SlideShare a Scribd company logo
Chapter 6
Problem Solutions

6.1
a.
        I CQ         2
gm =           =         ⇒ g m = 76.9 mA/V
        VT         0.026
        β VT       (180 )( 0.026 )
 rπ =          =                     ⇒ rπ = 2.34 kΩ
        I CQ             2
        VA 150
 r0 =        =   ⇒ r0 = 75 kΩ
        I CQ   2
b.
       0.5
gm =         ⇒ g m = 19.2 mA/V
      0.026
      (180 )( 0.026 )
 rπ =                 ⇒ rπ = 9.36 kΩ
           0.5
      150
 r0 =     ⇒ r0 = 300 kΩ
      0.5

6.2
(a)
        I CQ        0.8
gm =           =         = 30.8 mA/V
        VT         0.026
        β VT       (120 )( 0.026 )
 rπ =          =                     = 3.9 K
        I CQ            0.8
        VA 120
 ro =       =    = 150 K
        I CQ 0.8
(b)
       0.08
gm =         = 3.08 mA/V
      0.026
      (120 )( 0.026 )
 rπ =                 = 39 K
           0.08
      120
 ro =       = 1500 K
      0.08

6.3
        I CQ                 I CQ
gm =           ⇒ 200 =              ⇒ I CQ = 5.2 mA
        VT                0.026
        β VT       (125)( 0.026 )
 rπ =          =                     ⇒ rπ = 0.625 kΩ
        I CQ            5.2
        VA 200
 r0 =       =    ⇒ r0 = 38.5 kΩ
        I CQ 5.2

6.4
I CQ                 I CQ
gm =            ⇒ 80 =                 ⇒ I CQ = 2.08 mA
         VT                  0.026
         β VT                   β ( 0.026 )
 rπ =            ⇒ 1.20 =                      ⇒ β = 96
         I CQ                        2.08

6.5
(a)
       2 − 0.7
I BQ =          = 0.0052 mA
         250
I C = (120 )( 0.0052 ) = 0.624 mA
      0.624
gm =         ⇒ g m = 24 mA / V
      0.026
     (120 )( 0.026 )
rπ =                 ⇒ rπ = 5 k Ω
         0.624
ro = ∞
                              ⎛ r       ⎞           ⎛ 5 ⎞
(b)             Av = − g m RC ⎜ π ⎟ = − ( 24 )( 4 ) ⎜         ⎟ ⇒ Av = −1.88
                              ⎝ rπ + RB ⎠           ⎝ 5 + 250 ⎠
                     v        v
(c)             vS = O = O ⇒ vS = −0.426sin100t V
                     Av −1.88

6.6
         I CQ
gm =            , 1.08 ≤ I CQ ≤ 1.32 mA
         VT
 1.08           1.32
        ≤ gm ≤        ⇒ 41.5 ≤ g m ≤ 50.8 mA/V
0.026          0.026
     β VT                 (120 )( 0.026 )
rπ =       ; rπ ( max ) =                 = 2.89 kΩ
      I CQ                    1.08
                                     (80 )( 0.026 )
                     rπ ( min ) =                      = 1.58 kΩ
                                            1.32
1.58 ≤ rπ ≤ 2.89 kΩ

6.7
a.
                 β VT        (120 )( 0.026 )
rπ = 5.4 =               =                         ⇒ I CQ = 0.578 mA
                  I CQ               I CQ
       1        1
VCEQ = VCC = ( 5 ) = 2.5 V
       2         2
VCEQ = VCC − I CQ RC ⇒ 2.5 = 5.0 − ( 0.578 ) RC ⇒ RC = 4.33 kΩ
         I CQ 0.578
I BQ =           =    = 0.00482 mA
        β      120
VBB = I BQ RB + VBE ( on )
= ( 0.00482 )( 25 ) + 0.70 ⇒ VBB = 0.820 V
b.
β VT        (120 )( 0.026 )
 rπ =            =                     = 5.40 kΩ
         I CQ            0.578
         I CQ        0.578
gm =            =          = 22.2 mA/V
         VT          0.026
         VA    100
 r0 =        =      = 173 kΩ
         I CQ 0.578
                               ⎛ r         ⎞
V0 = − g m ( r0 RC ) Vπ , Vπ = ⎜ π ⎟ VS
                               ⎝ rπ + RB ⎠
           ⎛ r        ⎞              β ( r0 RC )
Av = − g m ⎜ π ⎟ ( r0 RC ) = −
           ⎝ rπ + RB ⎠                rπ + RB
           (120 ) ⎡173
                  ⎣         4.33⎤
                                ⎦        (120 )( 4.22 )
 Av = −                             =−                    ⇒ Av = −16.7
                    5.40 + 25                30.4

6.8
a.
       1
VECQ = VCC = 5 V
       2
VECQ = 10 − I CQ RC ⇒ 5 = 10 − ( 0.5 ) RC ⇒ RC = 10 kΩ
         I CQ   0.5
I BQ =           =   = 0.005
          β     100
VEB ( on ) + I BQ RB = VBB = ( 0.70 ) + ( 0.005 )( 50 ) ⇒ VBB = 0.95 V
b.
         I CQ         0.5
gm =            =          ⇒ g m = 19.2 mA/V
         VT          0.026
         β VT        (100 )( 0.026 )
 rπ =            =                     ⇒ rπ = 5.2 kΩ
         I CQ             0.5
         VA    ∞
 r0 =        =    ⇒ r0 = ∞
         I CQ 0.5

c.              Av = −
                           β RC
                                 =−
                                    (100 )(10 ) ⇒ A = −18.1
                                                   v
                         rπ + RB     5.2 + 50

6.9
        10 − 4
I CQ =          = 1.5 mA
           4
         1.5
I BQ =        = 0.015 mA
        100
      (100 )( 0.026 )
rπ =                    = 1.73 K
             1.5
     v       5sin ω t ( mV )
ib = be =                    = 2.89sin ω t ( μ A )
      rπ        1.73 kΩ
So
iB ( t ) = I BQ + iEb = 15 + 2.89sin ω t ( μ A )
 iC1 ( t ) = β iB ⇒ iC1 ( t ) = 1.5 + 0.289sin ω t ( mA )
 vC ( t ) = 10 − iC1 ( t ) RC = 10 − [1.5 + 0.289sin ω t ] (γ )
vC1 ( t ) = 4 − 1.156sin ω t ( v )
               vC ( t )        −1.156
     Av =                  =          ⇒ Av = −231
               vbe ( t )       0.005

6.10
vo = 1.2sin ω t ( V )
                                             −1.2sin ω t
iC ( t ) RC + vo = 0 ⇒ iC ( t ) =
                                                 2
iC ( t ) = −0.60sin ω t ( mA )
             iC ( t )
ib ( t ) =              = −6sin ω t ( μ A )
               β
vbe ( t ) = ib ( t ) ⋅ rπ       g m rπ = β
       100
rπ =         =2K
        50
vbe ( t ) = −12sin ω t ( mV )

6.11
a.
I CQ ≈ I EQ
VCEQ = 5 = 10 − I CQ ( RC + RE )
     = 10 − I CQ (1.2 + 0.2)
I CQ = 3.57 mA
        3.57
I BQ =        = 0.0238 mA
         150
R1     R2 = RTH = ( 0.1)(1 + β ) RE
             = ( 0.1)(151)( 0.2 ) = 3.02 kΩ
          1
VTH =        ⋅ RTH ⋅ (10) − 5
          R1
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 5
 1
   (3.02)(10) − 5 = ( 0.0238)(3.02) + 0.7 + (151)( 0.0238)( 0.2) − 5
R1
1
   ( 30.2 ) = 1.50 ⇒ R1 = 20.1 k Ω
R1
  20.1R2
            = 3.02 ⇒ R2 = 3.55 kΩ
 20.1 + R2
b.
       (150 )( 0.026 )
 rp =                  = 1.09 kΩ
            3.57
        3.57
gm =          = 137 mA/V
       0.026
V0
                                ϩ
                                V␲          r␲              gmV␲
                                Ϫ
         ϩ
VS                    R1͉͉R2                                       RC
         Ϫ

                                                 RE




             2 β RC             (150 )(1.2 )
Av =                      =2                     ⇒ Av = 2 5.75
         rp + (1 + β ) RE    1.09 + (151)( 0.2 )

6.12
a.
      ⎛ R2 ⎞            ⎛ 50 ⎞
VTH = ⎜         ⎟ VCC = ⎜         ⎟ (12 ) = 10 V
      ⎝ R1 + R2 ⎠       ⎝ 50 + 10 ⎠
RTH = R1 R2 = 50 10 = 8.33 kΩ
              12 − 0.7 − 10
I BQ =                       = 0.0119 mA
             8.33 + (101)(1)
I CQ = 1.19 mA, I EQ = 1.20 mA
VECQ = 12 − (1.20 )(1) − (1.19 )( 2 )
VECQ = 8.42 V
 iC


     4




1.19



                                     8.42        12   ␯EC
b.
                                                                        V0
                                Ϫ
                                V␲          r␲              gmV␲
                                ϩ
         ϩ
VS                     R1͉͉R2                                      RC
         Ϫ

                                                 RE
(100 )( 0.026 )
 rp =                     = 2.18 kΩ
          1.19
V0 = g mVp RC
             ⎛V            ⎞
VS = 2 Vp − ⎜ p + g mVp ⎟ RE
             ⎝ rp          ⎠
          ⎡ rπ + (1 + β ) RE ⎤
   = −Vp ⎢                   ⎥
          ⎣        rp        ⎦
         2 β RC             2 (100 )( 2 )
Av =                   =                  ⇒ Av = 2 1.94
     rp + (1 + β ) RE 2.18 + (101)(1)
c.           Approximation: Assume rp does not vary significantly.
RC = 2 kΩ ± 5% = 2.1 kΩ or 1.9 kΩ
RE = 1 kΩ ± 5% = 1.05 kΩ or 0.95 kΩ
For RC ( max ) = 2.1 kΩ and RE ( min )
             − (100 )( 2.1)
Av =                           = −2.14
        2.18 + (101)( 0.95 )
For RC ( min ) = 1.9 kΩ and RE ( max ) = 1.05 kΩ
             − (100 )(1.9 )
Av =                           = −1.76
        2.18 + (101)(1.05 )
So 1.76 ≤ Av ≤ 2.14

6.13
(a)
VCC = ⎜ 1+ β ⎟ I CQ RE + VECQ + I CQ RC
         ⎛       ⎞
      ⎜      ⎟
             β
         ⎝       ⎠
     ⎛ 101 ⎞
12 = ⎜      ⎟ I CQ (1) + 6 + I CQ ( 2 )
     ⎝ 100 ⎠
so that I CQ = 1.99 mA
        1.99
I BQ =         = 0.0199 mA
         100
RTH    = ( 0.1)(1 + β ) RE = ( 0.1)(101)(1) = 10.1 k Ω
      ⎛ R2 ⎞               1                  1
VTH = ⎜           ⎟ V = ⋅ R ⋅ V = (10.1)(12 )
      ⎝ R1 + R2 ⎠ CC R1 TH CC R1
VCC = (1 + β ) I BQ RE + VEB ( on ) + I BQ RTH + VTH
                                                     121.2
12 = (101)( 0.0199)(1) + 0.7 + ( 0.0199)(10.1) +
                                                      R1
which yields R1 = 13.3 k Ω and R2 = 41.6 k Ω
                         2 β RC         2 (100 )( 2 )
(b)           Av =                   =                ⇒ Av = 2 1.95
                     rp + (1 + β ) RE 1.31 + (101)(1)

