SlideShare a Scribd company logo
Chapter 3
Problem Solutions

3.1
     ⎛ W ⎞ ⎛ k ′ ⎞ ⎛ 10 ⎞ ⎛ 0.08 ⎞
Kn = ⎜ ⎟ ⎜ n ⎟ = ⎜      ⎟⎜       ⎟ = 0.333 mA/V
                                                2

     ⎝ L ⎠ ⎝ 2 ⎠ ⎝ 1.2 ⎠ ⎝ 2 ⎠
For VDS = 0.1 V ⇒ Non Sat Bias Region
(a)       VGS = 0 ⇒ I D = 0
          VGS = 1 V I D = 0.333 ⎡ 2 (1 − 0.8 )( 0.1) − ( 0.1) ⎤ = 0.01 mA
                                                             2
(b)
                                ⎣                              ⎦
                         I D = 0.333 ⎡ 2 ( 2 − 0.8 )( 0.1) − ( 0.1) ⎤ = 0.0767 mA
                                                                   2
(c)       VGS = 2 V
                                     ⎣                               ⎦
                         I D = 0.333 ⎡ 2 ( 3 − 0.8 )( 0.1) − ( 0.1) ⎤ = 0.143 mA
                                                                   2
(d)       VGS = 3 V
                                     ⎣                               ⎦

3.2
All in Sat region
      ⎛ 10 ⎞⎛ 0.08 ⎞
 Kn = ⎜     ⎟⎜     ⎟ = 0.333 mA/V
                                  2

      ⎝ 1.2 ⎠⎝ 2 ⎠
(a)       ID = 0
          I D = 0.333[1 − 0.8] = 0.0133 mA
                                2
(b)
          I D = 0.333[ 2 − 0.8] = 0.480 mA
                                2
(c)
          I D = 0.333[3 − 0.8] = 1.61 mA
                                2
(d)

3.3
(a)      Enhancement-mode
(b)      From Graph VT = 1.5 V
Now
 0.03 = K n ( 2 − 1.5 ) = 0.25 K n ⇒ K n = 0.12
                       2



0.15 = K n ( 3 − 1.5 ) = 2.25 K n
                     2
                                         K n = 0.0666
0.39 = K n ( 4 − 1.5 ) = 6.25 K n
                     2
                                         K n = 0.0624
0.77 = K n ( 5 − 1.5 ) = 12.25 K n
                     2
                                         K n = 0.0629
From last three, K n (Avg) = 0.0640 mA/V 2
(c)       iD (sat) = 0.0640(3.5 − 1.5) 2 ⇒ iD (sat) = 0.256 mA for VGS = 3.5 V
          iD (sat) = 0.0640(4.5 − 1.5) 2 ⇒ iD (sat) = 0.576 mA for VGS = 4.5 V

3.4
a.              VGS = 0
          VDS ( sat ) = VGS − VTN = 0 − ( −2.5 ) = 2.5 V
i.        VDS = 0.5 V ⇒ Biased in nonsaturation
           I D = (1.1) ⎡ 2 ( 0 − (−2.5) )( 0.5 ) − ( 0.5 ) ⎤ ⇒ I D = 2.48 mA
                                                          2
                       ⎣                                    ⎦
ii.       VDS = 2.5 V ⇒ Biased in saturation
            I D = (1.1) ( 0 − ( −2.5 ) ) ⇒ I D = 6.88 mA
                                     2



iii.      VDS = 5 V Same as (ii) ⇒ I D = 6.88 mA
b.         VGS = 2 V
VDS ( sat ) = 2 − ( −2.5 ) = 4.5 V
i.        VDS = 0.5 V ⇒ Nonsaturation
            I D = (1.1) ⎡ 2(2 − (−2.5))(0.5) − (0.5) 2 ⎤ ⇒ I D = 4.68 mA
                        ⎣                              ⎦
ii.           VDS = 2.5 V ⇒ Nonsaturation
                 I D = (1.1) ⎡ 2(2 − (−2.5))(2.5) − (2.5) 2 ⎤ ⇒ I D = 17.9 mA
                             ⎣                              ⎦
iii.          VDS = 5 V ⇒ Saturation
                 I D = (1.1) ( 2 − ( −2.5 ) ) ⇒ I D = 22.3 mA
                                                      2




3.5
VDS > VGS − VTN = 0 − ( −2 ) = 2 V
Biased in the saturation region
      k′ W
 I D = n ⋅ (VGS − VTN )
                         2

       2 L
      ⎛ 0.080 ⎞ ⎛ W ⎞                W
              ⎟ ⎜ ⎟ ⎡ 0 − ( −2 ) ⎤ ⇒
                                   2
1.5 = ⎜               ⎣          ⎦     = 9.375
      ⎝ 2 ⎠⎝ L ⎠                     L

3.6
                       μ n ∈ox         ( 600 )( 3.9 ) (8.85 ×10−14 )               2.071× 10−10
 ′
kn = μ n Cox =                     =                                          =
                           tox                            tox                          tox
(a)          500 A                ′
                                 kn = 41.4 μ A/V 2
(b)          250                  ′
                                 kn = 82.8 μ A/V 2
(c)          100                  ′
                                 kn = 207 μ A/V 2
(d)          50                   ′
                                 kn = 414 μ A/V 2
(e)          25                   ′
                                 kn = 828 μ A/V 2

3.7
a.
           ∈ox ( 3.9 ) ( 8.85 × 10                )⇒∈
                                            −14

Cox =           =                                               ox
                                                                     = 7.67 ×10−8 F/cm 2
           t0 x      450 × 10−8                            t0 x
           μ n Cox W
Kn =               ⋅
             2         L

        ( 650 ) ( 7.67 ×10−8 ) ⎛ ⎞
      1                         64
       =                       ⎜ ⎟
      2                        ⎝ 4 ⎠
K n = 0.399 mA / V 2
b.            VGS = VDS = 3 V ⇒ Saturation
                 I D = K n (VGS − VTN ) = ( 0.399 )( 3 − 0.8 ) ⇒ I D = 1.93 mA
                                                  2                            2




3.8
      ⎛ ω ⎞⎛ k′ ⎞
I D = ⎜ ⎟ ⎜ n ⎟ (VGS − VTN )
                             2

      ⎝ 2 ⎠⎝ 2 ⎠
     ⎛ ω ⎞ ⎛ 0.08 ⎞
                  ⎟ ( 2.5 − 1.2 ) ⇒ ω = 23.1 μ m
                                 2
1.25 ⎜      ⎟⎜
     ⎝ 1.25 ⎠ ⎝ 2 ⎠

3.9
     ∈                 ( 3.9 ) (8.85 ×10−14 )
Cox = ox          =
     t0 x                        400 × 10−8
                  = 8.63 × 10−8 F/cm 2
μ n Cox W
Kn =           ⋅
           2    L
                                ⎛W ⎞
      = ( 600 ) ( 8.63 × 10−8 ) ⎜
       1
                                      ⎟
       2                        ⎝ 2.5 ⎠
K n = (1.036 × 10−5 ) W

I D = K n (VGS − VTN )
                           2



1.2 × 10 −3 = (1.036 × 10 −5 ) W ( 5 − 1) ⇒ W = 7.24 μ m
                                          2




3.10
Biased in the saturation region in both cases.
        ′
       kp W
 I D = ⋅ (VSG + VTP )
                          2

       2 L
                   ⎛ 0.040 ⎞⎛ W ⎞
                            ⎟⎜ ⎟ ( 3 + VTP )
                                              2
(1)       0.225 = ⎜
                   ⎝   2 ⎠⎝ L ⎠
                 ⎛ 0.040 ⎞ ⎛ W ⎞
                          ⎟ ⎜ ⎟ ( 4 + VTP )
                                            2
(2)       1.40 = ⎜
                 ⎝ 2 ⎠⎝ L ⎠
Take ratio of (2) to (1):
  1.40             (4 + VTP ) 2
        = 6.222 =
 0.225             (3 + VTP ) 2
                      4 + VTP
     6.222 = 2.49 =           ⇒ VTP = −2.33 V
                      3 + VTP
             ⎛ 0.040 ⎞ ⎛ W ⎞             W
                     ⎟ ⎜ ⎟ ( 3 − 2.33) ⇒
                                      2
Then 0.225 = ⎜                             = 25.1
             ⎝ 2 ⎠⎝ L ⎠                  L

3.11
 VS = 5 V, VG = 0 ⇒ VSG = 5 V
VTP = −0.5 V ⇒ VSD ( sat ) = VSG + VTP = 5 − 0.5 = 4.5 V
a.          VD = 0 ⇒ VSD = 5 V ⇒ Biased in saturation
            I D = 2 ( 5 − 0.5 ) ⇒ I D = 40.5 mA
                               2



b.          VD = 2 V ⇒ VSD = 3 V ⇒ Nonsaturation
            I D = 2 ⎡ 2 ( 5 − 0.5 )( 3) − ( 3) ⎤ ⇒ I D = 36 mA
                                              2
                    ⎣                           ⎦
c.          VD = 4 V ⇒ VSD = 1 V ⇒ Nonsaturation
            I D = 2 ⎡ 2 ( 5 − 0.5 )(1) − (1) ⎤ ⇒ I D = 16 mA
                                            2
                    ⎣                         ⎦
d.          VD = 5 V ⇒ VSD = 0 ⇒ I D = 0

3.12
(a)        Enhancement-mode
(b)        From Graph VTP = + 0.5 V
0.45 = k p ( 2 − 0.5 ) = 2.25 K p ⇒ K p =
                       2
                                                        0.20
1.25 = k p ( 3 − 0.5 ) = 6.25 K p
                      2
                                                        0.20
2.45 = k p ( 4 − 0.5 ) = 12.25 K p
                       2
                                                        0.20
4.10 = k p ( 5 − 0.5 ) = 20.25 K p
                      2
                                                        0.202
                                              Avg K p = 0.20 mA/V 2
(c)         iD (sat) = 0.20 (3.5 − 0.5) 2 = 1.8 mA
            iD (sat) = 0.20 (4.5 − 0.5) 2 = 3.2 mA
3.13
VSD ( sat ) = VSG + VTP
(a)       VSD ( sat ) = −1 + 2 ⇒ VSD ( sat ) = 1 V
(b)       VSD ( sat ) = 0 + 2 ⇒ VSD ( sat ) = 2 V
(c)       VSD ( sat ) = 1 + 2 ⇒ VSD ( sat ) = 3 V
        ′
       kp W                     k′ W
          ⋅ (VSG + VTP ) = ⋅ ⋅ ⎡VSD ( sat ) ⎤
                          2                         2
ID =
                                  p

       2 L                       2 L   ⎣          ⎦
                ⎛ 0.040 ⎞
                        ⎟ ( 6 )(1) ⇒ I D = 0.12 mA
                                    2
(a)        ID = ⎜
                ⎝ 2 ⎠
                ⎛ 0.040 ⎞
                        ⎟ ( 6 )( 2 ) ⇒ I D = 0.48 mA
                                     2
(b)        ID = ⎜
                ⎝ 2 ⎠
                ⎛ 0.040 ⎞
                        ⎟ ( 6 )( 3) ⇒ I D = 1.08 mA
                                    2
(c)        ID = ⎜
                ⎝ 2 ⎠

3.14
VSD (sat) = VSG + VTP = 3 − 0.8 = 2.2 V
     ⎛ 15 ⎞⎛ 0.04 ⎞
KP = ⎜     ⎟⎜     ⎟ = 0.25 mA/V
                                2

     ⎝ 1.2 ⎠⎝ 2 ⎠
          VSD = 0.2 Non Sat I D = 0.25 ⎡ 2 ( 3 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ = 0.21 mA
                                                                       2
a)
                                       ⎣                                 ⎦
          VSD = 1.2 V Non Sat I D = 0.25 ⎡ 2 ( 3 − 0.8 )(1.2 ) − (1.2 ) ⎤ = 0.96 mA
                                                                       2
b)
                                          ⎣                              ⎦
c)        VSD = 2.2 V Sat I D = 0.25(3 − 0.8) = 1.21 mA
                                             2


d)        VSD = 3.2 V Sat ID = 1.21 mA
e)        VSD = 4.2 V Sat ID = 1.21 mA

3.15
                  μ p ∈ox       ( 250 )( 3.9 ) (8.85 ×10−14 )       8.629 × 10−11
  ′
k p = μ p Cox =             =                                   =
                    t0 x                    t0 x                        t0 x
(a)       tox = 500Å ⇒ k ′ = 17.3 μ A/V 2
                         p

(b)        250Å ⇒ k ′ = 34.5 μ A/V 2
                    p

(c)       100Å ⇒ k ′ = 86.3 μ A/V 2
                   p

(d)               ′
          50Å ⇒ k p = 173 μ A/V 2
(e)        25Å ⇒ k ′ = 345 μ A/V 2
                   p



3.16
      ∈ox ( 3.9 ) ( 8.85 × 10 )
                              −14

Cox =      =               −8
                                  = 6.90 × 10−8 F/cm 2
      t0 x      500 × 10
kn = ( μ n Cox ) = ( 675 ) ( 6.90 × 10−8 ) ⇒ 46.6 μ A/V 2
 ′
k ′ = ( μ p Cox ) = ( 375 ) ( 6.90 × 10−8 ) ⇒ 25.9 μ A/V 2
  p

PMOS:
k′ ⎛ W ⎞
           ⎜ ⎟ (VSG + VTP )
                            2
ID =
         p

        2 ⎝ L ⎠p
      ⎛ 0.0259 ⎞⎛ W ⎞             ⎛W ⎞
               ⎟⎜ ⎟ ( 5 − 0.6 ) ⇒ ⎜ ⎟ = 3.19
                               2
0.8 = ⎜
      ⎝ 2 ⎠⎝ L ⎠ p                ⎝ L ⎠p
L = 4 μ m ⇒ W p = 12.8 μ m
      ⎛ 0.0259 ⎞
Kp = ⎜         ⎟ ( 3.19 ) ⇒ K p = 41.3 μ A/V = K n
                                            2

      ⎝ 2 ⎠
Want Kn = Kp
 ′
kn ⎛ W ⎞     k′ ⎛ W ⎞
   ⎜ ⎟ = ⎜ ⎟ = 41.3
              p

2 ⎝ L ⎠N     2 ⎝ L ⎠p
⎛ 46.6 ⎞ ⎛ W ⎞        ⎛W ⎞
⎜      ⎟ ⎜ ⎟ = 41.3 ⇒ ⎜ ⎟ = 1.77
⎝  2 ⎠ ⎝ L ⎠N         ⎝ L ⎠N
L = 4 μ m ⇒ WN = 7.09 μ m

3.17
VGS = 2 V, I D = ( 0.2 )( 2 − 1.2 ) = 0.128 mA
                                         2


      1           1
r0 =      =                 ⇒ r0 = 781 kΩ
     λ I D ( 0.01)( 0.128 )
VGS = 4 V, I D = ( 0.2 )( 4 − 1.2 ) = 1.57 mA
                                         2


           1
r0 =               ⇒ r = 63.7 kΩ
     ( 0.01)(1.57 ) 0
        1          1
VA =        =           ⇒ VA = 100 V
        λ       ( 0.01)

3.18
     ⎛ 0.080 ⎞
             ⎟ ( 4 )( 3 − 0.8 ) = ( 0.16 )( 3 − 0.8 ) ⇒ I D = 0.774 mA
                               2                     2
ID = ⎜
     ⎝    2 ⎠
      1               1            1
r0 =      ⇒λ =            =                  ⇒ λ (max) = 0.00646 V −1
     λ ID           r0 I D ( 200 )( 0.774 )
                    1               1
VA ( min ) =                 =           ⇒ VA ( min ) = 155 V
                 λ ( max )       0.00646

