⇒ nD = 2.06 ⎣ ( 2 K nL ⎦ K nL (b) I DL = K nL ( −VTNL ) ⇒ 0.2 = K nL ⎡ − ( −2 ) ⎤ 2 2 ⎣ ⎦ K nL = 50 μ A / V 2 and K nD = 103 μ A / V 2 EX3.14 For M N I DN = I DP K n (VGSN − VTN ) = K p (Vscop + VTP ) 2 2 VGSN = 1 + ( 5 − 3.25 − 1) = 1.75 V = VI Vo = VDSN ( sat ) = 1.75 − 1 ⇒ Vo = 0.75 V For M P : VI = 1.75 V VDD − VO = VSD ( sat ) = VSGP + VTP = ( 5 − 3.25 ) − 1 = 0.75 V So Vot = 5 − 0.75 ⇒ Vot = 4.25 V EX3.15 For RD = 10 k Ω, VDD = 5 V, and Vo = 1 V 5 −1 ID = = 0.4 mA 10 I D = K n ⎡ 2 (VGS − VTN ) VDS − VDS ⎤ ⎣ 2 ⎦ I D = 0.4 = K n ⎡ 2 ( 5 − 1)(1) − (1) ⎤ ⇒ K n = 0.057 mA / V 2 2 ⎣ ⎦ P = I D ⋅ VDS = ( 0.4 )(1) ⇒ P = 0.4 mW EX3.16 a. V1 = 5 V, V2 = 0, M 2 cutoff ⇒ I D 2 = 0 5 − VO I D = K n ⎣ 2 (VI − VTN ) VO − VO2 ⎦ = ⎡ ⎤ RD ( 0.05 )( 30 ) ⎡ 2 ( 5 − 1)V0 − V02 ⎤ = 5 − V0 ⎣ ⎦
  • 7. 1.5V02 − 13V0 + 5 = 0 (13) − 4 (1.5 )( 5) 2 13 ± V0 = ⇒ V0 = 0.40 V 2 (1.5 ) 5 − 0.40 I R = I D1 = ⇒ I R = I D1 = 0.153 mA 30 b. V1 = V2 = 5 V 5 − VO RD { = 2 K n ⎡ 2 (VI − VTN ) VO − VO2 ⎤ ⎣ ⎦ } 5 − V0 = 2 ( 0.05 )( 30 ) ⎡ 2 ( 5 − 1)V0 − V02 ⎤ ⎣ ⎦ 3V02 − 25V0 + 5 = 0 ( 25) − 4 ( 3)( 5 ) 2 25 ± V0 = ⇒ V0 = 0.205 V 2 ( 3) 5 − 0.205 IR = ⇒ I R = 0.160 mA 30 I D1 = I D 2 = 0.080 mA EX3.17 M 2 & M 3 watched ⇒ I Q1 = I REF 1 = 0.4 mA 0.4 = 0.3 (VGS 3 − 1) ⇒ VGS 3 = VGS 2 = 2.15 V 2 0.4 = 0.6 (VGS 1 − 1) ⇒ VGS1 = 1.82 V 2 EX3.18 ⎛ 0.04 ⎞ ⎟ (15 )(VSGC − 0.6 ) 2 0.1 = ⎜ ⎝ 2 ⎠ VSGC = 1.177 V = VSGB ⎛ 0.04 ⎞ ⎛ W ⎞ ⎟ ⎜ ⎟ (1.177 − 0.6 ) 2 0.2 = ⎜ ⎝ 2 ⎠ ⎝ L ⎠B ⎛W ⎞ ⎜ ⎟ = 30 ⎝ L ⎠B ⎛ 0.04 ⎞ ⎟ ( 25 )(VSGA − 0.6 ) 2 0.2 = ⎜ ⎝ 2 ⎠ VSGA = 1.23 V EX3.19 I REF = K n 3 (VGS 3 − VTN ) = K n 4 (VGS 4 − VTN ) 2 2 (a) VGS 3 = 2 V ⇒ VGS 