6.14
I CQ = 0.25 mA, I EQ = 0.2525 mA
I BQ = 0.0025 mA
I BQ RB + VBE ( on ) + I EQ ( RS + RE ) − 5 = 0
( 0.0025)( 50 ) + 0.7 + ( 0.2525)( 0.1 + RE ) = 5
RE = 16.4 kΩ
VE = − ( 0.0025 )( 50 ) − 0.7 = −0.825 V
VC = VCEQ + VE = 3 − 0.825 = 2.175 V
     5 − 2.175
RC =             ⇒ RC = 11.3 kΩ
        0.25
         − β RC
Av =
     rπ + (1 + β ) RS
       (100 )( 0.026 )
rπ =                = 10.4 kΩ
          0.25
       − (100 )(11.3)
Av =                    ⇒ Av = −55.1
     10.4 + (101)( 0.1)
Ri = RB ⎡ rπ + (1 + β ) RS ⎤
        ⎣                  ⎦
      = 50 ⎡10.4 + (101)( 0.1) ⎤
           ⎣                   ⎦
Ri = 50 20.5 ⇒ Ri = 14.5 kΩ

6.15
(a)
VCC > I CQ ( RC + RE ) + VCEQ
9 = I CQ ( 2.2 + 2 ) + 3.75 So that
I CQ = 1.25 mA
Assume circuit is to be designed to be bias stable.
RTH = R1 R2 = ( 0.1)(1 + β ) RE = ( 0.1)(121)( 2 ) = 24.2 Ω
        1.25
 I BQ =      = 0.01042 mA
        120
         1
VTH = ⋅ RTH ⋅ VCC = I BQ RTH + VBE ( on ) + I BQ (121)( RE )
        R1
1
   ( 24.2 )( 9 ) = ( 0.01042 )( 24.2 ) + 0.7 + ( 0.01042 )(121)( 2 )
R1
                 = 0.2522 + 0.7 + 2.5216
                 = 3.474
                   62.7 R2
R1 = 62.7 K                 = 24.2
                  62.7 + R2
R2 = 39.4 K
(b)
1.25
gm =         = 48.08 mA / V
      0.026
      (120 )( 0.026 )
 rp =                 = 2.50 k Ω
           1.25
      100
 ro =      = 80 k Ω
      1.25
                                                     Vo
                  ϩ
IS               V␲     r␲             ro    RC     RL

            R1͉͉R2Ϫ            gmV␲



Vo = 2 g mVp ( ro RC RL )
Vp = I S ( R1 R2 rp )
Then
       Vo
Rm =      = 2 g m ( R1 R2 rp )( ro RC RL )
       Is
Rm = 2 48.08 ( 24.2 2.5 )( 80 2.2 1) = 2 48.08 ( 2.266 )( 0.6816 )
or
       Vo
Rm =      = −74.3 k Ω = −74.3 V / mA
       Is

6.16
a.
                         0.80
I EQ = 0.80 mA, I BQ =        = 0.0121 mA
                          66
I CQ = 0.788 mA
                      0.3
 VB = I BQ RB ⇒ RB =       ⇒ RB = 24.8 kΩ
                    0.0121
     V − ( −5 ) 5 − 3
 RC = C        =        ⇒ RC = 2.54 kΩ
        I CQ     0.788
b.
       0.788
gm =           = 30.3 mA / V
       0.026
       ( 65)( 0.026)
 rπ =                 = 2.14 kΩ
           0.788
          75
  r0 =         = 95.2 kΩ
       0.788
     ⎛ RC r0 ⎞
i0 = ⎜                g V , V = − vS
     ⎜R r +R ⎟ m π π⎟
     ⎝ C 0        L ⎠


       i0        ⎛ RC r0       ⎞
Gf =      = − gm ⎜             ⎟
       vS        ⎜R r +R       ⎟
                 ⎝ C 0   L     ⎠
                ⎛ 2.54 95.2 ⎞
    = − ( 30.3) ⎜
                ⎜ 2.54 95.2 + 4 ⎟
                                ⎟
                ⎝               ⎠
G f = −11.6 mA/V
6.17
(a)
 I CQ = 0.8 mA ⇒ I BQ = 0.00667 mA
 I BQ RS + 0.7 + (121) I BQ RE − 15 = 0
( 0.01667 )( 2.5) + 0.7 + (121)( 0.00667 ) RE = 15
RE = 17.7 K
VE = − ( 0.00667 )( 2.5 ) − 0.7 = −0.717 V
VC = −0.717 + 7 = 6.283 V
      15 − 6.283
RC =              = 10.9 K
           0.8
        0.8                           (120 )( 0.026 )
gm =          = 30.77 mA/V rπ =                       = 3.9 K
      0.026                                 0.8
                                      ⎛ r       ⎞
vo = − g m ( RC RL ) ⋅ vπ        vπ = ⎜ π ⎟ vS
                                      ⎝ rπ + RS ⎠
       − β ( RC RL )         − (120 ) (10.9 5 )
Av =                     =
          rπ + RS                3.9 + 2.5
 Av = −64.3
(b) For RS = 0
0.7 + (121)( 0.00667 ) RE = 15
RE = 17.7 K
VE = −0.7 ⇒ VC = −0.7 + 7 = 6.3
     15 − 6.3
RC =          ⇒ RC = 10.9 K
        0.8
     − β ( RC RL )
Av =               = −30.77 (10.9 5 )
           rπ
Av = −105

6.18
(a)
15 = ( 81) I BQ (10 ) + 0.7 + I BQ ( 2.5 )
           15 − 0.7
 I BQ =                   = 0.0176 mA
        2.5 + ( 81)(10 )
I CQ = 1.408 mA
      1.408                   (80 )( 0.026 )
gm =        = 54.15 mA/V rπ =
      0.026                      1.408
rπ = 1.48 K
                 RS
                                                                          V0
                    IS
                               ϩ
VS   ϩ                        V␲     r␲                  RC     Io   RL
     Ϫ                                            gmV␲
                               Ϫ
− β ( RC RL )       − ( 80 ) ( 5 5 )
Vo = − g mVσ ( RC RL ) ⇒ Av =                       =                      ⇒ Av = −50.3
                                       rπ + RS           1.48 + 2.5
                        ⎛ RC ⎞
                − g mVπ ⎜         ⎟
     i
AI = o =                ⎝ RC + RL ⎠ = − β ⎛ RC ⎞
                      V                   ⎜         ⎟
     iS                 π                 ⎝ RC + RL ⎠
                           r
                           π
       AI = −40
vo ( t ) = ( −50.3)( 4sin ω t )
vo ( t ) = −0.201sin ω t ( V )
     4 sin ω t ( mV )
is =                  = 1.005sin ω t ( μA )
       2.5 + 1.48
io = −40.2 sin ω t ( μA )
(b)
         15 − 0.7
I EQ =            = 1.43 mA
            10
         ⎛ 80 ⎞
I CQ   = ⎜ ⎟ (1.43) = 1.412 mA
         ⎝ 81 ⎠
         1.412                  (80 )( 0.026 )
gm =           = 54.3 mA/V rπ =                = 1.47 K
         0.026                     1.412
Av = − g m ( RC RL ) = − ( 54.3) ( 5 5 ) ⇒ Av = −136
             ⎛ RC ⎞              ⎛ 5 ⎞
AI = − β ⎜             ⎟ = −80 ⎜         ⎟ ⇒ AI = −40
             ⎝ RC + RL ⎠         ⎝5+5⎠
vo ( t ) = ( −136 )( 4sin ω t ) ⇒ vo ( t ) = −544sin ω t ⇒ vo ( t ) = −0.544sin ω t ( V )
             4sin ω t ( mV )
is ( t ) =                 = 2.72sin ω t ( μA )
               1.47 k
io ( t ) = ( −40 )( 2.72sin ω t )
io ( t ) = −109sin ω t ( μA )

6.19
RTH = R1 R2 = 27 15 = 9.64 K
      ⎛ R2 ⎞            ⎛ 15 ⎞
VTH = ⎜         ⎟ VCC = ⎜         ⎟ ( 9 ) = 3.214 V
      ⎝ R1 + R2 ⎠       ⎝ 15 + 27 ⎠
       V − VBE ( on )         3.214 − 0.7         2.514
I BQ = TH               =                       =
      RTH + (1 + β ) RE 9.64 + (101)(1.2 ) 130.84
I BQ = 0.0192 mA I CQ = 1.9214 mA
         1.92                   (100 )( 0.026 )
gm =           = 73.9 mA/V rπ =                 = 1.35 K
         0.026                      1.92
RS
                                                                                      V0
                  IS
                                          ϩ
VS     ϩ                  RTH            V␲    r␲                 r0   RC   I0   RL
       Ϫ                                                   gmV␲
                                          Ϫ




       100
ro =        = 52.1 K
       1.92
                                  ⎛ r R             ⎞
              (
Vo = − g mVπ r0 RC RL      ) Vπ = ⎜ π TH
                                  ⎜r R +R           ⎟ VS
                                                    ⎟
                                  ⎝ π TH S          ⎠
rπ RTH     = 1.35 9.64 = 1.184 K
     ⎛ 1.184 ⎞
Vπ = ⎜            ⎟ VS
     ⎝ 1.184 + 10 ⎠
= 0.1059VS
                           (
Av = − ( 73.9 ) ( 0.1059 ) 52.1 2.2 2    )
     = − ( 73.9 ) ( 0.1059 ) ( 52.1 1.0476 )
   = − ( 73.9 ) ( 0.1059 ) (1.027 )
Av = −8.04
                 ⎛ ro RC            ⎞
         − g mVπ ⎜
                 ⎜r R +R            ⎟
                                    ⎟
     I           ⎝ o C   L          ⎠
AI = o =
    IS             Vπ
                 RTH rπ
                      ⎛ ro RC ⎞
AI = − g m ( RTH rπ ) ⎜
                      ⎜r R +R ⎟ ⎟
                      ⎝ o C   L ⎠

ro RC = 52.1 2.2 = 2.11 K
RTH rπ = 9.64 1.35 = 1.184 K
                         ⎛ 2.11 ⎞
AI = − ( 73.9 ) (1.184 ) ⎜          ⎟
                         ⎝ 2.11 + 2 ⎠
AI = −44.9
Ri = RTH rπ = 9.64 1.35
Ri = 1.184 K

6.20
a.
                       0.35
I E = 0.35 mA, I B =        = 0.00347 mA
                       101
VB = 2 I B RB = 2 ( 0.00347 )(10 ) ⇒ VB = 2 0.0347 V
VE = VB − VBE ( on ) ⇒ VE = 2 0.735 V
b.
VC = VCEQ + VE = 3.5 − 0.735 = 2.77 V
       ⎛ b ⎞          ⎛ 100 ⎞
  IC = ⎜      ⎟ IE = ⎜      ⎟ ( 0.35 ) = 0.347 mA
       ⎝ 1+ b ⎠       ⎝ 101 ⎠
       V 1 − VC 5 − 2.77
 RC =            =            ⇒ RC = 6.43 kΩ
          IC        0.347
(c)
            ⎛ RB rp ⎞
            ⎜ R r + R ⎟( C o )
 Av = 2 g m ⎜                 R r
                           ⎟
            ⎝ B π        S ⎠