3.19
VTN = VTNO + γ ⎡ 2φ f + VSB − 2φ f ⎤
               ⎣                    ⎦
ΔVTN = 2 = ( 0.8 ) ⎡ 2φ f + VSB − 2 ( 0.35 ) ⎤
                   ⎣                         ⎦
2.5 + 0.837 = 2 ( 0.35 ) + VSB ⇒ VSB = 10.4 V

3.20
       VTN = VTNo + r ⎡ 2φ f + VSB − 2φ f ⎤
                      ⎣                    ⎦
           = 0.75 + 0.6 ⎡ 2 ( 0.37 ) + 3 − 2 ( 0.37 ) ⎤
                        ⎣                             ⎦
           = 0.75 + 0.6 [1.934 − 0.860]
       VTN = 1.39 V
VDS (sat) = 2.5 − 1.39 = 1.11 V
⎛ 0.08 ⎞
            Sat Region I D = (15 ) ⎜      ⎟ ( 2.5 − 1.39 )
                                                           2
(a)
                                   ⎝ 2 ⎠
                       I D = 0.739 mA
                                ⎛ 0.08 ⎞ ⎡
            Non-Sat I D = (15 ) ⎜      ⎟ 2 ( 2.5 − 1.39 )( 0.25 ) − ( 0.25 ) ⎤
                                                                            2
(b)
                                ⎝   2 ⎠⎣                                      ⎦
                    I D = 0.296 mA

3.21
a.
VG = %ox t0 x = ( 6 × 106 )( 275 × 10−8 )
VG = 16.5 V
                    16.5
b.          VG =         ⇒ VG = 5.5 V
                     3

3.22
Want VG = ( 3)( 24 ) = %ox t0 x = ( 6 × 106 ) t0 x
t0 x = 1.2 ×10−5 cm = 1200 Angstroms

3.23
     ⎛ R2 ⎞            ⎛ 18 ⎞
VG = ⎜         ⎟ VDD = ⎜         ⎟ (10 ) = 3.6 V
     ⎝ R1 + R2 ⎠       ⎝ 18 + 32 ⎠
Assume transistor biased in saturation region
     V     V − VGS
                     = K n (VGS − VTN )
                                         2
ID = S = G
     RS        RS
3.6 − VGS = ( 0.5 )( 2 )(VGS − 0.8 )
                                                2


          = VGS − 1.6VGS + 0.64
               2


VGS − 0.6VGS − 2.96 = 0
  2



                   ( 0.6 )       + 4 ( 2.96 )
                             2
         0.6 ±
VGS =                              ⇒ VGS = 2.046 V
                       2
        VG − VGS      3.6 − 2.046
ID =                =             ⇒ I D = 0.777 mA
           RS              2
VDS = VDD − I D ( RD + RS )
       = 10 − ( 0.777 )( 4 + 2 ) ⇒ VDS = 5.34 V
VDS > VDS ( sat )

3.24
ID(mA)


        4

                    (a)



                             Q-pt


                   Q-pt
      1.67


                                    (b)


                                                 4     5 V (V)
                                                          DS
(a)            VGS = 4 V VDS (sat) = 4 − 0.8 = 3.2 V
If Sat I D = 0.25 ( 4 − 0.8 ) = 2.56
                                2


     VDS = 1.44 ×
Non-Sat
4 = I D RD + VDS = K n RD ⎣ 2 (VGS − VT ) VDS − VDS ⎦ + VDS
                          ⎡                      2
                                                    ⎤
4 = ( 0.25 )(1) ⎡ 2 ( 4 − 0.8 ) VDS − VDS ⎤ + VDS
                ⎣
                                       2
                                          ⎦
4 = 2.6VDS − 0.25VDS
                  2


0.25VDS − 2.6VDS + 4 = 0
     2


             2.6 ± 6.76 − 4
VDS =                       = 1.88 V
                 2 ( 0.25 )
      4 − 1.88
ID =           = 2.12 mA
          1
(b)       Non-Sat region
5 = I D RD + VDS = K n RD ⎡ 2 (VGS − VT )VDS − VDS ⎤ + VDS
                          ⎣
                                                2
                                                   ⎦
5 = ( 0.25 )( 3) ⎡ 2 ( 5 − 0.8 ) VDS − VDS ⎤ + VDS
                 ⎣
                                        2
                                           ⎦
5 = 7.3VDS − 0.75VDS
                  2


0.75 VDS − 7.3VDS + 5 = 0
      2


             7.3 ± 53.29 − 15
VDS =
                  2 ( 0.75 )
VDS = 0.741 V
     5 − 0.741
ID =           = 1.42 mA
         3

3.25
ID(mA)


      2.92
                    (a)



                                Q-pt
      1.25


                                                 (b)

                                           3.5         5 V (V)
                                                          SD
(a)          VSG = VDD = 3.5            VSD ( sat ) = 3.5 − 0.8 = 2.7 V
If biased in Sat region, I D = ( 0.2 )( 3.5 − 0.8 )
                                                           2


                             = 1.46 mA
VSD = 3.5 − (1.46 )(1.2 ) = 1.75 V                 ×
Biased in Non-Sat Region.
3.5 = VSD + I D RD = VSD + K p RD ⎡ 2 (VSG + VTP ) VSD − VSD ⎤
                                  ⎣
                                                           2
                                                             ⎦
3.5 = VSD + ( 0.2 )(1.2 ) ⎡ 2 ( 3.5 − 0.8 ) VSD − VSD ⎤
                          ⎣
                                                    2
                                                      ⎦
3.5 = VSD + 1.296 VSD − 0.24 VSD
                               2


0.24 VSD − 2.296 VSD + 3.5 = 0
       2


        +2.296 ± 5.272 − 3.36
VSD =                         use − sign VSD = 1.90 V
               2 ( 0.24 )
I D = ( 0.2 ) ⎡ 2 ( 3.5 − 0.8 )(1.9 ) − (1.9 ) ⎤ = 0.2 [10.26 − 3.61]
                                              2
              ⎣                                 ⎦
      3.5 − 1.90
ID =                 = 1.33 mA
          1.2
I D = 1.33 mA
(b)          VSG = VDD = 5 V VSD ( sat ) = 5 − 0.8 = 4.2 V
If Sat Region I D = ( 0.2 )( 5 − 0.8 ) = 3.53 mA, VSD < 0
                                               2


Non-Sat Region.
5 = VSD + K p RD ⎡ 2 (VSG + VTP ) VSD − VSD ⎤
                 ⎣
                                          2
                                            ⎦
5 = VSD + ( 0.2 )( 4 ) ⎡ 2 ( 5 − 0.8 ) VSD − VSD ⎤
                       ⎣
                                               2
                                                 ⎦
5 = VSD + 6.72 VSD − 0.8 VSD
                           2


0.8 VSD − 7.72 VSD + 5 = 0
      2


        7.72 ± 59.598 − 16
VSD =                      use − sign VSD = 0.698 V
              2 ( 0.8 )
       5 − 0.698
ID =             ⇒ I D = 1.08 mA
           4

3.26
     10 − VS
             = K p (VSG + VTP )
                                2
ID =
        RS
Assume transistor biased in saturation region
     ⎛ R2 ⎞
VG = ⎜         ⎟ ( 20 ) − 10
     ⎝ R1 + R2 ⎠
     ⎛ 22 ⎞
   =⎜         ⎟ ( 20 ) − 10 ⇒ VG = 4.67 V
     ⎝ 8 + 22 ⎠
VS = VG + VSG
  10 − ( 4.67 + VSG ) = (1)( 0.5 )(VSG − 2 )
                                                       2


          5.33 − VSG = 0.5 (VSG − 4VSG + 4 )
                              2


0.5VSG − VSG − 3.33 = 0
     2



               (1)       + 4 ( 0.5 )( 3.33)
                     2
        1±
VSG =                                         ⇒ VSG = 3.77 V
                         2 ( 0.5 )
10 − ( 4.67 + 3.77 )
 ID =                          ⇒ I D = 3.12 mA
                  0.5
VSD    = 20 − I D ( RS + RD )
       = 20 − ( 3.12 )( 0.5 + 2 ) ⇒ VSD = 12.2 V
VSD > VSD ( sat )

3.27
VG = 0, VSG = VS
Assume saturation region
I D = 0.4 = K p (VSG + VTP )
                             2



0.4 = ( 0.2 )(VS − 0.8 )
                           2



        0.4
VS =        + 0.8 ⇒ VS = 2.21 V
        0.2
VD = I D RD − 5 = ( 0.4 )( 5 ) − 5 = −3 V
VSD = VS − VD = 2.21 − ( −3) ⇒ VSD = 5.21 V
VSD > VSD ( sat )

3.28
VDD = I DQ RD + VDSQ + I DQ RS
                                         ⎛ k ′ ⎞⎛ W ⎞
(1) 10 = I DQ ( 5 ) + 5 + VGS and I DQ = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN )
                                                                2

                                         ⎝ 2 ⎠⎝ L ⎠
              ⎛ 0.060 ⎞ ⎛ W ⎞
                         ⎟ ⎜ ⎟ (VGS − 1.2 )
                                            2
or (2) I DQ = ⎜
              ⎝ 2 ⎠⎝ L ⎠
Let VGS = 2.5 V
Then from (1), 10 = I DQ ( 5 ) + 5 + 2.5 ⇒ I D = 0.5 mA
                     ⎛ 0.060 ⎞⎛ W ⎞               W
                             ⎟⎜ ⎟ ( 2.5 − 1.2 ) ⇒
                                               2
Then from (2), 0.5 = ⎜                              = 9.86
                     ⎝   2 ⎠⎝ L ⎠                 L
                     V      2.5
I DQ RS = VGS ⇒ RS = GS =       ⇒ RS = 5 k Ω
                     I DQ 0.5
          10
IR =            = ( 0.5 )( 0.05 ) = 0.025 mA
        R1 + R2
                     10
Then R1 + R2 =            = 400 k Ω
                    0.025
⎛ R2 ⎞                      ⎛ R2 ⎞
⎜         ⎟ (VDD ) = 2VGS ⇒ ⎜     ⎟ (10 ) = 2 ( 2.5 ) ⇒ R1 = R2 = 200 k Ω
⎝ R1 + R2 ⎠                 ⎝ 400 ⎠

3.29
             ⎛ 75 ⎞
K n = ( 25 ) ⎜ ⎟ ⇒ 0.9375 mA/V 2
             ⎝ 2⎠
     ⎛ 6 ⎞
VG = ⎜          ⎟ (10 ) − 5 = −2 V
     ⎝ 6 + 14 ⎠
(VG − VGS ) − ( −5)
                       = I D = K n (VGS − VTN )
                                                2

         RS
−2 − VGS + 5 = ( 0.9375 )( 0.5 )(VGS − 1)
                                             2


3 − VGS = 0.469 (VGS − 2VGS + 1)
                   2
0.469 VGS + 0.0625 VGS − 2.53 = 0
        2


        −0.0625 ± 0.003906 + 4.746
VGS =                              ⇒ VGS = 2.26 V
                 2 ( 0.469 )
I D = 0.9375 ( 2.26 − 1) ⇒ I D = 1.49 mA
                             2


VDS = 10 − (1.49 )(1.7 ) ⇒ VDS = 7.47 V

3.30
20 = I DQ RS + VSDQ + I DQ RD
(1) 20 = VSG + 10 + I DQ RD
        ⎛ k′ ⎞⎛ W ⎞
 I DQ = ⎜ ⎟ ⎜ ⎟ (VSG + VTP )
           p                  2

        ⎝ 2 ⎠⎝ L ⎠
            ⎛ 0.040 ⎞ ⎛ W ⎞
                    ⎟ ⎜ ⎟ (VSG − 2 )
                                     2
(2) I DQ = ⎜
            ⎝ 2 ⎠⎝ L ⎠
For example, let I DQ = 0.8 mA and VSG = 4 V
             ⎛ 0.040 ⎞ ⎛ W           ⎞            W
                                     ⎟ ( 4 − 2) ⇒
                                               2
Then 0.8 = ⎜         ⎟⎜                             = 10
             ⎝ 2 ⎠⎝ L                ⎠            L
I DQ RS = VSG ⇒ ( 0.8 ) RS           = 4 ⇒ RS = 5 k Ω
From (1) 20 = 4 + 10 + ( 0.8 ) RD ⇒ RD = 7.5 k Ω
         20
IR =           = ( 0.8 )( 0.1) ⇒ R1 + R2 = 250 k Ω
       R1 + R2
⎛ R1 ⎞
⎜          ⎟ ( 20 ) = 2VSG = ( 2 )( 4 )
⎝ R1 + R2 ⎠
  R1
     ( 20 ) = 8 ⇒ R1 = 100 k Ω, R2 = 150 k Ω
250

3.31
                    I Q = 50 = 500 (VGS − 1.2 ) ⇒ VGS = 1.516 V
                                                      2
(a)       (i)
                    VDS = 5 − ( −1.516 ) =⇒ VDS = 6.516 V
           I Q = 1 = ( 0.5 )(VGS − 1.2 ) ⇒ VGS = 2.61 V
                                             2
(ii)
          VDS = 5 − ( −2.61) ⇒ VDS = 7.61 V
(b)       (i) Same as (a) VGS = VDS = 1.516 V
(ii)      VGS = VDS = 2.61 V

3.32
I D = K n (VGS − VTN )
                         2



0.25 = ( 0.2 )(VGS − 0.6 )
                                 2



        0.25
VGS =         + 0.6 ⇒ VGS = 1.72 V ⇒ VS = −1.72 V
         0.2
VD = 9 − ( 0.25 )( 24 ) ⇒ VD = 3 V

3.33

(a)
ID(mA)



      1.0
  0.808

                               Q-pt
      0.5




                            3.81                         10 V (V)
                                                             DS

         5 −1
RD =          ⇒ RD = 8 K
         0.5
I DQ = 0.5 = 0.25 (VGS − 1.4 ) ⇒ VGS = 2.81 V
                                      2


        −2.81 − ( −5 )
RS =                  ⇒ RS = 4.38 K
              0.5
(b)          Let RD = 8.2 K, RS = 4.3 K
         −VGS − ( −5 )
                         = I D = 0.25 (VGS − 1.4 )
                                                     2
Now
               4.3
5 − VGS     = 1.075 (VGS − 2.8 VGS + 1.96 )
                       2


1.075 VGS − 2.01 VGS − 2.89 = 0
        2


         2.01 ± 4.04 + 12.427
VGS =                         ⇒ VGS = 2.82 V
               2 (1.075 )
I D = 0.25 ( 2.82 − 1.4 ) ⇒ I D = 0.504 mA
                           2


VDS = 10 − ( 0.504 )( 8.2 + 4.3) ⇒ VDS = 3.70 V
(c)          If RS = 4.3 + 10% = 4.73 K
5 − VGS = 1.18 (VGS − 2.8VGS + 1.96 )
                  2


1.18 VGS − 2.31 VGS − 2.68 = 0
       2


         2.31 ± 5.336 + 12.65
VGS =                         = 2.78 V
               2 (1.18 )
I D = ( 0.25 )( 2.78 − 1.4 ) ⇒ I D = 0.476 mA
                               2


If Rs = 4.3 − 10% = 3.87 K
5 − VGS = ( 0.9675 ) (VGS − 2.8VGS + 1.96 )
                        2


0.9675VGS − 1.71VGS − 3.10 = 0
        2


         1.71 ± 2.924 + 12.0
VGS =                        = 2.88 V
              2 ( 0.9675 )
I D = ( 0.25 )( 2.88 − 1.4 ) = 0.548 mA
                               2




3.34
VDD = VSD + I DQ R
9 = 2.5 + ( 0.1) R ⇒ R = 65 k Ω
       ⎛ k′ ⎞⎛ W ⎞
I DQ = ⎜ ⎟ ⎜ ⎟ (VSG + VTP )
           p                   2