4 = 3 V K K 1 ( 2 − 1) = n 4 ( 3 − 1) ⇒ n 4 = 2 2 K n3 K n3 4 I Q = K n 2 (VGS 2 − VTN ) 2 (b) But VGS 2 = VGS 3 = 2 V 0.1 = K n 2 ( 2 − 1) ⇒ 2 K n 2 = 0.1 mA / V 2 0.2 = K n 3 ( 2 − 1) ⇒ K n 3 = 0.2 mA / V 2 2 (c) 0.2 = K n 4 ( 3 − 1) ⇒ K n 4 = 0.05 mA / V 2 2 EX3.20
  • 8. 5 VS 2 = 5 − 5 = 0 RS 2 = = 16.7 K 0.3 I D 2 = K n 2 (VGS 2 − VTN 2 ) 2 0.3 = 0.2 (VGS 2 − 1.2 ) ⇒ VGS 2 = 2.425 V ⇒ VG 2 = VGS 2 + VS = 2.425 V 2 5 − 2.425 RD1 = = 25.8 K 0.1 VS 1 = VG 2 − VDSQ1 = 2.425 − 5 = −2.575 V −2.575 − ( −5 ) RS 1 = ⇒ RS 1 = 24.3 K 0.1 I D1 = K n1 (VGS 1 − VTN 1 ) 2 0.1 = 0.5 (VGS1 − 1.2 ) ⇒ VGS 1 = 1.647 V 2 VG1 = VGS 1 + VS 1 = 1.647 + ( −2.575 ) ⇒ VG1 = −0.928 V ⎛ R2 ⎞ 1 VG1 = ⎜ ⎟ (10 ) − 5 = ⋅ RTN ⋅ (10 ) − 5 ⎝ R1 + R2 ⎠ R1 1 −0.928 = ( 200 )(10 ) − 5 ⇒ R1 = 491 K R1 491 R2 = 200 ⇒ R2 = 337 K 491 + R2 EX3.21 VS1 = I D RS − 5 = (0.25)(16) − 5 = −1 V I DQ = K n (VGS1 − VTN ) 2 ⇒ 0.25 = 0.5(VGS 1 − 0.8) 2 ⇒ VGS 1 = 1.507 V VG1 = VGS 1 + VS 1 = 1.507 − 1 = 0.507 V ⎛ R3 ⎞ R3 VG1 = ⎜ ⎟ (5) ⇒ 0.507 = (5) ⇒ R3 = 50.7 K ⎝ R1 + R2 + R3 ⎠ 500 VS 2 = VS 1 + VDS1 = −1 + 2.5 = 1.5 V VG 2 = VS 2 + VGS = 1.5 + 1.507 = 3.007 V ⎛ R2 + R3 ⎞ ⎛ R2 + R3 ⎞ VG 2 = ⎜ ⎟ (5) ⇒ 3.007 = ⎜ ⎟ (5) ⎝ R1 + R2 + R3 ⎠ ⎝ 500 ⎠ R2 + R3 = 300.7 R2 = 300.7 − 50.7 ⇒ R2 = 250 K R1 = 500 − 250 − 50.7 ⇒ R1 = 199.3 K VD 2 = VS 2 + VDS 2 = 1.5 + 2.5 = 4 V 5−4 RD = ⇒ RD = 4 K 0.25 EX3.22 VDS ( sat ) = VGS − VP = −1.2 − ( −4.5 ) ⇒ VDS ( sat ) = 3.3 V ⎛ ( −1.2 ) ⎞ 2 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ = 12 ⎜ 1 − ⇒ I D = 6.45 mA ⎜ ( −4.5 ) ⎟ ⎟ ⎝ VP ⎠ ⎝ ⎠ EX3.23 Assume the transistor is biased in the saturation region.