       0.347                            100
 gm =           = 13.3 mA/V , ro =           = 288 k Ω
       0.026                           0.347
      (100 )( 0.026 )
 rp =                  = 7.49 k Ω
           0.347
 RB rp = 10 7.49 = 4.28 k Ω
               ⎛ 4.28 ⎞
 Av = 2 (13.3) ⎜            ⎟ ( 6.43 288 ) ⇒ Av = 2 81.7
               ⎝ 4.28 + 0.1 ⎠
d.
            ⎛ RB rp ⎞
            ⎜ R r + R ⎟( C 0 )
 Av = 2 g m ⎜                R r
                          ⎟
            ⎝ B p       S ⎠

RB rp = 10 7.49 = 4.28 kΩ
              ⎛ 4.28 ⎞
Av = 2 (13.3) ⎜            ⎟ ( 6.43 288 ) ⇒ Av = 2 74.9
              ⎝ 4.28 + 0.5 ⎠

6.21
a.
RTH = R1 R2 = 6 1.5 = 1.2 kΩ
      ⎛ R2 ⎞ + ⎛ 1.5 ⎞
VTH = ⎜         ⎟V = ⎜           ⎟ ( 5 ) = 1.0 V
      ⎝ R1 + R2 ⎠      ⎝ 1.5 + 6 ⎠
        V − VBE ( on )         1.0 − 0.7
I BQ = TH                =                      = 0.0155 mA
      RTH + (1 + β ) RE 1.2 + (181)( 0.1)
I CQ = 2.80 mA, I EQ = 2.81
VCEQ = V + − I CQ RC − I EQ RE
        = 5 − ( 2.8 )(1) − ( 2.81)( 0.1) ⇒ VCEQ = 1.92 V
b.
        (180 )( 0.026 )
 rp =                ⇒ rp = 1.67 kΩ
            2.80
        2.80
 gm =         ⇒ g m = 108 mA/V, r0 =`
       0.026
(c)
            ⎛    R1 R2 rp    ⎞
 Av = 2 g m ⎜                ⎟ ( RC RL )
            ⎝ R1 R2 rp + RS ⎠
 R1 R2 rp = 6 1.5 1.67 = 0.698 k V
              ⎛ 0.698 ⎞
Av = 2 (108 ) ⎜             ⎟ (1 1.2 ) ⇒ Av = 2 45.8
              ⎝ 0.698 + 0.2 ⎠
6.22
a.
9 = I EQ RE + VEB ( on ) + I BQ RS
                           0.75
I EQ = 0.75 mA, I BQ =           = 0.00926 mA
                            81
I CQ = 0.741 mA
9 = ( 0.75 ) RE + 0.7 + ( 0.00926 )( 2 ) ⇒ RE = 11.0 kΩ
b.
VE = 9 − ( 0.75 )(11) = 0.75 V
VC = VE − VECQ = 0.75 − 7 = −6.25 V
           VC − ( −9 )        9 − 6.25
RC =                     =             ⇒ RC = 3.71 kΩ
                I CQ           0.741
c.
           ⎛ rp ⎞
Av = 2 g m ⎜          ⎟ ( RC || RL || r0 )
           ⎝ rp + RS ⎠
     (80 )( 0.026 )
rp =                 = 2.81 kΩ
         0.741
       80
r0 =         = 108 kV
     0.741
       2 80
Av =            ( 3.71||10 ||108 )
     2.81 + 2
Av = 2 43.9
d.
Ri = RS + rp = 2 + 2.81 ⇒ Ri = 4.81 kΩ

6.23
               4 − 0.7
I BQ =                     = 0.00647
            5 + (101)( 5 )
I CQ = 0.647 mA
a.              80 ≤ h fe ≤ 120, 10 ≤ h0e ≤ 20 mS
2.45 kΩ ≤ hie ≤ 3.7 kΩ
     low gain               high gain
                       RS
                                                                         V0
                       IS
                                        ϩ
VS      ϩ                           V␲      r␲            RC   Io   RL
        Ϫ                                         gmV␲
                                        Ϫ
⎛ 1         ⎞
V0 = 2 h fe I b ⎜     RC RL ⎟
                ⎝ hoe       ⎠
        RB
                   V
                  ?S
     R + RS
Ib = B
       RTH + hie
RTH = RB RS = 5 1 = 0.833 kΩ
High-gain
     ⎛ 5 ⎞
     ⎜      ⎟ VS
       5 +1⎠
Ib = ⎝             = 0.1838VS
     0.833 + 3.7
Low-gain
      ⎛ 5 ⎞
      ⎜      ⎟ VS
Ib =  ⎝ 5 +1⎠        = 0.2538VS
     0.833 + 2.45
                   1                  1
For hoe = 10 ⇒        || Rc || RL =       || 4 || 4
                  hoe               0.010
            = 100 || 2 = 1.96 kΩ
                         1
For hoe = 20 ⇒                || 4 || 4 = 50 || 2 = 1.92 kΩ
                       0.020
 Av   max
            = (120 )( 0.1838 )(1.96 ) = 43.2
 Av   min
            = ( 80 )( 0.2538 )(1.92 ) = 39.0
39.0 ≤ Av ≤ 43.2
b.
Ri = RB hie = 5 3.7 = 2.13 kV or Ri = 5 2.45 = 1.64 kΩ
1.64 ≤ Ri ≤ 2.13 kΩ
           1         1
R0 =          RC =       4 = 100 || 4 = 3.85 kΩ
          hoe      0.010
          1
or R0 =       || 4 = 50 || 4 = 3.70 kΩ
        0.020
3.70 ≤ R0 ≤ 3.85 kΩ

6.24
                             VCC ϭ 10 V




                                           RC
                              R1
                                             ␯o
            RS ϭ 1 k⍀

                        CC

␯s    ϩ                       R2
      Ϫ
                                    RE             CE
Assume an npn transistor with b = 100 and VA = ∞. Let VCC = 10 V .
       0.5
 Av =        = 50
       0.01
Bias at I CQ = 1 mA and let RE = 1 k Ω
For a bias stable circuit
RTH = ( 0.1)(1 + b ) RE = ( 0.1)(101)(1) = 10.1 k Ω
         1               1                   101
VTH = ⋅ RTH ⋅ VCC = (10.1)(10 ) =
        R1              R1                    R1
         1
I BQ =      = 0.01 mA
       100
VTH = I BQ RTH + VBE ( on ) + (1 + b ) I BQ RE
101
     = ( 0.01)(10.1) + 0.7 + (101)( 0.01)(1)
 R1
which yields R1 = 55.8 k Ω and R2 = 12.3 k Ω
Now
        (100 )( 0.026 )
 rp =                     = 2.6 k Ω
              1
        1
gm =         = 38.46 mA/V
     0.026
Vo = − g mVp RC
            ⎛ R1} R2 } rp ⎞             ⎛ 10.1} 2.6 ⎞
where Vp = ⎜                   ⎟ ⋅ Vs = ⎜               ⎟ .Vs
            ⎝ R1} R2 } rp + RS ⎠        ⎝ 10.1} 2.6 + 1 ⎠
or Vp = 0.674 Vs
           V
Then Av = o = − ( 0.674 ) g m RC = − ( 0.674 )( 38.46 ) RC = −50
           Vs
which yields RC = 1.93 k Ω
With this RC, the dc bias is OK.
Finish Design, Set RC = 2 K               RE = 1 K
R1 = 56 K
R2 = 12 K
RTH = R1 R2 = 9.88 K
       ⎛ R2 ⎞            ⎛ 12 ⎞
VTH = ⎜          ⎟ VCC = ⎜         ⎟ (10 ) = 1.765 V
       ⎝ R1 + R2 ⎠       ⎝ 12 + 56 ⎠
         1.765 − 0.7
I BQ =                  = 9.60 μ A
       9.88 + (101)(1)
I CQ = 0.9605 mA
       (100 )( 0.026 )                       0.9605
rπ =                     = 2.707 K    gm =          = 36.94
           0.9605                            0.026
RTH     rπ = 2.125 K
     ⎛ RTH rπ ⎞               ⎛ 2.125 ⎞
Vπ = ⎜                 ⎟ Vi = ⎜           ⎟ Vi = ( 0.680 ) Vi
     ⎝ RTH rπ + RS ⎠          ⎝ 2.125 + 1 ⎠
Av = − ( 0.680 ) g m RC = − ( 0.680 )( 36.94 )( 2 ) = −50.2
Design specification met.

6.25
a.
            6 − 0.7
I BQ =                  = 0.0169 mA
         10 + (101)( 3)
I CQ = 1.69 mA, I EQ = 1.71 mA
VCEQ = (16 + 6 ) − (1.69 )( 6.8 ) − (1.71)( 3)
VCEQ = 5.38 V
b.
        1.69
gm =            ⇒ g m = 65 mA/V
        0.026
      (100 )( 0.026 )
 rp =                  ⇒ rp = 1.54 kV ,        r0 = ∞
            1.69
(c)
         − β ( RC RL )     RB Rib
 Av =                  ⋅
       rπ + (1 + β ) RE RB Rib + RS
Rib = rπ + (1 + β ) RE = 1.54 + (101)(3) = 304.5 k Ω
RB Rib = 10 304.5 = 9.68 k Ω
Then
       − (100 )( 6.8 6.8 ) ⎛ 9.68 ⎞
Av =                      ⋅⎜          ⎟ ⇒ Av = −1.06
        1.54 + (101)( 3) ⎝ 9.68 + 0.5 ⎠
      ⎛ RC ⎞
 i0 = ⎜          ⎟ ( − β ib )
      ⎝ RC + RL ⎠
      ⎛          RB               ⎞
 ib = ⎜                           ⎟ iS
      ⎝ RB + rπ + (1 + β ) RE     ⎠
             ⎛ RC       ⎞⎛            RB          ⎞
Ai = − ( β ) ⎜          ⎟⎜⎜ R + r + (1 + β ) R ⎟  ⎟
             ⎝ RC + RL  ⎠⎝ B π                  E ⎠


               ⎛ 6.8 ⎞ ⎛                10           ⎞
    = − (100 ) ⎜           ⎟⎜⎜ 10 + 1.54 + (101)( 3) ⎟ ⇒ Ai = −1.59
                                                     ⎟
               ⎝ 6.8 + 6.8 ⎠ ⎝                       ⎠
(d)       Ris = RS + RB Rib = 0.5 + 10 304.5 = 10.2 k Ω
(e)
         2 b ( RC RL )
Av =
       rp + (1 + b ) RE
       2 (100 ) ( 6.8} 6.8 )
Av =                           ⇒ Av = 2 1.12
         1.54 + (101)( 3)
Ai = same as ( c ) ⇒ Ai = 2 1.59

6.26
ie


          ϩ                     ϩ
          vCE
 ϩ                              vCE   ris             gmv␲        ␲o
 vbe Ϫ
    Ϫ
                                Ϫ