       ⎝ 2 ⎠⎝ L ⎠
         ⎛ 0.025 ⎞ ⎛ W ⎞               W
( 0.1) = ⎜       ⎟ ⎜ ⎟ ( 2.5 − 1.5 ) ⇒
                                    2
                                         =8
         ⎝ 2 ⎠⎝      L⎠                L
Then for L = 4 μ m, W = 32 μ m
3.35
5 = I DQ RS + VSDQ = I DQ ( 2 ) + 2.5
I DQ = 1.25 mA
         10
IR =           = (1.25 )( 0.1) ⇒ R1 + R2 = 80 k Ω
       R1 + R2
I DQ = K p (VSG + VTP )
                           2


                                 1.25
1.25 = 0.5 (VSG + 1.5 ) ⇒
                           2
                                      − 1.5 = VSG
                                  0.5
VSG = 0.0811 V
VG = VS − VSG = 2.5 − 0.0811 = 2.42 V
     ⎛ R2 ⎞
VG = ⎜         ⎟ (10 ) − 5
     ⎝ R1 + R2 ⎠
       ⎛R ⎞
2.42 = ⎜ 2 ⎟ (10 ) − 5 ⇒ R2 = 59.4 k Ω, R1 = 20.6 k Ω
       ⎝ 80 ⎠

3.36

(a)
ID(mA)



  0.429


                               Q-pt




                                                      5 V (V)
                                                         SD

       VD − ( −5 )       5−2
RD =                 =        ⇒ RD = 12 K
          I DQ           0.25
     ⎛W    ⎞⎛ k′ ⎞
           ⎟ ⎜ ⎟ (VSG + VTP )
                               2
ID = ⎜
                p

     ⎝L    ⎠⎝ 2 ⎠
              ⎛ 0.035 ⎞
 0.25 = (15 ) ⎜       ⎟ (VSG − 1.2 ) ⇒ VSG = 2.18 V
                                    2

              ⎝ 2 ⎠
       5 − 2.18
 RS =            ⇒ RS = 11.3 K
         0.25
VSD = 2.18 − ( −2 ) = 4.18 V
(b)
 k ′ = 35 + 5% = 36.75 μ A/V 2
   p

            ⎛ 0.03675 ⎞                5 − VSG
I D = (15 ) ⎜         ⎟ (VSG − 1.2 ) =
                                    2

            ⎝    2    ⎠                 11.3
3.11(VSG − 2.4VSG + 1.44 ) = 5 − VSG
       2


3.11VSG − 6.46VSG − 0.522 = 0
      2
6.46 ± 41.73 + 6.49
VSG =                        = 2.155 V
               2 ( 3.11)
        5 − 2.155
ID =               = 0.252 mA
          11.3
VSD    = 10 − ( 0.252 )(12 + 11.3) = 4.13 V
k ′ = 35 − 5% = 33.25 μ A/V 2
  p

            ⎛ 0.03325 ⎞                5 − VSG
I D = (15 ) ⎜         ⎟ (VSG − 1.2 ) =
                                    2

            ⎝    2    ⎠                 11.3
2.82 (VSG − 2.4VSG + 1.44 ) = 5 − VSG
        2


2.82VSG − 5.77VSG − 0.939 = 0
      2


         5.77 ± 33.29 + 10.59
VSG =                         = 2.198 V
               2 ( 2.82 )
        5 − 2.198
ID =               = 0.248 mA
          11.3
VSD    = 10 − ( 0.248 )(12 + 11.3) = 4.22 V

3.37
        −VSD − ( −10 )         −6 + 10
ID =                     ⇒5=           ⇒ RD = 0.8 kΩ
               RD                RD
I D = K P (VSG + VTP ) ⇒ 5 = 3 (VSG − 1.75 )
                         2                          2



           5
VSG =        + 1.75 = 3.04 V ⇒ VG = −3.04
           3
     ⎛ R2 ⎞
VG = ⎜          ⎟ (10 ) − 5 = −3.04
     ⎝ R1 + R2 ⎠
Rin = R1 || R2 = 80 kΩ
1
   ⋅ ( 80 )(10 ) = 5 − 3.04 ⇒ R1 = 408 kΩ
R1
 408 R2
         = 80 ⇒ R2 = 99.5 kΩ
408 + R2

3.38
                 ⎛ 60 ⎞
(a)       K n1 = ⎜ ⎟ ( 4 ) = 120 μ A/V 2
                 ⎝ 2 ⎠
                 ⎛ 60 ⎞
         K n 2 = ⎜ ⎟ (1) = 30 μ A/V 2
                 ⎝ 2 ⎠
For vI = 1 V , M1 Sat. region, M2 Non-sat region.
I D 2 = I D1
30 ⎡ 2 ( −VTNL )( 5 − vO ) − ( 5 − vO ) ⎤ = 120 (1 − 0.8 )
                                     2                       2
   ⎣                                    ⎦
We find vO − 6.4vO + 7.16 = 0 ⇒ vO = 4.955 V
            2


(b)        For vI = 3 V , M1 Non-sat region, M2 Sat. region. I D 2 = I D1
30 ⎡ − ( −1.8 ) ⎤ = 120 ⎡ 2 ( 3 − 0.8 ) vO − vO ⎤
                    2                         2
   ⎣            ⎦       ⎣                       ⎦
We find 4vO − 17.6vO + 3.24 = 0 ⇒ vO = 0.193 V
          2


(c)        For vI = 5 V , biasing same as (b)
30 ⎡ − ( −1.8 ) ⎤ = 120 ⎡ 2 ( 5 − 0.8 ) vO − vO ⎤
                    2                         2
   ⎣            ⎦       ⎣                       ⎦
We find 4vO − 33.6vO + 3.24 = 0 ⇒ vO = 0.0976 V
          2




3.39
For vI = 5 V , M1 Non-sat region, M2 Sat. region.
I D1 = I D 2
   ′
⎛ kn ⎞ ⎛ W ⎞                                         ′
                                                  ⎛ kn ⎞ ⎛ W ⎞
⎜ 2 ⎟ ⎜ L ⎟ ⎣ 2 (VGS1 − VTN 1 ) VDS 1 − VDS 1 ⎦ = ⎜ 2 ⎟ ⎜ L ⎟ (VGS 2 − VTN 2 )
             ⎡                                ⎤
                                           2                                   2

⎝ ⎠ ⎝ ⎠1                                          ⎝ ⎠ ⎝ ⎠2
⎛ W⎞ ⎡
⎜ ⎟ ⎣ 2 ( 5 − 0.8 )( 0.15 ) − ( 0.15 ) ⎤ = (1) ⎡0 − ( −2 ) ⎤
                                       2                      2

                                         ⎦       ⎣          ⎦
⎝ L ⎠1
             ⎛W ⎞
which yields ⎜ ⎟ = 3.23
             ⎝ L ⎠1

3.40
a.        M1 and M2 in saturation
K n1 (VGS 1 − VTN 1 ) = K n 2 (VGS 2 − VTN 2 )
                     2                       2


K n1 = K n 2 , VTN 1 = VTN 2 ⇒ VGS1 = VGS 2 = 2.5 V, V0 = 2.5 V
I D = (15 )( 40 )( 2.5 − 0.8 ) ⇒ I D = 1.73 mA
                             2


b.
⎛W ⎞ ⎛W ⎞
⎜ ⎟ > ⎜ ⎟ ⇒ VGS1 < VGS 2
⎝ L ⎠1 ⎝ L ⎠ 2
40 (VGS1 − 0.8 ) = (15 )(VGS 2 − 0.8 )
                 2                       2


VGS 2 = 5 − VGS 1
1.633 (VGS 1 − 0.8 ) = ( 5 − VGS1 − 0.8 )
2.633VGS 1 = 5.506 ⇒ VGS 1 = 2.09 V
VGS 2 = 2.91 V, V0 = VGS1 = 2.91 V

I D = (15 )(15 )( 2.91 − 0.8 ) ⇒ I D = 1.0 mA
                                 2




3.41
(a)
V1 = VGS 3 = 2.5 V
            ⎛ W ⎞ ⎛ 0.06 ⎞
                         ⎟ ( 2.5 − 1.2 )
                                         2
I D = 0.5 = ⎜ ⎟ ⎜
            ⎝ L ⎠3 ⎝ 2 ⎠
⎛W ⎞
⎜ ⎟ = 9.86
⎝ L ⎠3
V2 = 6 V ⇒ VGS 2 = V2 − V1 = 6 − 2.5 = 3.5 V
      ⎛ W ⎞ ⎛ 0.06 ⎞                 ⎛W ⎞
                   ⎟ ( 3.5 − 1.2 ) ⇒ ⎜ ⎟ = 3.15
                                  2
0.5 = ⎜ ⎟ ⎜
      ⎝ L ⎠2 ⎝ 2 ⎠                   ⎝ L ⎠2
VGS1 = 10 − V2 = 10 − 6 = 4 V
        ⎛ W ⎞ ⎛ 0.06 ⎞                ⎛W ⎞
                      ⎟ ( 4 − 1.2 ) ⇒ ⎜ ⎟ = 2.13
                                   2
 0.5 = ⎜ ⎟ ⎜
        ⎝ L ⎠1 ⎝ 2 ⎠                  ⎝ L ⎠1
(b)
   ′
 kn1 = 0.06 + 5% = 0.063 mA/V 2
  ′       ′
 kn 2 = k n3 = 0.6 − 5% = 0.057 mA/V 2
                       ⎛ 0.057 ⎞
For M3: I D = ( 9.86 ) ⎜       ⎟ (V1 − 1.2 )
                                             2

                       ⎝ 2 ⎠
                       ⎛ 0.057 ⎞
For M2: I D = ( 3.15 ) ⎜       ⎟ (V2 − V1 − 1.2 )
                                                  2

                       ⎝   2 ⎠
⎛ 0.063 ⎞
For M1: I D = ( 2.13) ⎜       ⎟ (10 − V2 − 1.2 )
                                                 2

                      ⎝ 2 ⎠
0.281(V1 − 1.2 ) = 0.0898 (V2 − V1 − 1.2 ) = 0.0671( 8.8 − V2 )
                   2                          2                            2


Take square root.
0.530 (V1 − 1.2 ) = 0.300 (V2 − V1 − 1.2 ) = 0.259 ( 8.8 − V2 )
           (1) 0.830V1 = 0.300V2 + 0.276    (2) 0.559V2 = 0.300V1 + 2.64

From (2) ⇒ V2 = 0.537V1 + 4.72
Substitute into (1)
0.830V1 = 0.300 [ 0.537V1 + 4.72] + 0.276 = 0.161V1 + 1.69
V1 = 2.53 V
Then
V2 = 0.537 ( 2.53) + 4.72
V2 = 6.08 V

3.42
ML in saturation
MD in nonsaturation
⎛W ⎞                     ⎛W ⎞
⎜ ⎟ (VGSL − VTNL ) = ⎜ ⎟ ⎣ 2 (VGSD − VTND )VDSD − VDSD ⎦
                                ⎡                            ⎤
                     2                                     2

⎝ L ⎠L                   ⎝ L ⎠D
                       ⎛W ⎞
(1)( 5 − 0.1 − 0.8) = ⎜ ⎟ ⎡ 2 ( 5 − 0.8)( 0.1) − ( 0.1) ⎤
                   2                                   2

                       ⎝ L ⎠D ⎣                          ⎦
        ⎛W ⎞
16.81 = ⎜ ⎟ [ 0.83]
        ⎝ L ⎠D
⎛W ⎞
⎜ ⎟ = 20.3
⎝ L ⎠D

3.43
ML in saturation
MD in nonsaturation
⎛W ⎞                   ⎛W ⎞
⎜ ⎟ (VGSL − VTNL ) = ⎜ ⎟ ⎣ 2 (VGSD − VTND )VDSD − VDSD ⎦
                               ⎡                       ⎤
                   2                                2

⎝ L ⎠L                 ⎝ L ⎠D

(1)(1.8 ) = ⎛ ⎞ ⎡ 2 ( 5 − 0.8 )( 0.05) − ( 0.05) ⎤
         2   W                                  2
            ⎜ ⎟ ⎣                                 ⎦
            ⎝ L ⎠D
       ⎛W ⎞
3.24 = ⎜ ⎟ [ 0.4175]
       ⎝ L ⎠D
⎛W ⎞
⎜ ⎟ = 7.76
⎝ L ⎠D

3.44
      VDD − V0 5 − 0.1
ID =           =        = 0.49 mA
         RD        10
Transistor biased in nonsaturation
  I D = 0.49
                 ⎛W ⎞
     = ( 0.015 ) ⎜ ⎟ ⎡ 2 ( 4.2 − 0.8 )( 0.1) − ( 0.1) ⎤
                                                     2

                 ⎝L⎠  ⎣                                ⎦
       ⎛W ⎞                W
0.49 = ⎜ ⎟ 0.01005 ⇒           = 48.8
       ⎝L⎠                  L

3.45
5 = I D RD + Vγ + VDS
5 = (12 ) RD + 1.6 + 0.2 ⇒ RD = 267 Ω
      ⎛ k′ ⎞⎛ W ⎞
I D = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN )
                               2

      ⎝ 2 ⎠⎝ L ⎠
     ⎛ 0.040 ⎞ ⎛ W ⎞              W
              ⎟ ⎜ ⎟ ( 5 − 0.8 ) ⇒
                                2
12 = ⎜                              = 34
     ⎝    2 ⎠⎝ L ⎠                L

3.46
5 = VSD + I D RD + Vγ
5 = 0.15 + (15 ) RD + 1.6 ⇒ RD = 217 Ω
      ⎛ k′ ⎞⎛ W ⎞
I D = ⎜ ⎟ ⎜ ⎟ (VSG + VTP )
         p                    2

      ⎝ 2 ⎠⎝ L ⎠
     ⎛ 0.020 ⎞⎛ W ⎞              W
              ⎟⎜ ⎟ ( 5 − 0.8 ) ⇒
                               2
15 = ⎜                             = 85
     ⎝ 2 ⎠⎝ L ⎠                  L

3.47
(a)
 VDD − VO     ⎛W      ⎞⎛ 0.060 ⎞
           = 2⎜                ⎟ ⎡( 2 )(VGS − VTN ) VO − VO ⎤
                                                           2
                      ⎟⎜         ⎣                           ⎦
    RD        ⎝L      ⎠⎝ 2 ⎠
   5 − 0.2    ⎛W   ⎞
                   ⎟ ( 0.030 ) ⎡ 2 ( 5 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤
                                                               2
           = 2⎜
     20       ⎝L   ⎠           ⎣                                 ⎦
                     ⎛W ⎞ ⎛W ⎞ ⎛W ⎞
       0.24 = 0.0984 ⎜ ⎟ ⇒ ⎜ ⎟ = ⎜ ⎟ = 2.44
                     ⎝ L ⎠ ⎝ L ⎠1 ⎝ L ⎠ 2
(b)
 5 − VO            ⎛ 0.06 ⎞
        = ( 2.44 ) ⎜      ⎟ ⎡ 2 ( 5 − 0.8 ) VO − VO ⎤
                                                   2

   20              ⎝   2 ⎠⎣                          ⎦
5 − VO = 12.30VO − 1.464VO2
1.464VO2 − 13.30VO + 5 = 0
       13.30 ± 176.89 − 29.28
VO =
              2 (1.464 )
VO = 0.393 V