  • 9. 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 8 = 18 ⎜ 1 − GS ⎟ ⇒ VGS = −1.17 V ⇒ VS = −VGS = 1.17 ⎜ ( −3.5 ) ⎟ ⎝ ⎠ VD = 15 − ( 8 )( 0.8 ) = 8.6 VDS = 8.6 − (1.17 ) = 7.43 V VDS = 7.43 > VGS − VP = −1.17 − ( −3.5 ) = 2.33 Yes, the transistor is biased in the saturation region. EX3.24 I D = 2.5 mA 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 2.5 = 6 ⎜1 − GS ⎟ ⇒ VGS = −1.42 V ⎜ ( −4 ) ⎟ ⎝ ⎠ VS = I D RS − 5 = ( 2.5 )( 0.25 ) − 5 VS = −4.375 VDS = 6 ⇒ VD = 6 − 4.375 = 1.625 5 − 1625 RD = ⇒ RD = 1.35 kΩ 2.5 ( 20 ) 2 = 2 ⇒ R1 + R2 = 200 kΩ R1 + R2 VG = VGS + VS = −1.42 − 4.375 = −5.795 ⎛ R2 ⎞ VG = ⎜ ⎟ ( 20 ) − 10 ⎝ R1 + R2 ⎠ ⎛ R ⎞ −5.795 = ⎜ 2 ⎟ ( 20 ) − 10 ⇒ R2 = 42.05 kΩ → 42 kΩ ⎝ 200 ⎠ R1 = 157.95 kΩ → 158 kΩ EX3.25 0 − VS VGS VS = −VGS . I D = = RS RS 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ ⎛ V V2 ⎞ 2 VGS ⎛ V ⎞ = 6 ⎜ 1 − GS ⎟ = 6 ⎜ 1 − GS + GS ⎟ 1 ⎝ 4 ⎠ ⎝ 2 16 ⎠ 0.375VGS − 4VGS + 6 = 0 2 4 ± 16 − 4 ( 0.375 )( 6 ) VGS = 2 ( 0.375 ) VGS = 8.86 or VGS = 1.806 V impossible VGS ID = = 1.806 mA RS
  • 10. VD = I D RD − 5 = (1.81)( 0.4 ) − 5 = −4.278 VSD = VS − V0 = −1.81 − ( −4.276 ) ⇒ VSD = 2.47 V VSD ( sat ) = VP − VGS = 4 − 1.81 = 2.19 So VSD > VSD ( sat ) EX3.26 R1 R2 Rin = R1 R2 = = 100 kΩ R1 + R2 I DQ = 5 mA, VS = − I DQ RS = − ( 5 )(1.2 ) = −6 V VSDQ = 12 V ⇒ VD = VS − VSDQ = −6 − 12 = −18 V −18 − ( −20 ) RD = ⇒ RD = 0.4 kΩ 5 2 ⎛ V ⎞ 2 ⎛ V ⎞ I DQ = I DSS ⎜ 1 − GS ⎟ ⇒ 5 = 8 ⎜ 1 − GS ⎟ ⎝ VP ⎠ ⎝ 4 ⎠ VGS = 0.838 V VG = VGS + VS = 0.838 − 6 = −5.162 ⎛ R2 ⎞ VG = ⎜ ⎟ ( −20 ) ⎝ R1 + R2 ⎠ 1 −5.162 = (100 )( −20 ) ⇒ R1 = 387 kΩ R1 R1 R2 = 100 ⇒ ( 387 ) R2 = 100 ( 387 ) + 100 R2 R1 + R2 ( 387 − 100 ) R2 = (100 )( 387 ) ⇒ R2 = 135 kΩ TYU3.1 (a) VTN = 1.2 V , VGS = 2 V V DS ( sat ) = VGS − VTN = 2 − 1.2 = 0.8 V (i) VDS = 0.4 ⇒ Nonsaturation (ii) VDS = 1 ⇒ Saturation (iii) VDS = 5 ⇒ Saturation (b) VTN = −1.2 V , VGS = 2 V V DS ( sat ) = VGS − VTN = 2 − ( −1.2 ) = 3.2 V (i) VDS = 0.4 ⇒ Nonsaturation (ii) VDS = 1 ⇒ Nonsaturation (iii) VDS = 5 ⇒ Saturation TYU3.2 W μ n Cox (a) Kn = 2L ∈ox ( 3.9 ) ( 8.85 × 10 ) −14 Cox = = −8 = 7.67 × 10−8 F / cm tox 450 × 10 (100 )( 500 ) ( 7.67 ×10−8 ) Kn = ⇒ K n = 0.274 mA / V 2 2 (7) (b) VTN = 1.2 V, VGS = 2 V
  • 11. (i) VDS = 0.4 V ⇒ Nonsaturation I D = ( 0.274 ) ⎡ 2 ( 2 − 1.2 )( 0.4 ) − ( 0.4 ) ⎤ ⇒ I D = 0.132 mA 2 ⎣ ⎦ (ii) VDS = 1 V ⇒ Saturation I D = ( 0.274 )( 2 − 1.2 ) ⇒ I D = 0.175 mA 2 (iii) VDS = 5 V ⇒ Saturation I D = ( 0.274 )( 2 − 1.2 ) ⇒ I D = 0.175 mA 2 VTN = −1.2 V , VGS = 2 V (i) VDS = 0.4 V ⇒ Nonsaturation I D = ( 0.274 ) ⎡ 2 ( 2 + 1.2 )( 0.4 ) − ( 0.4 ) ⎤ ⇒ I D = 0.658 mA 2 ⎣ ⎦ (ii) VDS = 1 V ⇒ Nonsaturation I D = ( 0.274 ) ⎡ 2 ( 2 + 1.2 )(1) − (1) ⎤ ⇒ I D = 1.48 mA 2 ⎣ ⎦ (iii) VDS = 5 V ⇒ Saturation I D = ( 0.274 )( 2 + 1.2 ) ⇒ I D = 2.81 mA 2 TYU3.3 (a) VSD (sat) = VSG + VTP = 2 − 1.2 = 0.8 V (i) Non Sat (ii) Sat (iii) Sat (b) VSD (sat) = 2 + 1.2 = 3.2 V (i) Non Sat (ii) Non Sat (iii) Sat TYU3.4 (a) ⎛ W ⎞ ⎛ μ p Cox ⎞ (3.9)(8.85 × 10−14 ) KP = ⎜ ⎟ ⎜ ⎟ Cox = ⎝ L ⎠⎝ Z ⎠ 350 × 10−8 = 9.861× 10−8 (40) ⎛ ( 300 ) ( 9.861× 10 )⎞ −8 KP = ⎜ ⎟ (2) ⎜ 2 ⎟ ⎝ ⎠ K P = 0.296 mA / V 2 (b) (i) I D = (0.296) ⎡ 2(2 − 1.2)(0.4) − (0.4) 2 ⎤ ⎣ ⎦ = 0.142 mA I D = (0.296) [ 2 − 1.2] ⇒ I D = 0.189 mA 2 (ii) (iii) ID = 0.189 mA (i) I D = (0.296) ⎡ 2 ( 2 + 1.2 )( 0.4 ) − ( 0.4 ) ⎤ 2 ⎣ ⎦ = 0.710 mA I D = (0.296) ⎡ 2 ( 2 + 1.2 )(1) − (1) ⎤ 2 (ii) ⎣ ⎦ =1.60 mA (iii) I D = ( 0.296 )( 2 + 1.2 ) 2 = 3.03 mA TYU3.5