                                                ϩ
                                                vCE    gmv␲
                                                Ϫ

      vCe     1
r=          =
     g m vCe g m
           ⎛ 1 ⎞
So re = rp ⎜    ⎟ r0
           ⎝ gm ⎠

6.27
Let b = 100, VA = ∞
                            VCC




                                      RC
                           R1
                                           ␯o
         RS ϭ 100 ⍀

                      CC

␯s   ϩ                     R2
     Ϫ
                                RE




Let VCC = 2.5 V
P = ( I R + I C ) VCC ⇒ 0.12 = ( I R + I C )( 2.5 ) ⇒ I R + I C = 48 mA, Let I R = 8mA, I C = 40 mA
                VCC 2.5
R1 + R2 >          =    ⇒ 312.5 k Ω
                IR   8
          40
I BQ =       = 0.4 mA
         100
Let RE = 2 k Ω. For a bias stable circuit
RTH = ( 0.1)(1 + b ) RE = ( 0.1)(101)( 2 ) = 20.2 k Ω
       1
VTH = ⋅ RTH ⋅ VCC = I BQ RTH + VBE ( on ) + (1 + b ) I BQ RE
      R1
1
   ( 20.2 )( 2.5 ) = ( 0.0004 )( 20.2 ) + 0.7 + (101)( 0.0004 )( 2 )
R1
which yields R1 = 64 k V and R2 = 29.5 k Ω
       (100 )( 0.026 )
rπ =                      = 65 k Ω       Neglect RS
             0.04
        Vo       2 b RC
Av =       >
        Vs   rπ + (1 + b ) RE
            2 100 RC
−10 =                     ⇒ RC = 26.7 k Ω
          65 + (101)( 2 )
With this RC , dc biasing is OK.

6.28
                      100
Need a voltage gain of     = 20.
                        5
Assume a sign inversion from a common-emitter is not important. Use the configuration for Figure 6.31.
Let RS = 0. Need an input resistance of
       5 × 102 3
 Ri =             = 25 × 103 = 25 k Ω
      0.2 × 102 6
 Ri = RTH Rib . Let RTH = 50 k Ω, Rib = 50 k Ω
Rib = rp + (1 + b ) RE > (1 + b ) RE
                      Rib     50
For b = 100, RE =          =        = 0.495 k Ω
                     1 + b 101
Let RE = 0.5 k V , VCC = 10 V , I CQ = 0.2 mA
                 0.2
Then I BQ =          = 0.002 mA
                100
VTH    = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
1               1
   ⋅ RTH ⋅ VCC = ( 50)(10) = ( 0.002)(50) + 0.7 + (101)( 0.002 )( 0.5)
R1              R1
which yields R1 = 555 k Ω and R2 = 55 k Ω
                   − β RC              (100)( 0.026)
Now Av =                        , rπ =               = 13 k Ω
               rπ + (1 + β ) RE            0.2
So
            − (100 ) RC
−20 =                        ⇒ RC = 12.7 k Ω
         13 + (101)( 0.5)
[Note: I CQ RC = ( 0.2 )(12.7 ) = 2.54 V. So dc biasing is OK.]

6.29
VCC ϭ 10 V




                        R1               RE


            CC



                                          ␯o
␯s   ϩ                  R2
     Ϫ
                                         RC




                     2 b RC
b = 80, Av =
                 rp + (1 + b ) RE
First approximation:
        R
( Av ) ≈ C = 10 ⇒ RC = 10 RE
        RE
Set RC = 12 RE
VEC ≈ VCC − I C ( RC + RE ) = 10 − I C (13RE )
             1
For VEC = VCC = 5
             2
5 = 10 − I C (13RE )
For I C = 0.7 mA
I E = 0.709, I B = 0.00875 mA ⇒ RE = 0.55 kΩ − RC = 6.6 kΩ
Bias stable ⇒
R1 R2 = RTH = ( 0.1)(1 + β ) RE
= ( 0.1)(81)( 0.55 ) = 4.46 kΩ
                                                    1
10 = ( 0.709 )( 0.55 ) + 0.7 + ( 0.00875 )( 4.46 ) + ( 4.46 )(10 )
                                                    R1
          1
8.87 =       ( 4.46 ) ⇒ R1 = 5.03 kΩ
          R1
 5.03R2
          = 4.46 ⇒ R2 = 39.4 kΩ
5.03 + R2
  10        10
       =            = 0.225 mA
R1 + R2 5.03 + 39.4
0.7 + 0.225 ≅ 0.925 mA from VCC source.
             (80 ) ( 0.026 )
Now rπ =                       = 2.97 kΩ
                  0.7
             (80 )( 6.6 )
 Av =                           = 11.1
         2.97 + ( 81)( 0.55 )

6.30
ϩ5V




                     R1            RC

                                          CC2
           CC1                                           ␯o

                                                      RL ϭ 10 K

␯s   ϩ
     Ϫ               R2                         CE
                                   RE




                         Ϫ5V
β = 120
Let I CQ = 0.35 mA, I EQ = 0.353 mA
I BQ = 0.00292 mA
Let RE = 2 kΩ. For VCEQ = 4 V ⇒ 10 = 4 + ( 0.35) RC + ( 0.353)( 2)
                         (120 )( 0.026 )
RC = 15.1 kΩ, rπ =                        = 8.91 kΩ
                                0.35
         − β ( RC RL )        (120 ) (15.1 10 )
Av =                     =−
              rπ                   8.91
Av = −81.0
For bias stable circuit:
R1 R2 = RTH = ( 0.1)(1 + β ) RE
= ( 0.1)(121)( 2 ) = 24.2 kΩ
      ⎛ R2 ⎞                   1
VTH = ⎜          ⎟ (10) − 5 = ⋅ RTH ⋅ (10 ) − 5
      ⎝ R1 + R2 ⎠              R1
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 5
1
   ( 24.2 )(10 ) − 5 = ( 0.00292 )( 24.2 ) + 0.7 + (121)( 0.00292 )( 2 ) − 5
R1
1
   ( 242 ) = 1.477, R1 = 164 kΩ
R1
 164 R2
         = 24.2 ⇒ R2 = 28.4 kΩ
164 + R2
    10
            = 0.052, 0.35 + 0.052 = 0.402 mA
164 + 28.4
So bias current specification is met.

6.31
From Prob. 6.12,
RTH = R1} R2 = 10}50 = 8.33 kΩ
        ⎛ R2 ⎞              ⎛ 50 ⎞
 VTH = ⎜          ⎟ (12 ) = ⎜         ⎟ (12 ) = 10 V
        ⎝ R1 + R2 ⎠         ⎝ 50 + 10 ⎠
          12 − 0.7 − 10
 I BQ =                   = 0.0119 mA
        8.33 + (101)(1)
 I CQ = 1.19 mA, I EQ = 1.20 mA
VECQ = 12 − (1.19 )( 2 ) − (120 )(1) = 8.42 V




1.19



         1                      8.42      11 12

For 1 ≤ vEC ≤ 11
DvEC = 11 − 8.42 = 2.58
⇒ Output voltage swing = 5.16 V (peak-to-peak)

6.32
                 5 − 0.7
I BQ =                           = 0.00315 mA
         50 + (101)( 0.1 + 12.9)
I CQ = 0.315 mA, I EQ = 0.319 mA
VCEQ = ( 5 + 5 ) − ( 0.315 )( 6 ) − ( 0.319 )(13)
VCEQ = 3.96 V



                   AC load line
                             Ϫ1
                   Slope ϭ
                           6.1 K
0.315




               3.96                     10

         1
ΔiC = −    Δv
        6.1 eC
For ΔiC = 0.315 − 0.05 = 0.265 ⇒ ΔvEC = 1.62
vEC ( min ) = 3.96 − 1.62 = 2.34

Output signal swing determined by current:
Max. output swing = 3.24 V peak-to-peak

6.33
From Problem 4.18, I CQ = 1.408 mA, I EQ = 1.426 mA
(a) VECQ = 30 − (1.408 )( 5 ) − (1.426 )(10 ) = 8.7 V
IC (mA)
                                  AC load line
                                            Ϫ1
                                  Slope ϭ
                                          RC ͉͉RL
                                            Ϫ1
  1.408                                 ϭ
                                          2.5 kΩ




                                8.7      ␯EC (V)


vEC ( max ) = 8.7 + ΔI C ⋅ ( 2.5 ) = 8.7 + (1.408 )( 2.5 ) = 12.22
Set vEC ( max ) = 12 = 8.7 + ΔI C ( 2.5 ) ⇒ ΔI C = 1.32 mA
So ΔvEC (peak-to-peak) = 2(12 − 8.7) = 6.6 V
(b)     ΔiC (peak-to-peak) = 2(1.32) = 2.64 mA

6.34
  I EQ   = 0.80 mA, I CQ = 0.792 mA
  I BQ   = 0.00792 mA
   VE    = 0.7 + ( 0.00792 )(10 ) = 0.779 V
   VC    = I CQ RC − 5 = ( 0.792 )( 4 ) − 5 = 2 1.83 V
VECQ     = 0.779 − ( −1.83) = 2.61 V
Load line: Assume VE remains constant at ≈ 0.78 V
IC (mA)
                                  AC load line
                                            Ϫ1
                                  Slope ϭ
                                          RC ͉͉RL
                                            Ϫ1
  1.408                                 ϭ
                                          2.5 kΩ




                                8.7      ␯EC (V)
       21
DiC =        v
            ? ec
      2 kV
Collector current swing = 0.792 − 0.08
                        = 0.712 mA
                   Dvec = ( 0.712 )( 2 ) = 1.424 V
Output swing determined by current.
Max. output swing = 2.85 V peak-to-peak
                           2.85
Swing in i0 current =
                             4
                         = 0.712 mA peak-to-peak
6.35
            6 − 0.7
I BQ =                  = 0.0169 mA
         10 + (101)( 3)
I CQ = 1.69 mA, I EQ = 1.71 mA
VCEQ = (16 + 6 ) − (1.69 )( 6.8 ) − (1.71)( 3)
VCEQ = 5.38 V


                 AC load line
                            Ϫ1
                 Slope ϭ
                         3.4 ϩ 3
1.69                       Ϫ1
                       ϭ
                         6.4 K




              5.38                    22
         1
DiC = 2     Dvce
        6.4
                                                           4.38
For vce ( min ) = 1 V, Dvce = 5.38 − 1 = 4.38 V ⇒ DiC =         = 0.684 mA
                                                           6.4
Output swing limited by voltage:
Δvce = Max. swing in output voltage
     = 8.76 V peak-to-peak
       1
 Δi0 =   ΔiC ⇒ Δi0 = 0.342 mA
       2
 or Δi0 = 0.684 mA (peak-to-peak)

6.36

                     AC load line
                               Ϫ1
                     Slope ϭ
                             1.05 K
2.65