3.48
       ⎛W      ′
          ⎞ ⎛ kn ⎞
          ⎟ ⎜ ⎟ (VGS 1 − VTN )
                                    2
I Q1 = ⎜
       ⎝L ⎠1 ⎝ 2⎠
       ⎛W       ′
          ⎞ ⎛ kn ⎞
          ⎟ ⎜ ⎟ (VDS 2 ( sat ) )
                                    2
I Q1 = ⎜
       ⎝L ⎠2 ⎝ 2 ⎠
      ⎛ W ⎞ ⎛ 0.08 ⎞                ⎛W ⎞       ⎛W ⎞
                     ⎟ ( 0.5 ) ⇒ ⎜ ⎟ = 10 = ⎜ ⎟
                              2
0.1 = ⎜ ⎟ ⎜
      ⎝ L ⎠2 ⎝ 2 ⎠                  ⎝ L ⎠2     ⎝ L ⎠1
⎛ W ⎞ ⎛ 200 ⎞ ⎛ W ⎞
⎜ ⎟ =⎜         ⎟ ⎜ ⎟ = 20
⎝ L ⎠3 ⎝ 100 ⎠ ⎝ L ⎠ 2
M1 & M2 matched.
                  ⎛ 0.08 ⎞
Then 0.1 = (10 ) ⎜         ⎟ (VGS 1 − 0.25 )
                                             2

                  ⎝   2 ⎠
VGS1 = 0.75 V
VD1 = −0.75 + 2 = 1.25 V
        2.5 − 1.25
RD =               ⇒ RD = 12.5 K
           0.1
3.49
(a)
         ⎛ W ⎞ ⎛ k′ ⎞
 I Q 2 = ⎜ ⎟ ⎜ ⎟ (VSDB ( sat ) )
                   p              2

         ⎝ L ⎠B ⎝ 2 ⎠
         ⎛ W ⎞ ⎛ 0.04 ⎞                    ⎛W ⎞            ⎛W ⎞
                      ⎟ ( 0.8 ) ⇒
                               2
0.25 = ⎜ ⎟ ⎜                               ⎜ ⎟ = 19.5 = ⎜ ⎟
         ⎝ L ⎠B ⎝ 2 ⎠                      ⎝ L ⎠B          ⎝ L ⎠A
                                           ⎛W ⎞   I KQ 2 ⎛ W ⎞
                                           ⎜ ⎟ =         ⎜ ⎟
                                           ⎝ L ⎠C  IQ 2 ⎝ L ⎠B
                                                   ⎛ 100 ⎞
                                                  =⎜     ⎟ (19.5 ) = 7.81
                                                   ⎝ 250 ⎠
                    ′
          ⎛W ⎞ ⎛ kp ⎞
  I Q 2 = ⎜ ⎟ ⎜ ⎟ (VSGA + VTP )
                                    2

          ⎝ L ⎠A ⎝ 2 ⎠
                ⎛ 0.04 ⎞
 0.25 = (19.5 ) ⎜      ⎟ (VSGA − 0.5 )
                                       2

                ⎝ 2 ⎠
VSGA = 1.30 V
(b)
VDA = 1.3 − 4 = −2.7 V
       −2.7 − ( −5 )
RD =                   ⇒ RD = 9.2 K
           0.25

3.50
      ⎛W          ′
            ⎞ ⎛ kn ⎞
            ⎟ ⎜ ⎟ (VDS 2 ( sat ) )
                                   2
 IQ = ⎜
      ⎝L    ⎠2 ⎝ 2⎠
      ⎛W    ⎞ ⎛ 0.06 ⎞              ⎛W ⎞       ⎛W ⎞
                      ⎟ ( 0.5 ) ⇒ ⎜ ⎟ = 53.3 = ⎜ ⎟
                               2
0.4 = ⎜     ⎟ ⎜
      ⎝L    ⎠2 ⎝ 2 ⎠                ⎝ L ⎠2     ⎝ L ⎠1
       ⎛ W ⎞ ⎛ k′ ⎞
 I Q = ⎜ ⎟ ⎜ n ⎟ (VGS 1 − VTN )
                                   2

       ⎝ L ⎠1 ⎝ 2 ⎠
               ⎛ 0.06 ⎞
0.4 = ( 53.3) ⎜       ⎟ (VGS 1 − 0.75 )
                                        2

               ⎝ 2 ⎠
VGS1 = 1.25 V VD1 = −1.25 + 4 = 2.75 V
       5 − 2.75
RD =              ⇒ RD = 5.625 K
          0.4

3.51
VDS ( sat ) = VGS − VP
So VDS > VDS ( sat ) = −VP , I D = I DSS

3.52
VDS ( sat ) = VGS − VP = VGS + 3 = VDS ( sat )
a.         VGS = 0 ⇒ I D = I DSS = 6 mA
                                 2
                       ⎛ V ⎞
                                                  2
                                      ⎛ −1 ⎞
b.         I D = I DSS ⎜ 1 − GS ⎟ = 6 ⎜ 1 − ⎟ ⇒ I D = 2.67 mA
                       ⎝    VP ⎠      ⎝ −3 ⎠
                             2
                   ⎛ −2 ⎞
c.         I D = 6 ⎜ 1 − ⎟ ⇒ I D = 0.667 mA
                   ⎝ −3 ⎠
d.         ID = 0
3.53
                         2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                         2
            ⎛   1 ⎞
2.8 = I DSS ⎜1 − ⎟
            ⎝ VP ⎠
                             2
             ⎛   3 ⎞
0.30 = I DSS ⎜1 − ⎟
             ⎝ VP ⎠
                     2
      ⎛     1    ⎞
      ⎜1 −       ⎟
 2.8 ⎝ VP        ⎠ = 9.33
    =              2
0.30 ⎛      3    ⎞
      ⎜1 −       ⎟
      ⎝    VP    ⎠
⎛     1⎞
⎜1 −   ⎟
⎝    VP⎠ = 3.055
⎛     3⎞
⎜1 −   ⎟
⎝ VP   ⎠
    1           9.165
1−    = 3.055 −
   VP            VP
8.165
      = 2.055 ⇒ VP = 3.97 V
 VP
                                 2
            ⎛    1 ⎞
2.8 = I DSS ⎜1 −   ⎟ = I DSS ( 0.560 ) ⇒ I DSS = 5.0 mA
            ⎝ 3.97 ⎠

3.54
VS = −VGS , VSD = VS − VDD
Want VSD ≥ VSD ( sat ) = VP − VGS
VS − VDD ≥ VP − VGS − VGS − VDD ≥ VP − VGS ⇒ VDD ≤ −VP
So VDD ≤ −2.5 V
                                         2
                ⎛ V ⎞
I D = 2 = I DSS ⎜1 − GS ⎟
                ⎝   VP ⎠
                 2
      ⎛ V ⎞
2 = 6 ⎜ 1 − GS ⎟ ⇒ VGS = 1.06 V ⇒ VS = −1.06 V
      ⎝ 2.5 ⎠

3.55
I D = K n (VGS − VTN )
                             2



18.5 = K n ( 0.35 − VTN )
                                     2



86.2 = K n ( 0.5 − VTN )
                                 2


Then
                ( 0.35 − VTN )
                                                 2
18.5
     = 0.2146 =                  ⇒ VTN = 0.221 V
                ( 0.50 − VTN )
                               2
86.2

18.5 = K n ( 0.35 − 0.221) ⇒ K n = 1.11 mA / V 2
                                             2




3.56
I D = K (VGS − VTN )
                         2



250 = K ( 0.75 − 0.24 ) ⇒ K = 0.961 mA / V 2
                                     2
3.57
                            2
            ⎛ V ⎞       V     V
I D = I DSS ⎜ 1 − GS ⎟ = S = − GS
            ⎝    VP ⎠   RS     RS
                2
    ⎛ V ⎞        V
10 ⎜ 1 − GS ⎟ = − GS
    ⎝    −5 ⎠    0.2
  ⎛ 2V        V ⎞
               2
2 ⎜1 + GS + GS ⎟ = −VGS
  ⎝      5    25 ⎠
 2 2 9
   VGS + VGS + 2 = 0
25       5
2VGS + 45VGS + 50 = 0
   2



                    ( 45 ) − 4 ( 2 )( 50 )
                            2
        −45 ±
VGS =                                      ⇒ VGS   = −1.17 V
                       2 ( 2)
         VGS 1.17
ID = −      =     ⇒ I D = 5.85 mA
         RS   0.2
VD = 20 − ( 5.85 )( 2 ) = 8.3 V
VDS = VD − VS = 8.3 − 1.17 ⇒ VDS = 7.13 V

3.58
VDS = VDD − VS
8 = 10 − VS ⇒ VS = 2 V = I D RS = ( 5 ) RS ⇒ RS = 0.4 kΩ
                            2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝ VP ⎠
                        2
          ⎛ −1 ⎞
5 = I DSS ⎜1 − ⎟ Let I DSS = 10 mA
          ⎝ VP ⎠
                    2
       ⎛ −1 ⎞
5 = 10 ⎜ 1 − ⎟ ⇒ VP = −3.41 V
       ⎝ VP ⎠
VG = VGS + VS = −1 + 2 = 1 V
     ⎛ R2 ⎞           1
VG = ⎜         ⎟ VDD = ⋅ Rin ⋅ VDD
     ⎝ R1 + R2 ⎠      R1
    1
1 = ( 500 )(10 ) ⇒ R1 = 5 MΩ
   R1
 5R2
       = 0.5 ⇒ R2 = 0.556 MΩ
5 + R2

3.59
                            2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝ VP ⎠
                    2
      ⎛ V ⎞
5 = 8 ⎜ 1 − GS ⎟ ⇒ VGS = 0.838 V
      ⎝     4 ⎠
VSD = VDD − I D ( RS + RD )
    = 20 − ( 5 )( 0.5 + 2 ) ⇒ VSD = 7.5 V
VS = 20 − ( 5 )( 0.5 ) = 17.5 V
VG = VS + VGS = 17.5 + 0.838 = 18.3 V
     ⎛ R2 ⎞           1
VG = ⎜         ⎟ VDD = ⋅ Rin ⋅ VDD
     ⎝ R1 + R2 ⎠      R1
       1
18.3 = (100 ) ( 20 ) ⇒ R1 = 109 kΩ
       R1
 109 R2
         = 100 ⇒ R2 = 1.21 MΩ
109 + R2

3.60
                                2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                    2
      ⎛ V ⎞
5 = 7 ⎜ 1 − GS ⎟ ⇒ VGS = 0.465 V
      ⎝     3 ⎠
VSD = VDD − I D ( RS + RD )
6 = 12 − ( 5 )( 0.3 + RD ) ⇒ RD = 0.9 kΩ
VS = 12 − ( 5 )( 0.3) = 10.5 V
VG = VS + VGS = 10.5 + 0.465 = 10.965 V
     ⎛ R2 ⎞
VG = ⎜         ⎟ VDD
     ⎝ R1 + R2 ⎠
          ⎛ R ⎞
10.965 = ⎜ 2 ⎟ (12 ) ⇒ R2 = 91.4 kΩ ⇒ R1 = 8.6 kΩ
          ⎝ 100 ⎠

3.61
     ⎛ R2 ⎞            ⎛ 60 ⎞
VG = ⎜         ⎟ VDD = ⎜          ⎟ ( 20 ) ⇒ VG = 6 V
     ⎝ R1 + R2 ⎠       ⎝ 140 + 60 ⎠
                                2
            ⎛ V ⎞       V   V − VGS
I D = I DSS ⎜ 1 − GS ⎟ = S = G
            ⎝    VP ⎠   RS     RS
                            2
          ⎛       VGS ⎞
(8 )( 2 ) ⎜1 −
          ⎜             ⎟ = 6 − VGS
          ⎝      ( −4 ) ⎟
                        ⎠
   ⎛ V       V2 ⎞
16 ⎜ 1 + GS + GS ⎟ = 6 − VGS
   ⎝     2    16 ⎠
VGS + 9VGS + 10 = 0
  2



                  (9)       − 4 (10 )
                        2
         −9 ±
VGS =                                   ⇒ VGS = −1.30
                     2
        ⎛ ( −1.30 ) ⎞
                                    2

I D = 8 ⎜1 −
        ⎜            ⎟ ⇒ I D = 3.65 mA
        ⎝    ( −4 ) ⎟⎠
VDS = VDD − I D ( RS + RD )
       = 20 − ( 3.65 )( 2 + 2.7 )
VDS = 2.85 V
VDS > VDS ( sat ) = VGS − VP
       = −1.30 − ( −4 )
       = 2.7 V (Yes)

3.62
VDS = VDD − I D ( RS + RD )
5 = 12 − I D ( 0.5 + 1) ⇒ I D = 4.67 mA
VS = I D RS = ( 4.67 ) ( 0.5 ) ⇒ VS = 2.33 V
     ⎛ R2 ⎞            ⎛ 20 ⎞
VG = ⎜         ⎟ VDD = ⎜          ⎟ (12 ) ⇒ VG = 0.511 V
     ⎝ R1 + R2 ⎠       ⎝ 450 + 20 ⎠
VGS = VG − VS = 0.511 − 2.33 ⇒ VGS = −1.82 V
                         2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
          ⎛ ( −1.82 ) ⎞
                             2

4.67 = 10 ⎜ 1 −
          ⎜           ⎟ ⇒ VP = −5.75 V
          ⎝     VP ⎟  ⎠

3.63
                         2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟ , VGS = 0
            ⎝    VP ⎠
I D = I DSS = 4 mA
       VDD − VDS 10 − 3
RD =            =       ⇒ RD = 1.75 kΩ
          ID       4

3.64
VSD = VDD − I D RS
10 = 20 − (1) RS ⇒ RS = 10 kΩ
            VDD 20
R1 + R2 =      =     = 200 kΩ
             I   0.1
                         2
            ⎛ V ⎞
I D = I DSS ⎜ 1 − GS ⎟
            ⎝    VP ⎠
                2
      ⎛ V ⎞
1 = 2 ⎜1 − GS ⎟ ⇒ VGS = 0.586 V
      ⎝    2 ⎠
VG = VS + VGS = 10 + 0.586 = 10.586
     ⎛ R2 ⎞
VG = ⎜         ⎟ VDD
     ⎝ R1 + R2 ⎠
          ⎛ R ⎞
10.586 = ⎜ 2 ⎟ ( 20 ) ⇒ R2 = 106 kΩ
          ⎝ 200 ⎠
R1 = 94 kΩ

3.65
VDS = VDD − I D ( RS + RD )
2 = 3 − ( 0.040 )(10 + RD ) ⇒ RD = 15 kΩ
I D = K (VGS − VTN )
                       2



40 = 250 (VGS − 0.20 ) ⇒ VGS = 0.60 V
                           2



VG = VGS + VS = 0.60 + ( 0.040 )(10 ) = 1.0 V
      ⎛ R2 ⎞
VG = ⎜          ⎟ VDD
      ⎝ R1 + R2 ⎠
    ⎛ R ⎞
1 = ⎜ 2 ⎟ ( 3) ⇒ R2 = 50 kΩ
    ⎝ 150 ⎠
R1 = 100 kΩ

3.66
For VO = 0.70 V ⇒ VDS = 0.70 > VDS ( sat ) = VGS − VTN
     0.75 − 0.15 = 0.6
Biased in the saturation region
      V − VDS 3 − 0.7
I D = DD         =        ⇒ I D = 46 μ A
         RD          50
I D = K (VGS − VTN ) ⇒ 46 = K ( 0.75 − 0.15 ) ⇒ K = 128 μ A / V 2
                       2                        2

More Related Content

PDF
PDF
PDF
PDF
PDF
Tutorial solutions 2010
PDF
Nonlinear constitutive equations for gravitoelectromagnetism
PDF
Solutions of Maxwell Equation for a Lattice System with Meissner Effect
PDF
Tutorial solutions 2010
Nonlinear constitutive equations for gravitoelectromagnetism
Solutions of Maxwell Equation for a Lattice System with Meissner Effect

What's hot (20)