  • 12. (a) λ = 0, VDS ( sat ) = 2.5 − 0.8 = 1.7 V For VDS = 2 V , VDS = 10 V ⇒ Saturation Region I D = ( 0.1)( 2.5 − 0.8 ) ⇒ I D = 0.289 mA 2 (b) λ = 0.02 V −1 I D = K n (VGS − VTN ) (1 + λVDS ) 2 For VDS = 2 V I D = ( 0.1)( 2.5 − 0.8 ) ⎡1 + ( 0.02 )( 2 ) ⎤ ⇒ I D = 0.300 mA 2 ⎣ ⎦ VDS = 10 V I D = ( 0.1) ⎡( 2.5 − 0.8 ) (1 + ( 0.02 )(10 ) ) ⎤ ⇒ I D = 0.347 mA 2 ⎣ ⎦ (c) For part (a), λ = 0 ⇒ ro = ∞ For part (b), λ = 0.02 V −1 , −1 −1 ro = ⎡λ K n (VGS − VTN ) ⎤ = ⎡( 0.02 )( 0.1)( 2.5 − 0.8 ) ⎤ 2 2 or ro = 173 k Ω ⎣ ⎦ ⎣ ⎦ TYU3.6 VTN = VTNO + γ ⎡ 2φ f + VSB − 2φ f ⎤ ⎣ ⎦ 2φ f = 0.70 V , VTNO = 1 V (a) VSB = 0 ⇒, VTN = 1 V (b) VSB = 1 V , VTN = 1 + ( 0.35 ) ⎣ 0.7 + 1 − 0.7 ⎦ ⇒ VTN = 1.16 V ⎡ ⎤ (c) VSB = 4 V , VTN = 1 + ( 0.35 ) ⎡ 0.7 + 4 − 0.7 ⎤ ⇒ VTN = 1.47 V ⎣ ⎦ TYU3.7 I D = K n (VGS − VTN ) 2 0.4 = 0.25 (VGS − 0.8 ) ⇒ VGS = 2.06 V 2 ⎛ R2 ⎞ VGS = ⎜ ⎟ VDD ⎝ R1 + R2 ⎠ ⎛ R ⎞ 2.06 = ⎜ 2 ⎟ ( 7.5 ) ⇒ R2 = 68.8 kΩ ⎝ 250 ⎠ R1 = 181.2 kΩ VDS = 4 = VDD − I D RD 7.5 − 4 RD = ⇒ RD = 8.75 kΩ 0.4 VDS > VDS ( sat ) , Yes TYU3.8
  • 13. VS − ( −5 ) ID = and VS = −VGS RS 5 − VGS So RS = 0.1 I D = K n (VGS − VTN ) 2 0.1 = ( 0.080 )(VGS − 1.2 ) ⇒ VGS = 2.32 V 2 5 − 2.32 So RS = ⇒ RS = 26.8 kΩ 0.1 VDS = VD − VS ⇒ VD = VDS + VS = 4.5 − 2.32 VD = 2.18 5 − VD 5 − 2.18 RD = = ⇒ RD = 28.2 kΩ ID 0.1 VDS > VDS ( sat ) , Yes TYU3.9 For VDS = 2.2 V 5 − 2.2 ID = ⇒ I D = 0.56 mA 5 I D = K n (VGS − VTN ) 2 0.56 = K n ( 2.2 − 1) 2 W μ n Cox K n = 0.389 mA / V = ⋅ L 2 W ( 389 )( 2 ) W = ⇒ = 19.4 L ( 40 ) L TYU3.10 (a) The transition point is VIt = ( VDD − VTNL + VTND 1 + K nD / K nL ) 1 + K nD /K nL = ( 5 − 1 + 1 1 + 0.05/ 0.01 ) 1 + 0.05/ 0.01 7.236 = ⇒ VIt = 2.236 V 3.236 VOt = VIt − VTND = 2.24 − 1 ⇒ VOt = 1.24 V (b) We may write I D = K n D (VGSD − VTND ) = ( 0.05 )( 2.236 − 1) ⇒ I D = 76.4 μ A 2 2 TYU3.11 VIt = ( VDD − VTNL + VTND 1 + K nD /K nL ) 1 + K nD /K nL 2.5 = ( 5 − 1 + 1 1 + K nD /K nL ) 1 + K nD /K nL 5 − 2.5 2.5 + 2.5 K nD /K nL = 5 + K nD /K nL ⇒ K nD /K nL = = 1.67 ⇒ K nD /K nL = 2.78 1.5 b. For VI = 5, driver in nonsaturated region.