                        Q-point
ICQ




                VCEQ                             9
       100
ro =
       I CQ
Neglect ro as (E) approx. dc load line VCE = 9 − I C ( 3.4 )
ΔI C = I CQ − 0.1
     ΔVCE = VCEQ − 1
Also ΔVCE = ΔI C ( RC RL ) = ΔI C (1.05 )
Or VCEQ − 1 = ( I CQ − 0.1) (1.05 )
Substituting the expression for the dc load line.
⎡9 − I CQ ( 3.4 ) − 1⎤ = ( I CQ − 0.1) (1.05 )
⎣                    ⎦
8.105 = I CQ ( 4.45 ) ⇒ I CQ = 1.821 mA
VCEQ = 2.81 V
       1.821
I BQ =       = 0.01821
        100
RTH = ( 0.1)(101)(1.2 ) = 12.12 K
        1                1
VTH = ⋅ RTH ⋅ VCC = (12.12 ) ( 9 ) = ( 0.01821) (12.12 ) + 0.7 + (101)( 0.01821)(1.2 )
       R1               R1
= 0.2207 + 0.7 + 2.20705
R1 = 34.9 K
R2 = 18.6 K
 34.9 R2
          = 12.12
34.9 + R2

6.37
dc load line
              5
                   ϭ 4.55 mA
           1 ϩ 0.1
                      AC load line
                                Ϫ1
                      Slope ϭ
ICQ                           1͉͉1.2
                                 Ϫ1
                            ϭ
                              0.545 K




             VCEQ                       5
For maximum symmetrical swing
ΔiC = I CQ − 0.25
                                        1
ΔvCE = VCEQ − 0.5 and ΔiC =                  ⋅ | ΔvCE |
                                    0.545 kΩ
                VCEQ − 0.5
I CQ − 0.25 =
                 0.545
VCEQ = 5 − I CQ (1.1)
0.545 ( I CQ − 0.25 ) = ⎡5 − I CQ (1.1) ⎤ − 0.5
                        ⎣               ⎦
( 0.545 + 1.1) I CQ = 5 − 0.5 + 0.136
I CQ = 2.82 mA,          I BQ = 0.0157 mA
RTH = R1 R2 = ( 0.1)(1 + β ) RE
      = ( 0.1)(181)( 0.1) = 1.81 kΩ
        1
VTH =      ⋅ RTH ⋅ V + = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
        R1
1
   (1.81)( 5 ) = ( 0.0157 )(1.81) + 0.7 + (181)( 0.0157 )( 0.1)
R1
     1
        ( 9.05 ) = 1.013 ⇒ R1 = 8.93 kΩ
     R1
      8.93R2
               = 1.81 ⇒ R2 =2.27 kΩ
     8.93 + R2

6.38
I CQ = 0.647 mA , VCEQ > 10 − ( 0.647 )( 9 ) = 4.18 V
DiC = I CQ = 0.647 mA
So DvCE = DiC ( 4} 4 ) = ( 0.647 )( 2 ) = 1.294 V
Voltage swing is well within the voltage specification. Then DvCE = 2 (1.294 ) = 2.59 V peak-to-peak

6.39
a.
 RTH = R1} R2 = 10}10 = 5 kΩ
        ⎛ R2 ⎞                  ⎛ 10 ⎞
 VTH = ⎜          ⎟ (18 ) − 9 = ⎜         ⎟ (18 ) − 9 = 0
        ⎝ R1 + R2 ⎠             ⎝ 10 + 10 ⎠
         0 − 0.7 − ( −9 )
 I BQ =                   = 0.0869 mA
        5 + (181)( 0.5 )
 I CQ = 15.6 mA, I EQ = 15.7 mA
VCEQ = 18 − (15.7 )( 0.5 ) ⇒ VCEQ = 10.1 V
b.




                              AC load line
                                         Ϫ1
                              Slope ϭ
                                      0.5͉͉0.3
                                        Ϫ1
15.6                                ϭ
                                      0.188 K


                            10.1             18
c.
        (180 )( 0.026 )
 rπ =                     = 0.30 kΩ
            15.6
         (1 + β )( RE   RL ) ⎛ R1 R2 Rib             ⎞
 Av =                        ⋅⎜                      ⎟
      rπ + (1 + β ) ( RE RL ) ⎝ R1 R2 Rib + RS       ⎠
Rib = rπ + (1 + β )( RE RL ) = 0.30 + (181)( 0.5      0.3) or Rib = 34.2 k Ω
 R1 R2 Rib = 5 34.2 = 4.36 k Ω
           (181)( 0.5 0.3) ⎛ 4.36 ⎞
 Av =                        ⋅⎜          ⎟ ⇒ Av     = 0.806
        0.3 + (181)( 0.5 0.3) ⎝ 4.36 + 1 ⎠
d.
Rib = rp + (1 + b ) ( RE } RL )
Rib = 0.30 + (181)( 0.188 ) ⇒ Rib = 34.3 kΩ
             rp + R1} R2 } RS       0.3 + 5}1
 Ro = RE                      = 0.5           ⇒ Ro = 6.18 Ω
                  1+ b                181

6.40
a.
RTH = R1} R2 = 10}10 = 5 kΩ
      ⎛ R2 ⎞
VTH = ⎜          ⎟ ( −10 ) = 2 5 V
      ⎝ R1 + R2 ⎠
VTH = I BQ RTH + VBE ( on ) + (1 + b ) I BQ RE − 10
         2 5 − 0.7 − ( −10 )
I BQ =                         = 0.0174 mA
           5 + (121)( 2 )
I CQ = 2.09 mA, I EQ = 2.11 mA
VCEQ = 10 − ( 2.09 )(1) − ( 2.11)( 2 ) ⇒ VCEQ = 3.69 V
b.

                  AC load line
                           Ϫ1
                  Slope ϭ
                          2͉͉2
                          Ϫ1
2.09                    ϭ
                          1K




               3.69                   10
c.
         (120 )( 0.026 )
 rπ =                   = 1.49 kΩ
            2.09
         (1 + β ) ( RE RL ) ⎛ R1 R2 Rib ⎞
Av =                          ⋅⎜                  ⎟
      rπ + (1 + β ) ( RE RL ) ⎜ R1 R2 Rib + RS ⎟
                               ⎝                  ⎠
Rib = rπ + (1 + β ) ( RE RL ) = 1.49 + (121) ( 2 2)
Rib = 122.5 k Ω,           R1 R2 Rib = 5 122.5 = 4.80 k Ω
            (121) ( 2 2) ⎛ 4.80 ⎞
 Av =                       ⋅⎜          ⎟ ⇒ Av   = 0.484
         1.49 + (121) ( 2 2) ⎝ 4.80 + 5 ⎠
d.
Rib = rπ + (1 + b ) ( RE } RL )
Rib = 1.49 + (121) ( 2} 2 ) 1 Rib = 122 kΩ
             rπ + R1} R2 } RS    1.49 + 5}5
 Ro = RE                      =2            1 Ro = 32.4 Ω
                  1+ b              121

6.41
a.
RTH = R1 R2 = 60 40 = 24 kΩ
       ⎛ R2 ⎞            ⎛ 40 ⎞
VTH = ⎜          ⎟ VCC = ⎜         ⎟ ( 5) = 2 V
       ⎝ R1 + R2 ⎠       ⎝ 40 + 60 ⎠
        5 − 0.7 − 2
I BQ =                = 0.0130 mA
       24 + ( 51)( 3)
I CQ = 0.650 mA, I EQ = 0.663 mA
VECQ = 5 − I EQ RE = 5 − ( 0.663)(3) ⇒ VECQ = 3.01 V
b.


1.63
                                  AC load line
                                              Ϫ1
                                  Slope ϭ 51
                                          Θ 50 Ι Θ3͉͉4Ι
0.65                                         Ϫ1
                                        ϭ
                                          1.75 K


                                3.01                5
c.
       ( 50 )( 0.026 )        80
rπ =            = 2 kΩ, r0 =      = 123 kΩ
       0.650                 0.65
        ′
Define RL = RE RL r0 = 3 4 123 = 1.69 kΩ
          (1 + β ) RL
                    ′          ( 51)(1.69 )
Av =                      =                      ⇒ Av = 0.977
        rπ (1 + β ) RL′       2 + ( 51)(1.69 )
                  ⎛ RE r0              ⎞
Ai = (1 + β ) I b ⎜                    ⎟
                  ⎜R r +R              ⎟
                  ⎝ E 0   L            ⎠
         ⎛ RTH ⎞
Ib = I S ⎜           ⎟
         ⎝ RTH + Rib ⎠
Rib = rπ + (1 + β ) RL = 2 + ( 51)(1.69 ) = 88.2
                     ′
RE r0 = 3 r0 = 3 123 = 2.93
            ⎛ 2.93 ⎞ ⎛        24 ⎞
 Ai = ( 51) ⎜          ⎟⎜            ⎟ ⇒ Ai = 4.61
            ⎝ 2.93 + 4 ⎠ ⎝ 24 + 88.2 ⎠
d.
Rib = rπ + (1 + β ) RE RL r0 = 2 + ( 51)(1.69 ) ⇒ Rib = 88.2 kΩ
       rπ        ⎛ 2⎞
 R0 =       RE = ⎜ ⎟ 3 = 0.0392 3
      1+ β       ⎝ 51 ⎠
 R0 = 38.7 Ω
e.       Assume variations in rπ and r0 have negligible effects
R1 = 60 ± 5% R1 = 63 kΩ,        R1 = 57 kΩ
R2 = 40 ± 5% R2 = 42 kΩ,                    R2 = 38 kΩ
RE = 3 ± 5%          RE = 3.15 kΩ, RE = 2.85 kΩ
RL = 4 ± 5%          RL = 4.2 kΩ,           RL = 3.8 kΩ
⎛ RE r0 ⎞ ⎛ RTH ⎞
Ai = (1 + β ) ⎜
              ⎜ R r + R ⎟⎜ R + R ⎟
                            ⎟
              ⎝ E 0       L ⎠ ⎝ TH ib ⎠

Rib = rπ + (1 + β ) ( RE RL r0 )
RTH ( max ) = 25.2 kΩ, RTH ( min ) = 22.8 kΩ
Rib ( max ) = 92.5 kΩ, Rib ( min ) = 84.0 kΩ
RE ( max ) , RL ( min ) , Rib = 88.6 kΩ
RE ( min ) , RL ( max ) , Rib = 87.4 kΩ
RE ( max ) r0 = 3.07 kΩ
 RE ( min ) r0 = 2.79 kΩ
For RE ( min ) , RL ( max ) , RTH ( min )
           ⎛ 2.79 ⎞ ⎛          22.8 ⎞
Ai = ( 51) ⎜            ⎟⎜              ⎟ ⇒ Ai = 4.21
           ⎝ 2.79 + 4.2 ⎠ ⎝ 22.8 + 87.4 ⎠
For RE ( max ) , RL ( min ) , RTH ( max )
           ⎛ 3.07 ⎞⎛          25.2 ⎞
Ai = ( 51) ⎜            ⎟⎜             ⎟ ⇒ Ai = 5.05
           ⎝ 3.07 + 3.8 ⎠⎝ 25.2 + 88.6 ⎠