PDF
Fast dct algorithm using winograd’s method
PDF
PDF
130 problemas dispositivos electronicos lopez meza brayan
PDF
Solution homework2
PDF
Topic 6 kft 131
PDF
Topic 4 kft 131
PDF
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
PDF
4. Analysis 1-D self weight problem
PDF
Topic 7 kft 131
DOC
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PDF
Topic 9 kft 131
PDF
Mhd flow of a third grade fluid with heat transfer and
PDF
D03402029035
PDF
A study on mhd boundary layer flow over a nonlinear
PDF
Ch17p 3rd Naemen
PDF
i(G)-Graph - G(i) Of Some Special Graphs
PPTX
The magnetic structure of NiS2
PDF
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...
PDF
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...
Fast dct algorithm using winograd’s method
130 problemas dispositivos electronicos lopez meza brayan
Solution homework2
Topic 6 kft 131
Topic 4 kft 131
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
4. Analysis 1-D self weight problem
Topic 7 kft 131
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
Topic 9 kft 131
Mhd flow of a third grade fluid with heat transfer and
D03402029035
A study on mhd boundary layer flow over a nonlinear
Ch17p 3rd Naemen
i(G)-Graph - G(i) Of Some Special Graphs
The magnetic structure of NiS2
1.[1 5]thermally induced vibration of non-homogeneous visco-elastic plate of ...
11.thermally induced vibration of non homogeneous visco-elastic plate of vari...
Ad

Similar to Ch03s (20)

PDF
PDF
PDF
Correction subcircuits.pdf
PDF
PDF
PDF
PDF
Electic circuits fundamentals thomas floyd, david buchla 8th edition
PDF
Electic circuits fundamentals thomas floyd, david buchla 8th edition
PDF
Ch17s 3rd Naemen
PDF
newfesformu.pdf eqrrqewewewqfewfqeqwgfrfvg4w5
PDF
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway
PDF
PDF
PDF
PDF
Tutorial no. 3(1)
PDF
Solution Manual : Chapter - 01 Functions
PDF
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
PDF
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
PDF
G e hay's
PDF
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Correction subcircuits.pdf
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Ch17s 3rd Naemen
newfesformu.pdf eqrrqewewewqfewfqeqwgfrfvg4w5
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway
Tutorial no. 3(1)
Solution Manual : Chapter - 01 Functions
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
G e hay's
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Ad

More from Bilal Sarwar (19)

DOCX
Rameysoft-ftp client server, and others+
DOCX
Ramey soft
DOCX
Ramey soft
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
Rameysoft-ftp client server, and others+
Ramey soft
Ramey soft

Recently uploaded (20)

PPTX
391 Do good to your servant according to your word LORD 392 Full Redemption
PPTX
The Biography of Walter Rea walter .pptx
PDF
Printable Telugu Gospel Tract - Be Sure of Heaven.pdf
PDF
Rudrabhishek – Sacred Vedic Ritual of Lord Shiva
PPTX
What is Christianity and the whole history
PPTX
Pope kyrollos the great .pptx - Lesson deck
PPTX
Article--Non-Narrated--Davidson_The_Biblical_Account_Of_Origins_Long.pptx
PPTX
cristianity quiz.pptx introduction to world religion
PPTX
what is islam and the founder, history and where they from
PDF
Life of Saint John Gabriel Perboyre, C.M.
PDF
Spiritual Life Blossoms When Truly Know Him - Slideshow
PDF
UNIT PROGRAM ACTIVITIES.hfhhfhfhfhfhfhfh.pdf
PDF
_OceanofPDF.com_Ayurveda_and_the_mind_-_Dr_David_Frawley.pdf
PPTX
God, His Creation, His Game and Service to Him.pptx
PPTX
Why God? a Beginning Course on Apologetics - Part 1
PPTX
Biography of frederick wheeler and John Andrews.pptx
PPTX
Sabbath School Lesson 7, 3rd Quarter 2025.pptx
PDF
Light-On-Life-s-Difficulties-by-james-Allen.pdf
PPTX
Sabbath school lesson 3rd quarter en_2025t309.pptx
PPTX
The Three Laws- Doctrine of Salvation in Christianity
391 Do good to your servant according to your word LORD 392 Full Redemption
The Biography of Walter Rea walter .pptx
Printable Telugu Gospel Tract - Be Sure of Heaven.pdf
Rudrabhishek – Sacred Vedic Ritual of Lord Shiva
What is Christianity and the whole history
Pope kyrollos the great .pptx - Lesson deck
Article--Non-Narrated--Davidson_The_Biblical_Account_Of_Origins_Long.pptx
cristianity quiz.pptx introduction to world religion
what is islam and the founder, history and where they from
Life of Saint John Gabriel Perboyre, C.M.
Spiritual Life Blossoms When Truly Know Him - Slideshow
UNIT PROGRAM ACTIVITIES.hfhhfhfhfhfhfhfh.pdf
_OceanofPDF.com_Ayurveda_and_the_mind_-_Dr_David_Frawley.pdf
God, His Creation, His Game and Service to Him.pptx
Why God? a Beginning Course on Apologetics - Part 1
Biography of frederick wheeler and John Andrews.pptx
Sabbath School Lesson 7, 3rd Quarter 2025.pptx
Light-On-Life-s-Difficulties-by-james-Allen.pdf
Sabbath school lesson 3rd quarter en_2025t309.pptx
The Three Laws- Doctrine of Salvation in Christianity