  • 14. I DD = I DL K nD ⎡ 2 (VI − VTND ) VO − VO2 ⎤ = K nL (VGSL − VTNL ) 2 ⎣ ⎦ K nD ⎡ 2 (VI − VTND ) VO − VO2 ⎤ = [VDD − VO − VTNL ] 2 K nL ⎣ ⎦ 2.78 ⎡ 2 ( 5 − 1) V0 − V02 ⎤ = [5 − V0 − 1] 2 ⎣ ⎦ 22.24V0 − 2.78V02 = ( 4 − V0 ) 2 = 16 − 8V0 + V02 3.78V02 − 30.24V0 + 16 = 0 ( 30.24 ) − 4 ( 3.78 )(16 ) 2 30.24 ± V0 = ⇒ V0 = 0.57 V 2 ( 3.78 ) TYU3.12 We have VDS = 1.2 V < VGS − VTN = −VTN = 1.8 V Transistor is biased in the nonsaturation region. V − VDS 5 − 1.2 I D = K n ⎣ 2 (VGS − VTN ) VDS − VDS ⎦ and I D = DD ⎡ 2 ⎤ = ⇒ I D = 0.475 mA RS 8 0.475 = K n ⎡ 2 ( 0 − ( −1.8 ) ) (1.2 ) − (1.2 ) ⎤ 2 ⎣ ⎦ 0.475 = K n ( 2.88 ) ⇒ K n = 0.165 mA/V 2 W μ n Cox Kn = ⋅ L 2 W ( 165 )( 2 ) W = ⇒ = 9.43 L 35 L TYU3.13 (a) Transition point for the load transistor – Driver is in the saturation region. I DD = I DL K nD (VGSD − VTND ) = K nL (VGSL − VTNL ) 2 2 VDSL ( sat ) = VGSL − VTNL = −VTNL ⇒ VDSL = VDD − VOt = 2 V Then VOt = 5 − 2 = 3 V , VOt = 3 V K nD (VIt − 1) = ( −VTNL ) K nL 0.08 (VIt − 1) = 2 ⇒ VIt = 1.89 V 0.01 (b) For the driver: VOt = VIt − VTND VIt = 1.89 V , VOt = 0.89 V TYU3.14 I D = K n ⎡ 2 (VGS − VTN ) VDS − VDS ⎤ ⎣ 2 ⎦ = ( 0.050 ) ⎡ 2 (10 − 0.7 )( 0.35 ) − ( 0.35 ) ⎤ 2 ⎣ ⎦ I D = 0.319 mA VDD − Vo 10 − 0.35 RD = = ⇒ RD = 30.3 kΩ ID 0.319 TYU3.15 (a) Transistor biased in the nonsaturation region
  • 15. 5 − 1.5 − VDS ID = = 12 R I D = K n ⎡ 2 (VGS − VTN ) VDS − VDS ⎤ ⎣ 2 ⎦ 12 = 4 ⎡ 2 ( 5 − 0.8 ) VDS − VDS ⎤ ⎣ 2 ⎦ 4VDS − 33.6VDS + 12 = 0 ⇒ VDS = 0.374 V 2 5 − 1.5 − 0.374 Then R = ⇒ R = 261 Ω 12 TYU3.16 5 − VO a. ID = = K n ⎡ 2 (V2 − VTN ) VO − VO2 ⎤ ⎣ ⎦ RD 5 − ( 0.10 ) = K n ⎡ 2 ( 5 − 1)( 0.10 ) − ( 0.10 ) ⎤ ⇒ K n = 0.248 mA / V 2 2 25 ⎣ ⎦ 5 − V0 b. = 2 ( 0.248 ) ⎡ 2 ( 5 − 1) V0 − V02 ⎤ ⎣ ⎦ 25 5 − V0 = 12.4 ⎡8V0 − V0 ⎤ ⎣ 2 ⎦ 12.4V02 − 100.2V0 + 5 = 0 (100.2 ) − 4 (12.4 )( 5 ) 2 100.2 ± V0 = ⇒ V0 = 0.0502 V 2 (12.4 ) TYU3.17 I DQ = K (VGS − VTN ) ⇒ 5 = 50 (VGS − 0.15 ) ⇒ VGS = 0.466 V 2 2 VS = ( 0.005 )(10 ) = 0.050 V ⇒ VGG = VGS + VS = 0.466 + 0.050 ⇒ VGG = 0.516 V VD = 5 − ( 0.005 )(100 ) ⇒ VD = 4.5 V VDS = VD − VS = 4.5 − 0.050 ⇒ VDS = 4.45 V TYU3.18 I D = K ⎡ 2 (VGS − VTN ) VDS − VDS ⎤ ⎣ 2 ⎦ = 100 ⎡ 2 ( 0.7 − 0.2 )( 0.1) − ( 0.1) ⎤ 2 ⎣ ⎦ ID = 9 μA 2.5 − 0.1 RD = ⇒ RD = 267 kΩ 0.009