6.42
(a)
      0.5
I BQ =     = 0.00617 mA
       81
 VB = I BQ RB = ( 0.00617 )(10 ) ⇒ VB = 0.0617 V
 VE = VB + 0.7 ⇒ VE = 0.7617 V
(b)
               ⎛ 80 ⎞
I CQ = ( 0.5 ) ⎜ ⎟ = 0.494 mA
               ⎝ 81 ⎠
       I CQ 0.494
 gm =        =         ⇒ g m = 19 mA / V
        VT       0.026
            β VT       (80 )( 0.026 )
     rπ =          =                    ⇒ rπ = 4.21 k Ω
            I CQ          0.494
            VA    150
     ro =       =      ⇒ ro = 304 k Ω
            I CQ 0.494
(c)
              RS         VЈ
                          S

                                  Ϫ
              IS
Vs     ϩ                      RB V␲      r␲                ro
       Ϫ
                                                    gmV␲
                                  ϩ
                                                                Vo

                                              RL
                                         Io


For RS = 0
       ⎛V          ⎞
Vo = − ⎜ π + g mVπ ⎟ ( RL ro )
       ⎝ rπ        ⎠
−Vo
so that Vπ =
           ⎛1+ β ⎞
           ⎜     ⎟ ( RL ro )
           ⎝ rπ ⎠
Now Vs + Vπ = Vo
                                 Vo
or Vs = Vo − Vπ = Vo +
                          ⎛ 1+ β ⎞
                          ⎜      ⎟ ( RL ro )
                          ⎝ rπ ⎠
We find
       Vo        (1 + β )( RL ro )        (81)( 0.5 304 )
Av =        =                        =
       Vs     rπ + (1 + β )( RL ro ) 4.21 + ( 81)( 0.5 304 )
                  (81)( 0.5 )
           ≅                      ⇒ Av = 0.906
              4.21 + ( 81)( 0.5 )
Rib = rπ + (1 + β )( RL ro ) ≅ 4.21 + ( 81)( 0.5 ) = 44.7 k Ω
     ⎛ RB ⎞                       ⎛ ro ⎞
Ib = ⎜          ⎟ ⋅ I s and I o = ⎜         ⎟ (1 + β ) I b
     ⎝ RB + Rib ⎠                 ⎝ ro + RL ⎠
Then
      Io             ⎛ RB ⎞⎛ ro ⎞
Ai =      = (1 + β ) ⎜            ⎟⎜        ⎟
       Is            ⎝ RB + Rib ⎠⎝ ro + RL ⎠
            ⎛ 10 ⎞
 Ai ≅ ( 81) ⎜             ⎟ (1) ⇒ Ai = 14.8
            ⎝ 10 + 44.7 ⎠
(d)
      ⎛ RB + Rib ⎞              ⎛ 10 44.7 ⎞
      ⎜ R R + R ⎟ s ⎜ 10 44.7 + 2 ⎟ s (
Vs′ = ⎜                  ⋅V =                   ⋅ V = 0.803) Vs
                       ⎟        ⎜             ⎟
      ⎝ B ib        s ⎠         ⎝             ⎠
 Then Av = ( 0.803)( 0.906 ) ⇒ Av = 0.728
Ai = 14.8 (Unchanged)

6.43
(a)
                               (100 )( 0.026 )
I CQ = 1.98 mA          rπ =                     = 1.313 K
                                   1.98
       VA    100
ro =       =
       I CQ 1.98
= 50.5 K
      rπ + RS          1.31 + 10
Ro =            ro =               50.5 ⇒ Ro = 112 Ω
       1+ β               101
                                        0.112 50.5 ⇒ Ro ≅ 112 Ω
(b)       From Equation 4.68
         (1 + β ) ( ro RL )           100
 Av =                            ro =      = 50.5 K
      rπ + (1 + β ) ( ro RL )         1.98
(i)
RL = 0.5 K
         (101) ( 50.5 0.5)
 Av =
      1.31 + (101) ( 50.5 0.5 )
         (101)( 0.4951)
 Av =                        ⇒ Av = 0.974
      1.31 + (101)( 0.4951)
(ii)
 RL = 5 K         ro RL = 50.5 5 = 4.5495
           (101)( 4.55)
 Av =                        ⇒ Av = 0.997
        1.31 + (101)( 4.55 )

6.44
        5 − 0.7
I EQ =           = 1.303      I CQ = 1.293 mA
          3.3
        (125 )( 0.026 )
  rπ =                   = 2.51 K
            1.293
        1.293
 gm =          = 49.73 mA/V
        0.026
(a)
 Rib = rπ + (1 + β ) ( RE RL ) = 2.51 + (126 ) ( 3.3 1)
Rib = 99.2 K
             rπ        2.51
 Ro = RE         = 3.3      = 3.3 0.01992
            1+ β       126
 Ro = 19.8 Ω
(b)
     v     2sin ω t
is = s =            ⇒ is ( t ) = 20.2sin ω t ( μ A )
     Rib    99.2
veb ( t ) = −is ( t ) rπ = ( −20.2 )( 2.51) sin ω t
veb ( t ) = −50.6sin ω t ( mV )
            (1 + β ) ( RE RL )          (126 ) ( 3.3 1)    (126 )( 0.7674 )
Av =                               =                    =
         rπ + (1 + β ) ( RE RL ) 2.51 + (126 ) ( 3.3 1) 2.51 + (126 )( 0.7674 )
Av = 0.9747 ⇒ vo ( t ) = 1.95sin ω t ( V )
            v (t )
io ( t ) = o       ⇒ io ( t ) = 1.95sin ω t ( mA )
           RL

6.45
a.
I EQ = 1 mA , VCEQ = VCC − I EQ RE
     5 = 10 − (1)( RE ) ⇒ RE = 5 kΩ
        1
I BQ =      = 0.0099 mA
      101
 10 = I BQ RB + VBE ( on ) + I EQ RE
 10 = ( 0.0099 ) RB + 0.7 + (1)( 5 ) ⇒ RB = 434 kΩ
b.
␯b


                            ␯0
       RB
                          RE




       (100 )( 0.026 )
rπ =                       = 2.63 kΩ
              0.99
v0          (1 + β ) RE(101)( 5 )
   =               =                  = 0.995
vb rπ + (1 + β ) RE 2.63 + (101)( 5 )
              v0    4
⇒ vb =           =      ⇒ vb = 4.02 V peak-to-peak at base
            0.995 0.995
              RS
                            ␯b

     ϩ
␯S                         RB͉͉Rib
     Ϫ




Rib = rπ + (1 + β ) RE = 508 kΩ
RB Rib = 434 508 = 234 kΩ
            RB Rib                  234vS     234
vb =                      ⋅ vS =            =      vS
       RB Rib + RS                 234 + 0.7 234.7
                                  4.02
vb = 0.997vS ⇒ vS =                    ⇒ vS = 4.03 V peak-to-peak
                                 0.997
c.
Rib = rπ + (1 + β ) ( RE RL )
Rib = 2.63 + (101) ( 5 1) = 86.8 kΩ
RB Rib = 434 86.8 = 72.3 kΩ
     ⎛ 72.3 ⎞
vb = ⎜            ⎟ vS = 0.99vS = ( 0.99 )( 4.03)
     ⎝ 72.3 + 0.7 ⎠
vb = 3.99 V peak-to-peak
        (1 + β )( RE RL )
v0 =                        ⋅ vb
     rπ + (1 + β )( RE RL )
      (101)( 0.833)
=                      ( 3.99 )
  2.63 + (101)( 0.833)
v0 = 3.87 V peak-to-peak

6.46
RTH = R1 R2 = 40 60 = 24 kΩ
      ⎛ 60 ⎞
VTH = ⎜         ⎟ (10 ) = 6 V
      ⎝ 60 + 40 ⎠
                    6 − 0.7
β = 75 I BQ =                    = 0.0131 mA
                24 + ( 76 )( 5 )
I CQ = 0.984 mA
                      6 − 0.7
β = 150 I BQ =                     = 0.00680 mA
                   24 + (151)( 5 )
I CQ = 1.02 mA
                ( 75 )( 0.026 )
β = 75 rπ =                       = 1.98 kΩ
               0.984
β = 150 rπ = 3.82 kΩ
β = 75 Rib = rπ + (1 + β )( RE RL ) = 65.3 kΩ
β = 150 Rib = 130 kΩ
        (1 + β )( RE RL )     R1 R2 Rib
Av =                       ⋅
     rπ + (1 + β )( RE RL ) R1 R2 Rib + RS
For β = 75, R1 R2 Rib = 40 60 65.3 = 17.5 k Ω
              ( 76 )( 0.833)      17.5
    Av =                        ⋅         ⇒ Av = 0.789
           1.98 + ( 76 )( 0.833) 17.5 + 4
For β = 150, R1 R2 Rib = 40 60 130 = 20.3 k Ω
              (151)( 0.833)      20.3
    Av =                       ⋅         ⇒ Av = 0.811
           3.82 + (151)( 0.833) 20.3 + 4
So 0.789 ≤ Av ≤ 0.811
              ⎛ RE ⎞ ⎛ RTH ⎞
Ai = (1 + β ) ⎜         ⎟⎜            ⎟
              ⎝ RE + RL ⎠ ⎝ RTH + Rib ⎠
β = 75
            ⎛ 5 ⎞⎛         24 ⎞
Ai = ( 76 ) ⎜       ⎟⎜            ⎟ ⇒ Ai = 17.0
            ⎝ 5 + 1 ⎠ ⎝ 24 + 65.3 ⎠
β = 150
           ⎛ 5 ⎞ ⎛ 24 ⎞
Ai = (151) ⎜ ⎟ ⎜            ⎟ ⇒ Ai = 19.6
           ⎝ 6 ⎠ ⎝ 24 + 130 ⎠
17.0 ≤ Ai ≤ 19.6

6.47
(a)
⎛ I ⎞
             9 = ⎜ E ⎟ (100 ) + VBE ( on ) + I E RE
                 ⎝ 1+ β ⎠
                    9 − 0.7
            IE =
                 ⎛ 100 ⎞
                 ⎜      ⎟ + RE
                 ⎝ 1+ β ⎠
                    8.3
β = 50 I E =               = 2.803 mA
                ⎛ 100 ⎞
                ⎜     ⎟ +1
                ⎝ 51 ⎠
                    8.3
β = 200 I E =              = 5.543 mA
                ⎛ 100 ⎞
                ⎜     ⎟ +1
                ⎝ 201 ⎠
2.80 ≤ I E ≤ 5.54 mA
VE = I E RE , β = 50, VE = 2.80 V
 β = 200, VE = 5.54 V
(b)      β = 50, I CQ = 2.748 mA, rπ = 0.473 K
β = 200, I CQ = 5.515 mA, rπ = 0.943 K
Ri = RB ⎡ rπ + (1 + β ) RE
        ⎣                        RL ⎤
                                    ⎦
β = 50 ⇒ Ri = 100 ⎡ 0.473 + ( 51)(1 1) ⎤ = 100 25.97 = 20.6 K
                  ⎣                    ⎦
β = 200 ⇒ Ri = 100 ⎡0.943 + ( 201)(1 1) ⎤ = 100 101.4 = 50.3 K
                    ⎣                     ⎦
From Fig. (4.68)
        (1 + β ) ( RE RL ) ⎛ Ri ⎞
Av =                        ⋅⎜         ⎟
     rπ + (1 + β ) ( RE RL ) ⎝ Ri + RS ⎠
           ( 51) (1 1)     ⎛ 20.6 ⎞
   =                      ⋅⎜           ⎟
       0.473 + ( 51) (1 1) ⎝ 20.6 + 10 ⎠
 β = 50 ⇒ Av = 0.661
                         ( 201) (1 1) ⎛ 50.3 ⎞
 β = 200 ⇒ Av =                           ⎜           ⎟
                     0.943 + ( 201) (1 1) ⎝ 50.3 + 10 ⎠
Av = 0.826