Ch03s

  • 1. Chapter 3 Problem Solutions 3.1 ⎛ W ⎞ ⎛ k ′ ⎞ ⎛ 10 ⎞ ⎛ 0.08 ⎞ Kn = ⎜ ⎟ ⎜ n ⎟ = ⎜ ⎟⎜ ⎟ = 0.333 mA/V 2 ⎝ L ⎠ ⎝ 2 ⎠ ⎝ 1.2 ⎠ ⎝ 2 ⎠ For VDS = 0.1 V ⇒ Non Sat Bias Region (a) VGS = 0 ⇒ I D = 0 VGS = 1 V I D = 0.333 ⎡ 2 (1 − 0.8 )( 0.1) − ( 0.1) ⎤ = 0.01 mA 2 (b) ⎣ ⎦ I D = 0.333 ⎡ 2 ( 2 − 0.8 )( 0.1) − ( 0.1) ⎤ = 0.0767 mA 2 (c) VGS = 2 V ⎣ ⎦ I D = 0.333 ⎡ 2 ( 3 − 0.8 )( 0.1) − ( 0.1) ⎤ = 0.143 mA 2 (d) VGS = 3 V ⎣ ⎦ 3.2 All in Sat region ⎛ 10 ⎞⎛ 0.08 ⎞ Kn = ⎜ ⎟⎜ ⎟ = 0.333 mA/V 2 ⎝ 1.2 ⎠⎝ 2 ⎠ (a) ID = 0 I D = 0.333[1 − 0.8] = 0.0133 mA 2 (b) I D = 0.333[ 2 − 0.8] = 0.480 mA 2 (c) I D = 0.333[3 − 0.8] = 1.61 mA 2 (d) 3.3 (a) Enhancement-mode (b) From Graph VT = 1.5 V Now 0.03 = K n ( 2 − 1.5 ) = 0.25 K n ⇒ K n = 0.12 2 0.15 = K n ( 3 − 1.5 ) = 2.25 K n 2 K n = 0.0666 0.39 = K n ( 4 − 1.5 ) = 6.25 K n 2 K n = 0.0624 0.77 = K n ( 5 − 1.5 ) = 12.25 K n 2 K n = 0.0629 From last three, K n (Avg) = 0.0640 mA/V 2 (c) iD (sat) = 0.0640(3.5 − 1.5) 2 ⇒ iD (sat) = 0.256 mA for VGS = 3.5 V iD (sat) = 0.0640(4.5 − 1.5) 2 ⇒ iD (sat) = 0.576 mA for VGS = 4.5 V 3.4 a. VGS = 0 VDS ( sat ) = VGS − VTN = 0 − ( −2.5 ) = 2.5 V i. VDS = 0.5 V ⇒ Biased in nonsaturation I D = (1.1) ⎡ 2 ( 0 − (−2.5) )( 0.5 ) − ( 0.5 ) ⎤ ⇒ I D = 2.48 mA 2 ⎣ ⎦ ii. VDS = 2.5 V ⇒ Biased in saturation I D = (1.1) ( 0 − ( −2.5 ) ) ⇒ I D = 6.88 mA 2 iii. VDS = 5 V Same as (ii) ⇒ I D = 6.88 mA b. VGS = 2 V VDS ( sat ) = 2 − ( −2.5 ) = 4.5 V i. VDS = 0.5 V ⇒ Nonsaturation I D = (1.1) ⎡ 2(2 − (−2.5))(0.5) − (0.5) 2 ⎤ ⇒ I D = 4.68 mA ⎣ ⎦
  • 2. ii. VDS = 2.5 V ⇒ Nonsaturation I D = (1.1) ⎡ 2(2 − (−2.5))(2.5) − (2.5) 2 ⎤ ⇒ I D = 17.9 mA ⎣ ⎦ iii. VDS = 5 V ⇒ Saturation I D = (1.1) ( 2 − ( −2.5 ) ) ⇒ I D = 22.3 mA 2 3.5 VDS > VGS − VTN = 0 − ( −2 ) = 2 V Biased in the saturation region k′ W I D = n ⋅ (VGS − VTN ) 2 2 L ⎛ 0.080 ⎞ ⎛ W ⎞ W ⎟ ⎜ ⎟ ⎡ 0 − ( −2 ) ⎤ ⇒ 2 1.5 = ⎜ ⎣ ⎦ = 9.375 ⎝ 2 ⎠⎝ L ⎠ L 3.6 μ n ∈ox ( 600 )( 3.9 ) (8.85 ×10−14 ) 2.071× 10−10 ′ kn = μ n Cox = = = tox tox tox (a) 500 A ′ kn = 41.4 μ A/V 2 (b) 250 ′ kn = 82.8 μ A/V 2 (c) 100 ′ kn = 207 μ A/V 2 (d) 50 ′ kn = 414 μ A/V 2 (e) 25 ′ kn = 828 μ A/V 2 3.7 a. ∈ox ( 3.9 ) ( 8.85 × 10 )⇒∈ −14 Cox = = ox = 7.67 ×10−8 F/cm 2 t0 x 450 × 10−8 t0 x μ n Cox W Kn = ⋅ 2 L ( 650 ) ( 7.67 ×10−8 ) ⎛ ⎞ 1 64 = ⎜ ⎟ 2 ⎝ 4 ⎠ K n = 0.399 mA / V 2 b. VGS = VDS = 3 V ⇒ Saturation I D = K n (VGS − VTN ) = ( 0.399 )( 3 − 0.8 ) ⇒ I D = 1.93 mA 2 2 3.8 ⎛ ω ⎞⎛ k′ ⎞ I D = ⎜ ⎟ ⎜ n ⎟ (VGS − VTN ) 2 ⎝ 2 ⎠⎝ 2 ⎠ ⎛ ω ⎞ ⎛ 0.08 ⎞ ⎟ ( 2.5 − 1.2 ) ⇒ ω = 23.1 μ m 2 1.25 ⎜ ⎟⎜ ⎝ 1.25 ⎠ ⎝ 2 ⎠ 3.9 ∈ ( 3.9 ) (8.85 ×10−14 ) Cox = ox = t0 x 400 × 10−8 = 8.63 × 10−8 F/cm 2
  • 3. μ n Cox W Kn = ⋅ 2 L ⎛W ⎞ = ( 600 ) ( 8.63 × 10−8 ) ⎜ 1 ⎟ 2 ⎝ 2.5 ⎠ K n = (1.036 × 10−5 ) W I D = K n (VGS − VTN ) 2 1.2 × 10 −3 = (1.036 × 10 −5 ) W ( 5 − 1) ⇒ W = 7.24 μ m 2 3.10 Biased in the saturation region in both cases. ′ kp W I D = ⋅ (VSG + VTP ) 2 2 L ⎛ 0.040 ⎞⎛ W ⎞ ⎟⎜ ⎟ ( 3 + VTP ) 2 (1) 0.225 = ⎜ ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.040 ⎞ ⎛ W ⎞ ⎟ ⎜ ⎟ ( 4 + VTP ) 2 (2) 1.40 = ⎜ ⎝ 2 ⎠⎝ L ⎠ Take ratio of (2) to (1): 1.40 (4 + VTP ) 2 = 6.222 = 0.225 (3 + VTP ) 2 4 + VTP 6.222 = 2.49 = ⇒ VTP = −2.33 V 3 + VTP ⎛ 0.040 ⎞ ⎛ W ⎞ W ⎟ ⎜ ⎟ ( 3 − 2.33) ⇒ 2 Then 0.225 = ⎜ = 25.1 ⎝ 2 ⎠⎝ L ⎠ L 3.11 VS = 5 V, VG = 0 ⇒ VSG = 5 V VTP = −0.5 V ⇒ VSD ( sat ) = VSG + VTP = 5 − 0.5 = 4.5 V a. VD = 0 ⇒ VSD = 5 V ⇒ Biased in saturation I D = 2 ( 5 − 0.5 ) ⇒ I D = 40.5 mA 2 b. VD = 2 V ⇒ VSD = 3 V ⇒ Nonsaturation I D = 2 ⎡ 2 ( 5 − 0.5 )( 3) − ( 3) ⎤ ⇒ I D = 36 mA 2 ⎣ ⎦ c. VD = 4 V ⇒ VSD = 1 V ⇒ Nonsaturation I D = 2 ⎡ 2 ( 5 − 0.5 )(1) − (1) ⎤ ⇒ I D = 16 mA 2 ⎣ ⎦ d. VD = 5 V ⇒ VSD = 0 ⇒ I D = 0 3.12 (a) Enhancement-mode (b) From Graph VTP = + 0.5 V 0.45 = k p ( 2 − 0.5 ) = 2.25 K p ⇒ K p = 2 0.20 1.25 = k p ( 3 − 0.5 ) = 6.25 K p 2 0.20 2.45 = k p ( 4 − 0.5 ) = 12.25 K p 2 0.20 4.10 = k p ( 5 − 0.5 ) = 20.25 K p 2 0.202 Avg K p = 0.20 mA/V 2 (c) iD (sat) = 0.20 (3.5 − 0.5) 2 = 1.8 mA iD (sat) = 0.20 (4.5 − 0.5) 2 = 3.2 mA
  • 4. 3.13 VSD ( sat ) = VSG + VTP (a) VSD ( sat ) = −1 + 2 ⇒ VSD ( sat ) = 1 V (b) VSD ( sat ) = 0 + 2 ⇒ VSD ( sat ) = 2 V (c) VSD ( sat ) = 1 + 2 ⇒ VSD ( sat ) = 3 V ′ kp W k′ W ⋅ (VSG + VTP ) = ⋅ ⋅ ⎡VSD ( sat ) ⎤ 2 2 ID = p 2 L 2 L ⎣ ⎦ ⎛ 0.040 ⎞ ⎟ ( 6 )(1) ⇒ I D = 0.12 mA 2 (a) ID = ⎜ ⎝ 2 ⎠ ⎛ 0.040 ⎞ ⎟ ( 6 )( 2 ) ⇒ I D = 0.48 mA 2 (b) ID = ⎜ ⎝ 2 ⎠ ⎛ 0.040 ⎞ ⎟ ( 6 )( 3) ⇒ I D = 1.08 mA 2 (c) ID = ⎜ ⎝ 2 ⎠ 3.14 VSD (sat) = VSG + VTP = 3 − 0.8 = 2.2 V ⎛ 15 ⎞⎛ 0.04 ⎞ KP = ⎜ ⎟⎜ ⎟ = 0.25 mA/V 2 ⎝ 1.2 ⎠⎝ 2 ⎠ VSD = 0.2 Non Sat I D = 0.25 ⎡ 2 ( 3 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ = 0.21 mA 2 a) ⎣ ⎦ VSD = 1.2 V Non Sat I D = 0.25 ⎡ 2 ( 3 − 0.8 )(1.2 ) − (1.2 ) ⎤ = 0.96 mA 2 b) ⎣ ⎦ c) VSD = 2.2 V Sat I D = 0.25(3 − 0.8) = 1.21 mA 2 d) VSD = 3.2 V Sat ID = 1.21 mA e) VSD = 4.2 V Sat ID = 1.21 mA 3.15 μ p ∈ox ( 250 )( 3.9 ) (8.85 ×10−14 ) 8.629 × 10−11 ′ k p = μ p Cox = = = t0 x t0 x t0 x (a) tox = 500Å ⇒ k ′ = 17.3 μ A/V 2 p (b) 250Å ⇒ k ′ = 34.5 μ A/V 2 p (c) 100Å ⇒ k ′ = 86.3 μ A/V 2 p (d) ′ 50Å ⇒ k p = 173 μ A/V 2 (e) 25Å ⇒ k ′ = 345 μ A/V 2 p 3.16 ∈ox ( 3.9 ) ( 8.85 × 10 ) −14 Cox = = −8 = 6.90 × 10−8 F/cm 2 t0 x 500 × 10 kn = ( μ n Cox ) = ( 675 ) ( 6.90 × 10−8 ) ⇒ 46.6 μ A/V 2 ′ k ′ = ( μ p Cox ) = ( 375 ) ( 6.90 × 10−8 ) ⇒ 25.9 μ A/V 2 p PMOS:
  • 5. k′ ⎛ W ⎞ ⎜ ⎟ (VSG + VTP ) 2 ID = p 2 ⎝ L ⎠p ⎛ 0.0259 ⎞⎛ W ⎞ ⎛W ⎞ ⎟⎜ ⎟ ( 5 − 0.6 ) ⇒ ⎜ ⎟ = 3.19 2 0.8 = ⎜ ⎝ 2 ⎠⎝ L ⎠ p ⎝ L ⎠p L = 4 μ m ⇒ W p = 12.8 μ m ⎛ 0.0259 ⎞ Kp = ⎜ ⎟ ( 3.19 ) ⇒ K p = 41.3 μ A/V = K n 2 ⎝ 2 ⎠ Want Kn = Kp ′ kn ⎛ W ⎞ k′ ⎛ W ⎞ ⎜ ⎟ = ⎜ ⎟ = 41.3 p 2 ⎝ L ⎠N 2 ⎝ L ⎠p ⎛ 46.6 ⎞ ⎛ W ⎞ ⎛W ⎞ ⎜ ⎟ ⎜ ⎟ = 41.3 ⇒ ⎜ ⎟ = 1.77 ⎝ 2 ⎠ ⎝ L ⎠N ⎝ L ⎠N L = 4 μ m ⇒ WN = 7.09 μ m 3.17 VGS = 2 V, I D = ( 0.2 )( 2 − 1.2 ) = 0.128 mA 2 1 1 r0 = = ⇒ r0 = 781 kΩ λ I D ( 0.01)( 0.128 ) VGS = 4 V, I D = ( 0.2 )( 4 − 1.2 ) = 1.57 mA 2 1 r0 = ⇒ r = 63.7 kΩ ( 0.01)(1.57 ) 0 1 1 VA = = ⇒ VA = 100 V λ ( 0.01) 3.18 ⎛ 0.080 ⎞ ⎟ ( 4 )( 3 − 0.8 ) = ( 0.16 )( 3 − 0.8 ) ⇒ I D = 0.774 mA 2 2 ID = ⎜ ⎝ 2 ⎠ 1 1 1 r0 = ⇒λ = = ⇒ λ (max) = 0.00646 V −1 λ ID r0 I D ( 200 )( 0.774 ) 1 1 VA ( min ) = = ⇒ VA ( min ) = 155 V λ ( max ) 0.00646 3.19 VTN = VTNO + γ ⎡ 2φ f + VSB − 2φ f ⎤ ⎣ ⎦ ΔVTN = 2 = ( 0.8 ) ⎡ 2φ f + VSB − 2 ( 0.35 ) ⎤ ⎣ ⎦ 2.5 + 0.837 = 2 ( 0.35 ) + VSB ⇒ VSB = 10.4 V 3.20 VTN = VTNo + r ⎡ 2φ f + VSB − 2φ f ⎤ ⎣ ⎦ = 0.75 + 0.6 ⎡ 2 ( 0.37 ) + 3 − 2 ( 0.37 ) ⎤ ⎣ ⎦ = 0.75 + 0.6 [1.934 − 0.860] VTN = 1.39 V VDS (sat) = 2.5 − 1.39 = 1.11 V
  • 6. ⎛ 0.08 ⎞ Sat Region I D = (15 ) ⎜ ⎟ ( 2.5 − 1.39 ) 2 (a) ⎝ 2 ⎠ I D = 0.739 mA ⎛ 0.08 ⎞ ⎡ Non-Sat I D = (15 ) ⎜ ⎟ 2 ( 2.5 − 1.39 )( 0.25 ) − ( 0.25 ) ⎤ 2 (b) ⎝ 2 ⎠⎣ ⎦ I D = 0.296 mA 3.21 a. VG = %ox t0 x = ( 6 × 106 )( 275 × 10−8 ) VG = 16.5 V 16.5 b. VG = ⇒ VG = 5.5 V 3 3.22 Want VG = ( 3)( 24 ) = %ox t0 x = ( 6 × 106 ) t0 x t0 x = 1.2 ×10−5 cm = 1200 Angstroms 3.23 ⎛ R2 ⎞ ⎛ 18 ⎞ VG = ⎜ ⎟ VDD = ⎜ ⎟ (10 ) = 3.6 V ⎝ R1 + R2 ⎠ ⎝ 18 + 32 ⎠ Assume transistor biased in saturation region V V − VGS = K n (VGS − VTN ) 2 ID = S = G RS RS 3.6 − VGS = ( 0.5 )( 2 )(VGS − 0.8 ) 2 = VGS − 1.6VGS + 0.64 2 VGS − 0.6VGS − 2.96 = 0 2 ( 0.6 ) + 4 ( 2.96 ) 2 0.6 ± VGS = ⇒ VGS = 2.046 V 2 VG − VGS 3.6 − 2.046 ID = = ⇒ I D = 0.777 mA RS 2 VDS = VDD − I D ( RD + RS ) = 10 − ( 0.777 )( 4 + 2 ) ⇒ VDS = 5.34 V VDS > VDS ( sat ) 3.24
  • 7. ID(mA) 4 (a) Q-pt Q-pt 1.67 (b) 4 5 V (V) DS (a) VGS = 4 V VDS (sat) = 4 − 0.8 = 3.2 V If Sat I D = 0.25 ( 4 − 0.8 ) = 2.56 2 VDS = 1.44 × Non-Sat 4 = I D RD + VDS = K n RD ⎣ 2 (VGS − VT ) VDS − VDS ⎦ + VDS ⎡ 2 ⎤ 4 = ( 0.25 )(1) ⎡ 2 ( 4 − 0.8 ) VDS − VDS ⎤ + VDS ⎣ 2 ⎦ 4 = 2.6VDS − 0.25VDS 2 0.25VDS − 2.6VDS + 4 = 0 2 2.6 ± 6.76 − 4 VDS = = 1.88 V 2 ( 0.25 ) 4 − 1.88 ID = = 2.12 mA 1 (b) Non-Sat region 5 = I D RD + VDS = K n RD ⎡ 2 (VGS − VT )VDS − VDS ⎤ + VDS ⎣ 2 ⎦ 5 = ( 0.25 )( 3) ⎡ 2 ( 5 − 0.8 ) VDS − VDS ⎤ + VDS ⎣ 2 ⎦ 5 = 7.3VDS − 0.75VDS 2 0.75 VDS − 7.3VDS + 5 = 0 2 7.3 ± 53.29 − 15 VDS = 2 ( 0.75 ) VDS = 0.741 V 5 − 0.741 ID = = 1.42 mA 3 3.25 ID(mA) 2.92 (a) Q-pt 1.25 (b) 3.5 5 V (V) SD
  • 8. (a) VSG = VDD = 3.5 VSD ( sat ) = 3.5 − 0.8 = 2.7 V If biased in Sat region, I D = ( 0.2 )( 3.5 − 0.8 ) 2 = 1.46 mA VSD = 3.5 − (1.46 )(1.2 ) = 1.75 V × Biased in Non-Sat Region. 3.5 = VSD + I D RD = VSD + K p RD ⎡ 2 (VSG + VTP ) VSD − VSD ⎤ ⎣ 2 ⎦ 3.5 = VSD + ( 0.2 )(1.2 ) ⎡ 2 ( 3.5 − 0.8 ) VSD − VSD ⎤ ⎣ 2 ⎦ 3.5 = VSD + 1.296 VSD − 0.24 VSD 2 0.24 VSD − 2.296 VSD + 3.5 = 0 2 +2.296 ± 5.272 − 3.36 VSD = use − sign VSD = 1.90 V 2 ( 0.24 ) I D = ( 0.2 ) ⎡ 2 ( 3.5 − 0.8 )(1.9 ) − (1.9 ) ⎤ = 0.2 [10.26 − 3.61] 2 ⎣ ⎦ 3.5 − 1.90 ID = = 1.33 mA 1.2 I D = 1.33 mA (b) VSG = VDD = 5 V VSD ( sat ) = 5 − 0.8 = 4.2 V If Sat Region I D = ( 0.2 )( 5 − 0.8 ) = 3.53 mA, VSD < 0 2 Non-Sat Region. 5 = VSD + K p RD ⎡ 2 (VSG + VTP ) VSD − VSD ⎤ ⎣ 2 ⎦ 5 = VSD + ( 0.2 )( 4 ) ⎡ 2 ( 5 − 0.8 ) VSD − VSD ⎤ ⎣ 2 ⎦ 5 = VSD + 6.72 VSD − 0.8 VSD 2 0.8 VSD − 7.72 VSD + 5 = 0 2 7.72 ± 59.598 − 16 VSD = use − sign VSD = 0.698 V 2 ( 0.8 ) 5 − 0.698 ID = ⇒ I D = 1.08 mA 4 3.26 10 − VS = K p (VSG + VTP ) 2 ID = RS Assume transistor biased in saturation region ⎛ R2 ⎞ VG = ⎜ ⎟ ( 20 ) − 10 ⎝ R1 + R2 ⎠ ⎛ 22 ⎞ =⎜ ⎟ ( 20 ) − 10 ⇒ VG = 4.67 V ⎝ 8 + 22 ⎠ VS = VG + VSG 10 − ( 4.67 + VSG ) = (1)( 0.5 )(VSG − 2 ) 2 5.33 − VSG = 0.5 (VSG − 4VSG + 4 ) 2 0.5VSG − VSG − 3.33 = 0 2 (1) + 4 ( 0.5 )( 3.33) 2 1± VSG = ⇒ VSG = 3.77 V 2 ( 0.5 )
  • 9. 10 − ( 4.67 + 3.77 ) ID = ⇒ I D = 3.12 mA 0.5 VSD = 20 − I D ( RS + RD ) = 20 − ( 3.12 )( 0.5 + 2 ) ⇒ VSD = 12.2 V VSD > VSD ( sat ) 3.27 VG = 0, VSG = VS Assume saturation region I D = 0.4 = K p (VSG + VTP ) 2 0.4 = ( 0.2 )(VS − 0.8 ) 2 0.4 VS = + 0.8 ⇒ VS = 2.21 V 0.2 VD = I D RD − 5 = ( 0.4 )( 5 ) − 5 = −3 V VSD = VS − VD = 2.21 − ( −3) ⇒ VSD = 5.21 V VSD > VSD ( sat ) 3.28 VDD = I DQ RD + VDSQ + I DQ RS ⎛ k ′ ⎞⎛ W ⎞ (1) 10 = I DQ ( 5 ) + 5 + VGS and I DQ = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN ) 2 ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.060 ⎞ ⎛ W ⎞ ⎟ ⎜ ⎟ (VGS − 1.2 ) 2 or (2) I DQ = ⎜ ⎝ 2 ⎠⎝ L ⎠ Let VGS = 2.5 V Then from (1), 10 = I DQ ( 5 ) + 5 + 2.5 ⇒ I D = 0.5 mA ⎛ 0.060 ⎞⎛ W ⎞ W ⎟⎜ ⎟ ( 2.5 − 1.2 ) ⇒ 2 Then from (2), 0.5 = ⎜ = 9.86 ⎝ 2 ⎠⎝ L ⎠ L V 2.5 I DQ RS = VGS ⇒ RS = GS = ⇒ RS = 5 k Ω I DQ 0.5 10 IR = = ( 0.5 )( 0.05 ) = 0.025 mA R1 + R2 10 Then R1 + R2 = = 400 k Ω 0.025 ⎛ R2 ⎞ ⎛ R2 ⎞ ⎜ ⎟ (VDD ) = 2VGS ⇒ ⎜ ⎟ (10 ) = 2 ( 2.5 ) ⇒ R1 = R2 = 200 k Ω ⎝ R1 + R2 ⎠ ⎝ 400 ⎠ 3.29 ⎛ 75 ⎞ K n = ( 25 ) ⎜ ⎟ ⇒ 0.9375 mA/V 2 ⎝ 2⎠ ⎛ 6 ⎞ VG = ⎜ ⎟ (10 ) − 5 = −2 V ⎝ 6 + 14 ⎠ (VG − VGS ) − ( −5) = I D = K n (VGS − VTN ) 2 RS −2 − VGS + 5 = ( 0.9375 )( 0.5 )(VGS − 1) 2 3 − VGS = 0.469 (VGS − 2VGS + 1) 2
  • 10. 0.469 VGS + 0.0625 VGS − 2.53 = 0 2 −0.0625 ± 0.003906 + 4.746 VGS = ⇒ VGS = 2.26 V 2 ( 0.469 ) I D = 0.9375 ( 2.26 − 1) ⇒ I D = 1.49 mA 2 VDS = 10 − (1.49 )(1.7 ) ⇒ VDS = 7.47 V 3.30 20 = I DQ RS + VSDQ + I DQ RD (1) 20 = VSG + 10 + I DQ RD ⎛ k′ ⎞⎛ W ⎞ I DQ = ⎜ ⎟ ⎜ ⎟ (VSG + VTP ) p 2 ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.040 ⎞ ⎛ W ⎞ ⎟ ⎜ ⎟ (VSG − 2 ) 2 (2) I DQ = ⎜ ⎝ 2 ⎠⎝ L ⎠ For example, let I DQ = 0.8 mA and VSG = 4 V ⎛ 0.040 ⎞ ⎛ W ⎞ W ⎟ ( 4 − 2) ⇒ 2 Then 0.8 = ⎜ ⎟⎜ = 10 ⎝ 2 ⎠⎝ L ⎠ L I DQ RS = VSG ⇒ ( 0.8 ) RS = 4 ⇒ RS = 5 k Ω From (1) 20 = 4 + 10 + ( 0.8 ) RD ⇒ RD = 7.5 k Ω 20 IR = = ( 0.8 )( 0.1) ⇒ R1 + R2 = 250 k Ω R1 + R2 ⎛ R1 ⎞ ⎜ ⎟ ( 20 ) = 2VSG = ( 2 )( 4 ) ⎝ R1 + R2 ⎠ R1 ( 20 ) = 8 ⇒ R1 = 100 k Ω, R2 = 150 k Ω 250 3.31 I Q = 50 = 500 (VGS − 1.2 ) ⇒ VGS = 1.516 V 2 (a) (i) VDS = 5 − ( −1.516 ) =⇒ VDS = 6.516 V I Q = 1 = ( 0.5 )(VGS − 1.2 ) ⇒ VGS = 2.61 V 2 (ii) VDS = 5 − ( −2.61) ⇒ VDS = 7.61 V (b) (i) Same as (a) VGS = VDS = 1.516 V (ii) VGS = VDS = 2.61 V 3.32 I D = K n (VGS − VTN ) 2 0.25 = ( 0.2 )(VGS − 0.6 ) 2 0.25 VGS = + 0.6 ⇒ VGS = 1.72 V ⇒ VS = −1.72 V 0.2 VD = 9 − ( 0.25 )( 24 ) ⇒ VD = 3 V 3.33 (a)
  • 11. ID(mA) 1.0 0.808 Q-pt 0.5 3.81 10 V (V) DS 5 −1 RD = ⇒ RD = 8 K 0.5 I DQ = 0.5 = 0.25 (VGS − 1.4 ) ⇒ VGS = 2.81 V 2 −2.81 − ( −5 ) RS = ⇒ RS = 4.38 K 0.5 (b) Let RD = 8.2 K, RS = 4.3 K −VGS − ( −5 ) = I D = 0.25 (VGS − 1.4 ) 2 Now 4.3 5 − VGS = 1.075 (VGS − 2.8 VGS + 1.96 ) 2 1.075 VGS − 2.01 VGS − 2.89 = 0 2 2.01 ± 4.04 + 12.427 VGS = ⇒ VGS = 2.82 V 2 (1.075 ) I D = 0.25 ( 2.82 − 1.4 ) ⇒ I D = 0.504 mA 2 VDS = 10 − ( 0.504 )( 8.2 + 4.3) ⇒ VDS = 3.70 V (c) If RS = 4.3 + 10% = 4.73 K 5 − VGS = 1.18 (VGS − 2.8VGS + 1.96 ) 2 1.18 VGS − 2.31 VGS − 2.68 = 0 2 2.31 ± 5.336 + 12.65 VGS = = 2.78 V 2 (1.18 ) I D = ( 0.25 )( 2.78 − 1.4 ) ⇒ I D = 0.476 mA 2 If Rs = 4.3 − 10% = 3.87 K 5 − VGS = ( 0.9675 ) (VGS − 2.8VGS + 1.96 ) 2 0.9675VGS − 1.71VGS − 3.10 = 0 2 1.71 ± 2.924 + 12.0 VGS = = 2.88 V 2 ( 0.9675 ) I D = ( 0.25 )( 2.88 − 1.4 ) = 0.548 mA 2 3.34 VDD = VSD + I DQ R 9 = 2.5 + ( 0.1) R ⇒ R = 65 k Ω ⎛ k′ ⎞⎛ W ⎞ I DQ = ⎜ ⎟ ⎜ ⎟ (VSG + VTP ) p 2 ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.025 ⎞ ⎛ W ⎞ W ( 0.1) = ⎜ ⎟ ⎜ ⎟ ( 2.5 − 1.5 ) ⇒ 2 =8 ⎝ 2 ⎠⎝ L⎠ L Then for L = 4 μ m, W = 32 μ m
  • 12. 3.35 5 = I DQ RS + VSDQ = I DQ ( 2 ) + 2.5 I DQ = 1.25 mA 10 IR = = (1.25 )( 0.1) ⇒ R1 + R2 = 80 k Ω R1 + R2 I DQ = K p (VSG + VTP ) 2 1.25 1.25 = 0.5 (VSG + 1.5 ) ⇒ 2 − 1.5 = VSG 0.5 VSG = 0.0811 V VG = VS − VSG = 2.5 − 0.0811 = 2.42 V ⎛ R2 ⎞ VG = ⎜ ⎟ (10 ) − 5 ⎝ R1 + R2 ⎠ ⎛R ⎞ 2.42 = ⎜ 2 ⎟ (10 ) − 5 ⇒ R2 = 59.4 k Ω, R1 = 20.6 k Ω ⎝ 80 ⎠ 3.36 (a) ID(mA) 0.429 Q-pt 5 V (V) SD VD − ( −5 ) 5−2 RD = = ⇒ RD = 12 K I DQ 0.25 ⎛W ⎞⎛ k′ ⎞ ⎟ ⎜ ⎟ (VSG + VTP ) 2 ID = ⎜ p ⎝L ⎠⎝ 2 ⎠ ⎛ 0.035 ⎞ 0.25 = (15 ) ⎜ ⎟ (VSG − 1.2 ) ⇒ VSG = 2.18 V 2 ⎝ 2 ⎠ 5 − 2.18 RS = ⇒ RS = 11.3 K 0.25 VSD = 2.18 − ( −2 ) = 4.18 V (b) k ′ = 35 + 5% = 36.75 μ A/V 2 p ⎛ 0.03675 ⎞ 5 − VSG I D = (15 ) ⎜ ⎟ (VSG − 1.2 ) = 2 ⎝ 2 ⎠ 11.3 3.11(VSG − 2.4VSG + 1.44 ) = 5 − VSG 2 3.11VSG − 6.46VSG − 0.522 = 0 2
  • 13. 6.46 ± 41.73 + 6.49 VSG = = 2.155 V 2 ( 3.11) 5 − 2.155 ID = = 0.252 mA 11.3 VSD = 10 − ( 0.252 )(12 + 11.3) = 4.13 V k ′ = 35 − 5% = 33.25 μ A/V 2 p ⎛ 0.03325 ⎞ 5 − VSG I D = (15 ) ⎜ ⎟ (VSG − 1.2 ) = 2 ⎝ 2 ⎠ 11.3 2.82 (VSG − 2.4VSG + 1.44 ) = 5 − VSG 2 2.82VSG − 5.77VSG − 0.939 = 0 2 5.77 ± 33.29 + 10.59 VSG = = 2.198 V 2 ( 2.82 ) 5 − 2.198 ID = = 0.248 mA 11.3 VSD = 10 − ( 0.248 )(12 + 11.3) = 4.22 V 3.37 −VSD − ( −10 ) −6 + 10 ID = ⇒5= ⇒ RD = 0.8 kΩ RD RD I D = K P (VSG + VTP ) ⇒ 5 = 3 (VSG − 1.75 ) 2 2 5 VSG = + 1.75 = 3.04 V ⇒ VG = −3.04 3 ⎛ R2 ⎞ VG = ⎜ ⎟ (10 ) − 5 = −3.04 ⎝ R1 + R2 ⎠ Rin = R1 || R2 = 80 kΩ 1 ⋅ ( 80 )(10 ) = 5 − 3.04 ⇒ R1 = 408 kΩ R1 408 R2 = 80 ⇒ R2 = 99.5 kΩ 408 + R2 3.38 ⎛ 60 ⎞ (a) K n1 = ⎜ ⎟ ( 4 ) = 120 μ A/V 2 ⎝ 2 ⎠ ⎛ 60 ⎞ K n 2 = ⎜ ⎟ (1) = 30 μ A/V 2 ⎝ 2 ⎠ For vI = 1 V , M1 Sat. region, M2 Non-sat region. I D 2 = I D1 30 ⎡ 2 ( −VTNL )( 5 − vO ) − ( 5 − vO ) ⎤ = 120 (1 − 0.8 ) 2 2 ⎣ ⎦ We find vO − 6.4vO + 7.16 = 0 ⇒ vO = 4.955 V 2 (b) For vI = 3 V , M1 Non-sat region, M2 Sat. region. I D 2 = I D1 30 ⎡ − ( −1.8 ) ⎤ = 120 ⎡ 2 ( 3 − 0.8 ) vO − vO ⎤ 2 2 ⎣ ⎦ ⎣ ⎦ We find 4vO − 17.6vO + 3.24 = 0 ⇒ vO = 0.193 V 2 (c) For vI = 5 V , biasing same as (b) 30 ⎡ − ( −1.8 ) ⎤ = 120 ⎡ 2 ( 5 − 0.8 ) vO − vO ⎤ 2 2 ⎣ ⎦ ⎣ ⎦
  • 14. We find 4vO − 33.6vO + 3.24 = 0 ⇒ vO = 0.0976 V 2 3.39 For vI = 5 V , M1 Non-sat region, M2 Sat. region. I D1 = I D 2 ′ ⎛ kn ⎞ ⎛ W ⎞ ′ ⎛ kn ⎞ ⎛ W ⎞ ⎜ 2 ⎟ ⎜ L ⎟ ⎣ 2 (VGS1 − VTN 1 ) VDS 1 − VDS 1 ⎦ = ⎜ 2 ⎟ ⎜ L ⎟ (VGS 2 − VTN 2 ) ⎡ ⎤ 2 2 ⎝ ⎠ ⎝ ⎠1 ⎝ ⎠ ⎝ ⎠2 ⎛ W⎞ ⎡ ⎜ ⎟ ⎣ 2 ( 5 − 0.8 )( 0.15 ) − ( 0.15 ) ⎤ = (1) ⎡0 − ( −2 ) ⎤ 2 2 ⎦ ⎣ ⎦ ⎝ L ⎠1 ⎛W ⎞ which yields ⎜ ⎟ = 3.23 ⎝ L ⎠1 3.40 a. M1 and M2 in saturation K n1 (VGS 1 − VTN 1 ) = K n 2 (VGS 2 − VTN 2 ) 2 2 K n1 = K n 2 , VTN 1 = VTN 2 ⇒ VGS1 = VGS 2 = 2.5 V, V0 = 2.5 V I D = (15 )( 40 )( 2.5 − 0.8 ) ⇒ I D = 1.73 mA 2 b. ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ > ⎜ ⎟ ⇒ VGS1 < VGS 2 ⎝ L ⎠1 ⎝ L ⎠ 2 40 (VGS1 − 0.8 ) = (15 )(VGS 2 − 0.8 ) 2 2 VGS 2 = 5 − VGS 1 1.633 (VGS 1 − 0.8 ) = ( 5 − VGS1 − 0.8 ) 2.633VGS 1 = 5.506 ⇒ VGS 1 = 2.09 V VGS 2 = 2.91 V, V0 = VGS1 = 2.91 V I D = (15 )(15 )( 2.91 − 0.8 ) ⇒ I D = 1.0 mA 2 3.41 (a) V1 = VGS 3 = 2.5 V ⎛ W ⎞ ⎛ 0.06 ⎞ ⎟ ( 2.5 − 1.2 ) 2 I D = 0.5 = ⎜ ⎟ ⎜ ⎝ L ⎠3 ⎝ 2 ⎠ ⎛W ⎞ ⎜ ⎟ = 9.86 ⎝ L ⎠3 V2 = 6 V ⇒ VGS 2 = V2 − V1 = 6 − 2.5 = 3.5 V ⎛ W ⎞ ⎛ 0.06 ⎞ ⎛W ⎞ ⎟ ( 3.5 − 1.2 ) ⇒ ⎜ ⎟ = 3.15 2 0.5 = ⎜ ⎟ ⎜ ⎝ L ⎠2 ⎝ 2 ⎠ ⎝ L ⎠2 VGS1 = 10 − V2 = 10 − 6 = 4 V ⎛ W ⎞ ⎛ 0.06 ⎞ ⎛W ⎞ ⎟ ( 4 − 1.2 ) ⇒ ⎜ ⎟ = 2.13 2 0.5 = ⎜ ⎟ ⎜ ⎝ L ⎠1 ⎝ 2 ⎠ ⎝ L ⎠1 (b) ′ kn1 = 0.06 + 5% = 0.063 mA/V 2 ′ ′ kn 2 = k n3 = 0.6 − 5% = 0.057 mA/V 2 ⎛ 0.057 ⎞ For M3: I D = ( 9.86 ) ⎜ ⎟ (V1 − 1.2 ) 2 ⎝ 2 ⎠ ⎛ 0.057 ⎞ For M2: I D = ( 3.15 ) ⎜ ⎟ (V2 − V1 − 1.2 ) 2 ⎝ 2 ⎠