6.48
Vo = (1 + β ) I b RL
            Vs
Ib =
     rπ + (1 + β ) RL
             (1 + β ) RL
so Av =
          rπ + (1 + β ) RL
For β = 100, RL = 0.5 k Ω
       (100 )( 0.026 )
rπ =                     = 5.2 k Ω
            0.5
(101)( 0.5 )
Then Av ( min ) =                          = 0.9066
                        5.2 + (101)( 0.5 )
Then β = 180, RL = 500 k Ω
        (180 )( 0.026 )
rπ =                         = 9.36 k Ω
                0.5
                           (181)( 500 )
Then Av ( max ) =                           = 0.9999
                        9.36 + (181)( 500 )

6.49
                                  Rib



              IS             Ib         ϩ
                                        V␲    r␲             gmV␲ ϭ ␤Ib
                                        Ϫ
␯S     ϩ               R1͉͉R2
       Ϫ

                                             RE         RL
                                                   I0



                  ⎛ RE ⎞
I 0 = (1+ β ) I b ⎜         ⎟
                  ⎝ RE + RL ⎠
         ⎛ R1 R2 ⎞
Ib = I S ⎜             ⎟
         ⎝ R1 R2 + Rib ⎠
Rib = rπ + (1 + β )( RE RL )
VCC = 10 V, For VCEQ = 5 V

         ⎛1+ β ⎞
5 = 10 − ⎜     ⎟ I CQ RE
         ⎝ β ⎠
β = 80, For RE = 0.5 kΩ
I CQ = 9.88 mA, I EQ = 10 mA, I BQ = 0.123 mA
            (80 )( 0.026 )
     rπ =             = 0.211 kΩ
           9.88
 Rib = 0.211 + ( 81)( 0.5 0.5 ) ⇒ Rib = 20.46 kΩ
            I0            ⎛ RE ⎞ ⎛ R1 R2 ⎞
     Ai =      = (1 + β ) ⎜         ⎟⎜             ⎟
            IS            ⎝ RE + RL ⎠⎝ R1 R2 + Rib ⎠
               ⎛ 1 ⎞⎛     R1 R2      ⎞
     8 = ( 81) ⎜ ⎟ ⎜                 ⎟
               ⎝ 2 ⎠ ⎝ R1 R2 + 20.46 ⎠
0.1975 ⎡ R1} R2 + 20.46 ⎤ = R1} R2
       ⎣                ⎦
R1} R2 ⇒ 5.04 kΩ
VTH = I BQ RTH + VBE ( on ) + (1 + b ) I BQ RE
1
   ( 5.04 )(10 ) = ( 0.123)( 5.04 ) + 0.7 + (10 )( 0.5 ) ⇒ R1 = 7.97 kΩ
R1
 7.97 R2
          = 5.04 ⇒ R2 = 13.7 kΩ
7.97 + R2
                    rπ        0.211
Now Ro = RE             = 0.5       or Ro = 2.59 Ω
                   1+ b        81
(b)
 Rib = 0.211 + (81) ( 0.5 2) = 32.6 k Ω
           ⎛ 0.5 ⎞ ⎛ 5.04 ⎞
Ai = ( 81) ⎜         ⎟⎜              ⎟ = ( 81)( 0.2 )( 0.134 )
           ⎝ 0.5 + 2 ⎠ ⎝ 5.04 + 32.6 ⎠
Ai = 2.17

6.50
Ri = RTH Rib where Rib = rπ + (1 + β ) RE
                    5 − 3.5
VCEQ = 3.5, I CQ            = 0.75 mA
                       2
      (120 )( 0.026 )
rπ =                  = 4.16 k Ω
            0.75
Rib = 4.16 + (121) ( 2 ) = 246 k Ω
Then Ri = 120 = RTH 246 ⇒ RTH = 234 k Ω
        0.75
I BQ =        = 0.00625 mA
        120
VTH = I BQ RTH + VBE ( on ) + (1+ β ) I BQ RE
 1                 1
    ⋅ RTH ⋅ VCC = ( 234)(5) = ( 0.00625) ( 234) + 0.7 + (121)( 0.00625 )( 2 )
 R1               R1
which yields R1 = 318 k Ω and R2 = 886 k Ω

6.51
a.
                                                         12
Let RE = 24 Ω and VCEQ = 1 VCC = 12 V ⇒ I EQ =              = 0.5 A
                         2                               24
I CQ = 0.493 A, I BQ = 6.58 mA
       ( 75)( 0.026 )
rπ =                    = 3.96 Ω
           0.493
                              Reb


           Is            Ib          ϩ
                                    V␲    r␲             gmV␲ ϭ ␤Ib
                                     Ϫ
VS     ϩ             R1 ͉͉ R2
       Ϫ
                    ϭ Rrn
                                         RE         RL
                                               Io
⎛ RE ⎞
I 0 = (1 + β ) I b ⎜         ⎟
                   ⎝ RE + RL ⎠
         ⎛ RTH ⎞
Ib = I S ⎜            ⎟
         ⎝ RTH + Rib ⎠
Rib = rπ + (1 + β ) ( RE    RL )
     = 3.96 + ( 76 )( 24 8 ) ⇒ Rib = 460 Ω
            I0            ⎛ RE ⎞ ⎛ RTH ⎞
     Ai =      = (1 + β ) ⎜         ⎟⎜            ⎟
            IS            ⎝ RE + RL ⎠ ⎝ RTH + Rib ⎠
               ⎛ 24 ⎞ ⎛ RTH           ⎞
     8 = ( 76) ⎜        ⎟⎜            ⎟
               ⎝ 24 + 8 ⎠ ⎝ RTH + 460 ⎠
             RTH
0.140 =               ⇒ RTH = 74.9 Ω (Minimum value)
          RTH + 460
dc analysis:
       1
VTH = ⋅ RTH ⋅ VCC
       R1
= I BQ RTH + VBE ( on ) + I EQ RE
1
   ( 74.9 )( 24 ) = ( 0.00658)( 74.9 ) + 0.70 + ( 0.5 )( 24 )
R1
= 13.19
                 136 R2
R1 = 136 Ω,              = 74.9 ⇒ R2 = 167 Ω
                136 + R2
b.


                        AC load line
                                  Ϫ1
                        Slope ϭ
                                24͉͉8
                                Ϫ1
0.493                         ϭ
                                6⍀



                       12               24
        1
ΔiC = − Δvce
        6
For ΔiC = 0.493 ⇒ Δvce = ( 0.493)( 6 ) ⇒ Max. swing in output voltage for this design
= 5.92 V peak-to-peak
c.
         rπ       3.96
R0 =         RE =      24 = 0.0521 24 ⇒ R0 = 52 mΩ
        1+ β       76

6.52
The output of the emitter follower is
     ⎛ RL ⎞
vo = ⎜         ⎟ ⋅ vTH
     ⎝ RL + Ro ⎠
Ro

                   ϩ
␯TH     ϩ
                   ␯O    RL
        Ϫ
                   Ϫ

For vO to be within 5% for a range of RL , we have
      RL ( min )                  RL ( max )
                   = ( 0.95 )
RL ( min ) + Ro                 RL ( max ) + Ro
               4                10
                   = ( 0.95 )         which yields Ro = 0.364 k Ω
            4 + Ro            10 + Ro
               ⎛ r + R1 R2 RS ⎞
We have Ro = ⎜ π              ⎟ RE ro
               ⎝      1+ β    ⎠
The first term dominates
Let R1 R2 RS ≅ RS , then
         rπ + RS           r +4
Ro ≅             ⇒ 0.364 = π
          1+ β             1+ β
                 rπ    4       β VT        4
or 0.364 =          +     =             +
               1 + β 1 + β I CQ (1 + β ) 1 + β
            VT     4
0.364 ≅         +
            I CQ 1 + β
                4                      4              4                                  V
The factor          is in the range of    = 0.044 to     = 0.0305. We can set Ro ≅ 0.32 = T
               1+ β                    91            131                                 I CQ
Or I CQ = 0.08125 mA. To take into account other factors, set I CQ = 0.15 mA,
         0.15
I BQ =        = 0.00136 mA
         110
                              5
For VCEQ ≅ 5 V , set RE =        = 33.3 k Ω
                            0.15
Design a bias stable circuit.
      ⎛ R2 ⎞                  1
VTH = ⎜         ⎟ (10) − 5 = ( RTH )(10) − 5
      ⎝ R1 + R2 ⎠            R1
RTH = ( 0.1)(1 + β ) RE = ( 0.1)(111)(33.3) = 370 k Ω
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 5
    1
So    ( 370 )(10 ) − 5 = ( 0.00136 )( 370 ) + 0.7 + (111)( 0.00136 )( 33.3) − 5
   R
    1
which yields R1 = 594 k Ω and R2 = 981 k Ω
                  (1 + β ) ( RE RL ) ⎛ RTH Rib ⎞
Now Av =                              ⋅⎜              ⎟
               rπ + (1 + β ) ( RE RL ) ⎝ RTH Rib + RS ⎠
                                                      β VT
         Rib = rπ + (1 + β ) ( RE RL )   and rπ   =
                                                      I CQ
For β = 90, RL = 4 k Ω,
 rπ = 15.6 k Ω, Rib = 340.6 k Ω
           ( 91)( 33.3 4 )      370 340.6
Av =                          ⋅              ⇒ Av = 0.9332
        15.6 + ( 91)( 33.3 4 ) 370 340.6 + 4
For β = 90, RL = 10 k Ω
Rib = 715.4 k Ω
           ( 91)( 33.3 10 )      370 715.4
 Av =                          ⋅              ⇒ Av = 0.9625
        15.6 + ( 91)( 33.3 10 ) 370 715.4 + 4
For β = 130, RL = 4 k Ω
 rπ = 22.5 k Ω, Rib = 490 k Ω
           (131)( 33.3 4 )      370 490
Av =                          ⋅            ⇒ Av = 0.9360
        22.5 + (131)( 33.3 4 ) 370 490 + 4
For β = 130, RL = 10 k Ω
Rib = 1030 k Ω
        (131)( 33.3 10 )          370 1030
 Av =                          ⋅              ⇒ Av = 0.9645
    22.5 + (131)( 33.3 10 ) 370 1030 + 4
Now vO ( min ) = Av ( min ) .vS = 3.73sin ω t
   vO ( max ) = Av ( max ) .vS = 3.86sin ω t
            ΔvO
                = 3.5%
            vO