  • 15. ⎛ 0.063 ⎞ For M1: I D = ( 2.13) ⎜ ⎟ (10 − V2 − 1.2 ) 2 ⎝ 2 ⎠ 0.281(V1 − 1.2 ) = 0.0898 (V2 − V1 − 1.2 ) = 0.0671( 8.8 − V2 ) 2 2 2 Take square root. 0.530 (V1 − 1.2 ) = 0.300 (V2 − V1 − 1.2 ) = 0.259 ( 8.8 − V2 ) (1) 0.830V1 = 0.300V2 + 0.276 (2) 0.559V2 = 0.300V1 + 2.64 From (2) ⇒ V2 = 0.537V1 + 4.72 Substitute into (1) 0.830V1 = 0.300 [ 0.537V1 + 4.72] + 0.276 = 0.161V1 + 1.69 V1 = 2.53 V Then V2 = 0.537 ( 2.53) + 4.72 V2 = 6.08 V 3.42 ML in saturation MD in nonsaturation ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ (VGSL − VTNL ) = ⎜ ⎟ ⎣ 2 (VGSD − VTND )VDSD − VDSD ⎦ ⎡ ⎤ 2 2 ⎝ L ⎠L ⎝ L ⎠D ⎛W ⎞ (1)( 5 − 0.1 − 0.8) = ⎜ ⎟ ⎡ 2 ( 5 − 0.8)( 0.1) − ( 0.1) ⎤ 2 2 ⎝ L ⎠D ⎣ ⎦ ⎛W ⎞ 16.81 = ⎜ ⎟ [ 0.83] ⎝ L ⎠D ⎛W ⎞ ⎜ ⎟ = 20.3 ⎝ L ⎠D 3.43 ML in saturation MD in nonsaturation ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ (VGSL − VTNL ) = ⎜ ⎟ ⎣ 2 (VGSD − VTND )VDSD − VDSD ⎦ ⎡ ⎤ 2 2 ⎝ L ⎠L ⎝ L ⎠D (1)(1.8 ) = ⎛ ⎞ ⎡ 2 ( 5 − 0.8 )( 0.05) − ( 0.05) ⎤ 2 W 2 ⎜ ⎟ ⎣ ⎦ ⎝ L ⎠D ⎛W ⎞ 3.24 = ⎜ ⎟ [ 0.4175] ⎝ L ⎠D ⎛W ⎞ ⎜ ⎟ = 7.76 ⎝ L ⎠D 3.44 VDD − V0 5 − 0.1 ID = = = 0.49 mA RD 10 Transistor biased in nonsaturation I D = 0.49 ⎛W ⎞ = ( 0.015 ) ⎜ ⎟ ⎡ 2 ( 4.2 − 0.8 )( 0.1) − ( 0.1) ⎤ 2 ⎝L⎠ ⎣ ⎦ ⎛W ⎞ W 0.49 = ⎜ ⎟ 0.01005 ⇒ = 48.8 ⎝L⎠ L 3.45
  • 16. 5 = I D RD + Vγ + VDS 5 = (12 ) RD + 1.6 + 0.2 ⇒ RD = 267 Ω ⎛ k′ ⎞⎛ W ⎞ I D = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN ) 2 ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.040 ⎞ ⎛ W ⎞ W ⎟ ⎜ ⎟ ( 5 − 0.8 ) ⇒ 2 12 = ⎜ = 34 ⎝ 2 ⎠⎝ L ⎠ L 3.46 5 = VSD + I D RD + Vγ 5 = 0.15 + (15 ) RD + 1.6 ⇒ RD = 217 Ω ⎛ k′ ⎞⎛ W ⎞ I D = ⎜ ⎟ ⎜ ⎟ (VSG + VTP ) p 2 ⎝ 2 ⎠⎝ L ⎠ ⎛ 0.020 ⎞⎛ W ⎞ W ⎟⎜ ⎟ ( 5 − 0.8 ) ⇒ 2 15 = ⎜ = 85 ⎝ 2 ⎠⎝ L ⎠ L 3.47 (a) VDD − VO ⎛W ⎞⎛ 0.060 ⎞ = 2⎜ ⎟ ⎡( 2 )(VGS − VTN ) VO − VO ⎤ 2 ⎟⎜ ⎣ ⎦ RD ⎝L ⎠⎝ 2 ⎠ 5 − 0.2 ⎛W ⎞ ⎟ ( 0.030 ) ⎡ 2 ( 5 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ 2 = 2⎜ 20 ⎝L ⎠ ⎣ ⎦ ⎛W ⎞ ⎛W ⎞ ⎛W ⎞ 0.24 = 0.0984 ⎜ ⎟ ⇒ ⎜ ⎟ = ⎜ ⎟ = 2.44 ⎝ L ⎠ ⎝ L ⎠1 ⎝ L ⎠ 2 (b) 5 − VO ⎛ 0.06 ⎞ = ( 2.44 ) ⎜ ⎟ ⎡ 2 ( 5 − 0.8 ) VO − VO ⎤ 2 20 ⎝ 2 ⎠⎣ ⎦ 5 − VO = 12.30VO − 1.464VO2 1.464VO2 − 13.30VO + 5 = 0 13.30 ± 176.89 − 29.28 VO = 2 (1.464 ) VO = 0.393 V 3.48 ⎛W ′ ⎞ ⎛ kn ⎞ ⎟ ⎜ ⎟ (VGS 1 − VTN ) 2 I Q1 = ⎜ ⎝L ⎠1 ⎝ 2⎠ ⎛W ′ ⎞ ⎛ kn ⎞ ⎟ ⎜ ⎟ (VDS 2 ( sat ) ) 2 I Q1 = ⎜ ⎝L ⎠2 ⎝ 2 ⎠ ⎛ W ⎞ ⎛ 0.08 ⎞ ⎛W ⎞ ⎛W ⎞ ⎟ ( 0.5 ) ⇒ ⎜ ⎟ = 10 = ⎜ ⎟ 2 0.1 = ⎜ ⎟ ⎜ ⎝ L ⎠2 ⎝ 2 ⎠ ⎝ L ⎠2 ⎝ L ⎠1 ⎛ W ⎞ ⎛ 200 ⎞ ⎛ W ⎞ ⎜ ⎟ =⎜ ⎟ ⎜ ⎟ = 20 ⎝ L ⎠3 ⎝ 100 ⎠ ⎝ L ⎠ 2 M1 & M2 matched. ⎛ 0.08 ⎞ Then 0.1 = (10 ) ⎜ ⎟ (VGS 1 − 0.25 ) 2 ⎝ 2 ⎠ VGS1 = 0.75 V VD1 = −0.75 + 2 = 1.25 V 2.5 − 1.25 RD = ⇒ RD = 12.5 K 0.1
  • 17. 3.49 (a) ⎛ W ⎞ ⎛ k′ ⎞ I Q 2 = ⎜ ⎟ ⎜ ⎟ (VSDB ( sat ) ) p 2 ⎝ L ⎠B ⎝ 2 ⎠ ⎛ W ⎞ ⎛ 0.04 ⎞ ⎛W ⎞ ⎛W ⎞ ⎟ ( 0.8 ) ⇒ 2 0.25 = ⎜ ⎟ ⎜ ⎜ ⎟ = 19.5 = ⎜ ⎟ ⎝ L ⎠B ⎝ 2 ⎠ ⎝ L ⎠B ⎝ L ⎠A ⎛W ⎞ I KQ 2 ⎛ W ⎞ ⎜ ⎟ = ⎜ ⎟ ⎝ L ⎠C IQ 2 ⎝ L ⎠B ⎛ 100 ⎞ =⎜ ⎟ (19.5 ) = 7.81 ⎝ 250 ⎠ ′ ⎛W ⎞ ⎛ kp ⎞ I Q 2 = ⎜ ⎟ ⎜ ⎟ (VSGA + VTP ) 2 ⎝ L ⎠A ⎝ 2 ⎠ ⎛ 0.04 ⎞ 0.25 = (19.5 ) ⎜ ⎟ (VSGA − 0.5 ) 2 ⎝ 2 ⎠ VSGA = 1.30 V (b) VDA = 1.3 − 4 = −2.7 V −2.7 − ( −5 ) RD = ⇒ RD = 9.2 K 0.25 3.50 ⎛W ′ ⎞ ⎛ kn ⎞ ⎟ ⎜ ⎟ (VDS 2 ( sat ) ) 2 IQ = ⎜ ⎝L ⎠2 ⎝ 2⎠ ⎛W ⎞ ⎛ 0.06 ⎞ ⎛W ⎞ ⎛W ⎞ ⎟ ( 0.5 ) ⇒ ⎜ ⎟ = 53.3 = ⎜ ⎟ 2 0.4 = ⎜ ⎟ ⎜ ⎝L ⎠2 ⎝ 2 ⎠ ⎝ L ⎠2 ⎝ L ⎠1 ⎛ W ⎞ ⎛ k′ ⎞ I Q = ⎜ ⎟ ⎜ n ⎟ (VGS 1 − VTN ) 2 ⎝ L ⎠1 ⎝ 2 ⎠ ⎛ 0.06 ⎞ 0.4 = ( 53.3) ⎜ ⎟ (VGS 1 − 0.75 ) 2 ⎝ 2 ⎠ VGS1 = 1.25 V VD1 = −1.25 + 4 = 2.75 V 5 − 2.75 RD = ⇒ RD = 5.625 K 0.4 3.51 VDS ( sat ) = VGS − VP So VDS > VDS ( sat ) = −VP , I D = I DSS 3.52 VDS ( sat ) = VGS − VP = VGS + 3 = VDS ( sat ) a. VGS = 0 ⇒ I D = I DSS = 6 mA 2 ⎛ V ⎞ 2 ⎛ −1 ⎞ b. I D = I DSS ⎜ 1 − GS ⎟ = 6 ⎜ 1 − ⎟ ⇒ I D = 2.67 mA ⎝ VP ⎠ ⎝ −3 ⎠ 2 ⎛ −2 ⎞ c. I D = 6 ⎜ 1 − ⎟ ⇒ I D = 0.667 mA ⎝ −3 ⎠ d. ID = 0
  • 18. 3.53 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ 1 ⎞ 2.8 = I DSS ⎜1 − ⎟ ⎝ VP ⎠ 2 ⎛ 3 ⎞ 0.30 = I DSS ⎜1 − ⎟ ⎝ VP ⎠ 2 ⎛ 1 ⎞ ⎜1 − ⎟ 2.8 ⎝ VP ⎠ = 9.33 = 2 0.30 ⎛ 3 ⎞ ⎜1 − ⎟ ⎝ VP ⎠ ⎛ 1⎞ ⎜1 − ⎟ ⎝ VP⎠ = 3.055 ⎛ 3⎞ ⎜1 − ⎟ ⎝ VP ⎠ 1 9.165 1− = 3.055 − VP VP 8.165 = 2.055 ⇒ VP = 3.97 V VP 2 ⎛ 1 ⎞ 2.8 = I DSS ⎜1 − ⎟ = I DSS ( 0.560 ) ⇒ I DSS = 5.0 mA ⎝ 3.97 ⎠ 3.54 VS = −VGS , VSD = VS − VDD Want VSD ≥ VSD ( sat ) = VP − VGS VS − VDD ≥ VP − VGS − VGS − VDD ≥ VP − VGS ⇒ VDD ≤ −VP So VDD ≤ −2.5 V 2 ⎛ V ⎞ I D = 2 = I DSS ⎜1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 2 = 6 ⎜ 1 − GS ⎟ ⇒ VGS = 1.06 V ⇒ VS = −1.06 V ⎝ 2.5 ⎠ 3.55 I D = K n (VGS − VTN ) 2 18.5 = K n ( 0.35 − VTN ) 2 86.2 = K n ( 0.5 − VTN ) 2 Then ( 0.35 − VTN ) 2 18.5 = 0.2146 = ⇒ VTN = 0.221 V ( 0.50 − VTN ) 2 86.2 18.5 = K n ( 0.35 − 0.221) ⇒ K n = 1.11 mA / V 2 2 3.56 I D = K (VGS − VTN ) 2 250 = K ( 0.75 − 0.24 ) ⇒ K = 0.961 mA / V 2 2
  • 19. 3.57 2 ⎛ V ⎞ V V I D = I DSS ⎜ 1 − GS ⎟ = S = − GS ⎝ VP ⎠ RS RS 2 ⎛ V ⎞ V 10 ⎜ 1 − GS ⎟ = − GS ⎝ −5 ⎠ 0.2 ⎛ 2V V ⎞ 2 2 ⎜1 + GS + GS ⎟ = −VGS ⎝ 5 25 ⎠ 2 2 9 VGS + VGS + 2 = 0 25 5 2VGS + 45VGS + 50 = 0 2 ( 45 ) − 4 ( 2 )( 50 ) 2 −45 ± VGS = ⇒ VGS = −1.17 V 2 ( 2) VGS 1.17 ID = − = ⇒ I D = 5.85 mA RS 0.2 VD = 20 − ( 5.85 )( 2 ) = 8.3 V VDS = VD − VS = 8.3 − 1.17 ⇒ VDS = 7.13 V 3.58 VDS = VDD − VS 8 = 10 − VS ⇒ VS = 2 V = I D RS = ( 5 ) RS ⇒ RS = 0.4 kΩ 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ −1 ⎞ 5 = I DSS ⎜1 − ⎟ Let I DSS = 10 mA ⎝ VP ⎠ 2 ⎛ −1 ⎞ 5 = 10 ⎜ 1 − ⎟ ⇒ VP = −3.41 V ⎝ VP ⎠ VG = VGS + VS = −1 + 2 = 1 V ⎛ R2 ⎞ 1 VG = ⎜ ⎟ VDD = ⋅ Rin ⋅ VDD ⎝ R1 + R2 ⎠ R1 1 1 = ( 500 )(10 ) ⇒ R1 = 5 MΩ R1 5R2 = 0.5 ⇒ R2 = 0.556 MΩ 5 + R2 3.59 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 5 = 8 ⎜ 1 − GS ⎟ ⇒ VGS = 0.838 V ⎝ 4 ⎠ VSD = VDD − I D ( RS + RD ) = 20 − ( 5 )( 0.5 + 2 ) ⇒ VSD = 7.5 V
  • 20. VS = 20 − ( 5 )( 0.5 ) = 17.5 V VG = VS + VGS = 17.5 + 0.838 = 18.3 V ⎛ R2 ⎞ 1 VG = ⎜ ⎟ VDD = ⋅ Rin ⋅ VDD ⎝ R1 + R2 ⎠ R1 1 18.3 = (100 ) ( 20 ) ⇒ R1 = 109 kΩ R1 109 R2 = 100 ⇒ R2 = 1.21 MΩ 109 + R2 3.60 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 5 = 7 ⎜ 1 − GS ⎟ ⇒ VGS = 0.465 V ⎝ 3 ⎠ VSD = VDD − I D ( RS + RD ) 6 = 12 − ( 5 )( 0.3 + RD ) ⇒ RD = 0.9 kΩ VS = 12 − ( 5 )( 0.3) = 10.5 V VG = VS + VGS = 10.5 + 0.465 = 10.965 V ⎛ R2 ⎞ VG = ⎜ ⎟ VDD ⎝ R1 + R2 ⎠ ⎛ R ⎞ 10.965 = ⎜ 2 ⎟ (12 ) ⇒ R2 = 91.4 kΩ ⇒ R1 = 8.6 kΩ ⎝ 100 ⎠ 3.61 ⎛ R2 ⎞ ⎛ 60 ⎞ VG = ⎜ ⎟ VDD = ⎜ ⎟ ( 20 ) ⇒ VG = 6 V ⎝ R1 + R2 ⎠ ⎝ 140 + 60 ⎠ 2 ⎛ V ⎞ V V − VGS I D = I DSS ⎜ 1 − GS ⎟ = S = G ⎝ VP ⎠ RS RS 2 ⎛ VGS ⎞ (8 )( 2 ) ⎜1 − ⎜ ⎟ = 6 − VGS ⎝ ( −4 ) ⎟ ⎠ ⎛ V V2 ⎞ 16 ⎜ 1 + GS + GS ⎟ = 6 − VGS ⎝ 2 16 ⎠ VGS + 9VGS + 10 = 0 2 (9) − 4 (10 ) 2 −9 ± VGS = ⇒ VGS = −1.30 2 ⎛ ( −1.30 ) ⎞ 2 I D = 8 ⎜1 − ⎜ ⎟ ⇒ I D = 3.65 mA ⎝ ( −4 ) ⎟⎠ VDS = VDD − I D ( RS + RD ) = 20 − ( 3.65 )( 2 + 2.7 ) VDS = 2.85 V VDS > VDS ( sat ) = VGS − VP = −1.30 − ( −4 ) = 2.7 V (Yes) 3.62
  • 21. VDS = VDD − I D ( RS + RD ) 5 = 12 − I D ( 0.5 + 1) ⇒ I D = 4.67 mA VS = I D RS = ( 4.67 ) ( 0.5 ) ⇒ VS = 2.33 V ⎛ R2 ⎞ ⎛ 20 ⎞ VG = ⎜ ⎟ VDD = ⎜ ⎟ (12 ) ⇒ VG = 0.511 V ⎝ R1 + R2 ⎠ ⎝ 450 + 20 ⎠ VGS = VG − VS = 0.511 − 2.33 ⇒ VGS = −1.82 V 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ ⎛ ( −1.82 ) ⎞ 2 4.67 = 10 ⎜ 1 − ⎜ ⎟ ⇒ VP = −5.75 V ⎝ VP ⎟ ⎠ 3.63 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ , VGS = 0 ⎝ VP ⎠ I D = I DSS = 4 mA VDD − VDS 10 − 3 RD = = ⇒ RD = 1.75 kΩ ID 4 3.64 VSD = VDD − I D RS 10 = 20 − (1) RS ⇒ RS = 10 kΩ VDD 20 R1 + R2 = = = 200 kΩ I 0.1 2 ⎛ V ⎞ I D = I DSS ⎜ 1 − GS ⎟ ⎝ VP ⎠ 2 ⎛ V ⎞ 1 = 2 ⎜1 − GS ⎟ ⇒ VGS = 0.586 V ⎝ 2 ⎠ VG = VS + VGS = 10 + 0.586 = 10.586 ⎛ R2 ⎞ VG = ⎜ ⎟ VDD ⎝ R1 + R2 ⎠ ⎛ R ⎞ 10.586 = ⎜ 2 ⎟ ( 20 ) ⇒ R2 = 106 kΩ ⎝ 200 ⎠ R1 = 94 kΩ 3.65
  • 22. VDS = VDD − I D ( RS + RD ) 2 = 3 − ( 0.040 )(10 + RD ) ⇒ RD = 15 kΩ I D = K (VGS − VTN ) 2 40 = 250 (VGS − 0.20 ) ⇒ VGS = 0.60 V 2 VG = VGS + VS = 0.60 + ( 0.040 )(10 ) = 1.0 V ⎛ R2 ⎞ VG = ⎜ ⎟ VDD ⎝ R1 + R2 ⎠ ⎛ R ⎞ 1 = ⎜ 2 ⎟ ( 3) ⇒ R2 = 50 kΩ ⎝ 150 ⎠ R1 = 100 kΩ 3.66 For VO = 0.70 V ⇒ VDS = 0.70 > VDS ( sat ) = VGS − VTN 0.75 − 0.15 = 0.6 Biased in the saturation region V − VDS 3 − 0.7 I D = DD = ⇒ I D = 46 μ A RD 50 I D = K (VGS − VTN ) ⇒ 46 = K ( 0.75 − 0.15 ) ⇒ K = 128 μ A / V 2 2 2