6.53
PAVG = iL ( rms ) RL ⇒ 1 = iL ( rms )(12 )
        2                   2


so iL ( rms ) = 0.289 A ⇒ iL ( peak ) = 2 ( 0.289 )
iL ( peak ) = 0.409 A
vL ( peak ) = iL ( peak ) ⋅ RL = ( 0.409 )(12 ) = 4.91 V
               4.91
Need a gain of      = 0.982
                5
With RS = 10 k Ω, we will not be able to meet this voltage gain requirement. Need to insert a buffer or an
op-amp voltage follower (see Chapter 9) between RS and CC1 .
                          1
Set I EQ = 0.5 A, VCEQ = (12 − ( −12 ) ) = 8 V
                          3
24 = I EQ RE + VCEQ = ( 0.5 ) RE + 8 ⇒ RE = 32 Ω
                   50
Let β = 50, I CQ =    ( 0.5 ) = 0.49 A
                   51
     β VT ( 50 )( 0.026 )
rπ =      =                = 2.65 Ω
     I CQ      0.49
Rib = rπ + (1 + β ) ( RE RL ) = 2.65 + ( 51) ( 32 12 )
Rib = 448 Ω
           (1 + β ) ( RE RL )      ( 51) ( 32 12 )
Av =                           =                       = 0.994
        rπ + (1 + β ) ( RE RL ) 2.65 + ( 51) ( 32 12 )
So gain requirement has been met.
0.49
I BQ =      = 0.0098 A = 9.8 mA
        50
            24
Let I R ≅         ≅ 10 I B = 98 mA
          R1 + R2
So that R1 + R2 = 245 Ω
              R2
VTH =               ( 24 ) − 12 = I BQ RTH + VBE ( on ) + I EQ RE − 12
            R1 + R2
⎛ R2 ⎞           ( 0.0098) R1 R2
⎜ 245 ⎟ ( 24 ) =       245
                                 + 0.7 + ( 0.5 )( 32 )
⎝     ⎠
Now R1 = 245 − R2
So we obtain
4 × 10−5 R2 + 0.0882 R2 − 16.7 = 0 which yields R2 = 175 Ω and R1 = 70 Ω
           2




6.54
(a)
 RTH = R1 R2 = 25.6 10.4 = 7.40 k Ω
      ⎛ R2 ⎞                ⎛ 10.4 ⎞
VTH = ⎜          ⎟ (VCC ) = ⎜                ⎟ (18 ) = 5.2 V
      ⎝ R1 + R2 ⎠           ⎝ 10.4 + 25.6 ⎠
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
               5.2 − 0.7
I BQ =                        = 0.0117 mA
            7.40 + (126 )( 3)
Then I CQ = 1.46 mA and I EQ = 1.47 mA
VCEQ = VCC − I CQ RC − I EQ RE
VCEQ = 18 − (1.46 )( 4 ) − (1.47 )( 3) ⇒ VCEQ = 7.75 V
(b)
            (125) ( 0.026 )
     rπ =         = 2.23 k Ω
         1.46
     1.46
gm =       = 56.2 mA / V
     0.026
                                   Re

                                                                   Vo
                                   Ie        r␲    ␤Ib
Is                 RS         RE                          RC     RL
                                        Ib
                                             RTH
rπ + RTH 2.23 + 7.40
Re =            =            = 0.0764 k Ω
          1+ β      126
           − ( RS RE )                   − (100 3)
Ie =                         ⋅ Is =                        ⋅ Is
       (R   S    RE ) + Re            (100   3) + 0.0764
or I e = − ( 0.974 ) I s
                         ⎛ β             ⎞
Vo = − I c ( RC RL ) = − ⎜               ⎟ I e ( RC RL )
                         ⎝ 1+ β          ⎠
     Vo     ⎛ β ⎞                          ⎛ 125 ⎞
Then    = −⎜       ⎟ ( −0.974 )( RC RL ) = ⎜     ⎟ ( 0.974 )( 4 4 )
     Is     ⎝ 1+ β ⎠                       ⎝ 126 ⎠
          V
Then Rm = o = 1.93 k Ω = 1.93 V / mA
          Is
(c)
           (                 ) (
Vs = I s RS R E Re = I s 100 3 0.0764 = I s ( 0.0744 ))
         Vs
or I s =
      0.0744
            V V
which yields o = o ( 0.0744 ) = 1.93
             I s Vs
           Vo
or Av =       = 25.9
           Vs

6.55
(a)
         β ( RC RL )
Av =                       , RL = 12 k Ω, β = 100
         rπ + R1 R2
Let R1 R2 = 50 k Ω, I CQ = 0.5 mA
VTH = I BQ RTH + VBE ( on ) + (1+ β ) I BQ RE
       0.5                    (100 )( 0.026 )
I BQ =      = 0.005 mA, rπ =                   = 5.2 k Ω
       100                          0.5
1                1
   ⋅ RTH ⋅ VCC = ( 50 )(12 ) = ( 0.005 )( 50 ) + 0.7 + (101)( 0.005 )( 0.5 )
R1               R1
which yields R1 = 500 k Ω
and R2 = 55.6 k Ω
        (100 )(12      12 )
Av =                          = 10.9, Design criterion is met.
                5.2 + 50
(b)
I CQ   = 0.5 mA, I EQ = 0.505 mA
VCEQ = 12 − ( 0.5)(12) − ( 0.505)( 0.5) ⇒ VCEQ = 5.75 V
                          0.5
Av = g m ( RC RL ) , g m =     = 19.23 mA / V
                        0.026
Av = (19.23) (12 12 ) ⇒ Av = 115

6.56
a. Emitter current
I EQ = I CC = 0.5 mA
         0.5
I BQ =         = 0.00495 mA
         101
    VE = I EQ RE = ( 0.5 )(1) ⇒ VE = 0.5 V
    VB = VE + VBE ( on ) = 0.5 + 0.7 ⇒ VB = 1.20 V
    VC = VB + I BQ RB = 1.20 + ( 0.00495 )(100 ) ⇒ VC = 1.7 V
b.
         (100 )( 0.026 )
rπ =                      = 5.25 kΩ
        (100 )( 0.00495 )
         (100 )( 0.00495 )
gm =                                    = 19.0 mA/V
                     0.026
                     Ri
                                                     gmV␲
                                                                      V0
                 RS                 Ϫ
VS     ϩ                        RE V␲       r␲              RB   RL
       Ϫ
                                    ϩ




                                                    gmV␲

                              RS ͉͉RE Ϫ

΂           ΃
  RE                      ϩ
       V                  Ϫ          V␲      r␲
RE ϩ RS S
                                        ϩ


Vo = − g mVπ ( RB                RL )
                     RE      Rie
Vπ = −                             ⋅ VS = − ( 0.4971) VS
            RE            Rie + RS
Vo = (19 )( 0.4971) VS (100 1)
Av = 9.37
c.

                                                  gmV␲
                IX                 Ϫ
VX     ϩ
       Ϫ                       RE V␲        r␲

                                   ϩ
           VX VX
    IX =     +   − g mVπ , Vπ = −VX
           RE rπ
IX   1   1  1
   =   =   + + gm
VX Ri RE rπ
                              1             1
or Ri = RE rπ                    = 1 5.253
                              gm           19
    Ri = 0.84 0.05252 ⇒ Ri = 49.4 Ω

6.57
(a)              I EQ = 1 mA, I CQ = 0.9917 mA
VC = 5 − ( 0.9917 )( 2 ) = 3.017 V
  VE = −0.7 V
VCEQ = 3.72 V
(b)
 Av = g m ( RC RL )
      0.9917
gm =            = 38.14 mA/V
       0.026
 Av = ( 38.14 ) ( 2 10 ) ⇒ Av = 63.6

6.58
(a)
          10 − 0.7
 I EQ =            = 0.93 mA
             10
 I CQ   = 0.921 mA
VECQ = 20 − ( 0.93)(10 ) − ( 0.921)( 5 )
VECQ = 6.10 V
(b)
     0.921
gm =         = 35.42 mA/V
     0.026
Av = g m ( RC RL ) = ( 35.42 ) ( 5 50 )
Av = 161

6.59
(a)        I EQ = 0.93 mA, I CQ = 0.921 mA
VECQ = 6.10 V
                  0.921
(b)        gm =         = 35.42 mA/V rπ = 2.82 K
                  0.026
From Eq. 6.90

Av = g m
         ( RC RL ) ⎡ rπ R R ⎤
             RS     ⎢1 + β E S ⎥
                    ⎣             ⎦
     ( 35.42 ) ( 50 5 ) ⎡ 2.82      ⎤
   =                    ⎢ 101 10 0.1⎥
            0.1         ⎣           ⎦
     ( 35.42 )( 4.545 )
Av =                     [0.0218]
             0.1
Av = 35.1

6.60
(a)
       ⎛ 60 ⎞
I CQ = ⎜ ⎟ (1) ⇒ I CQ = 0.984 mA
       ⎝ 61 ⎠
                              ⎛ 1⎞
VCEQ = I BQ RB + VBE ( on ) = ⎜ ⎟ (100 ) + 0.7
                              ⎝ 61 ⎠
VCEQ = 2.34 V
(b)
Av = g m
            (RB    RL ) ⎡ rπ      ⎤
                               RS ⎥
                        ⎢
                 RS     ⎣1 + β    ⎦
      0.984
gm =        = 37.85 mA/V
      0.026
 rπ = 1.59 K
        ( 37.85) (100 2 ) ⎡1.59
                              ⎤
Av =                 ⎢ 61 0.05⎥
           0.05      ⎣        ⎦
   = 1484 ⎡ 0.0261 0.05⎤
          ⎣            ⎦
Av = 25.4

6.61
         is ( peak ) = 2.5 mA, Vo ( peak ) = 5 mV
                  vo     5 × 102 3
So we need Rm =      =             = 2 × 103 = 2 k Ω
                  is 2.5 × 102 6
From Problem 4.54
Vo ⎛ β ⎞                ⎛ RS RE ⎞
   =⎜       ⎟ ( RC RL ) ⎜
                        ⎜R R +R ⎟       ⎟
 Is ⎝ 1+ β ⎠            ⎝ S E        ie ⎠

Let RC = 4 k Ω, RL = 5 k Ω, RE = 2 k Ω
Now β = 120, so we have
   ⎛ 120 ⎞        ⎛ RS RE             ⎞         ⎛ RS RE ⎞
2=⎜      ⎟ ( 4 5) ⎜
                  ⎜R R +R             ⎟ = 2.204 ⎜
                                      ⎟         ⎜R R +R ⎟ ⎟
   ⎝ 121 ⎠        ⎝ S E      ie       ⎠         ⎝ S E  ie ⎠

        RS RE
Then                = 0.9075
      RS RE + Re
RS RE = 50 2 = 1.923 k Ω, so that Rie = 0.196 k Ω
Assume VCEQ = 3 V
VCC ≅ I CQ ( RC + RE ) + VCEQ
5 = I CQ ( 4 + 2 ) + 3 ⇒ I CQ = 0.333 mA
       (120 )( 0.026 )
rπ =              = 9.37 k Ω
        0.333
      r + RTH            9.37 + RTH
Rie = π       ⇒ 0.196 =
       1+ β                  121
which yields RTH = 14.35 k Ω
Now VTH = I BQ RTH + VBE ( on ) + I EQ RE
         1                       ⎛ 121 ⎞
I BQ =      = 0.00833 mA, I EQ = ⎜     ⎟ (1) = 1.008 mA
        120                      ⎝ 120 ⎠
         1            1
VTH    = ⋅ RTH ⋅ VCC = (14.35 )( 5 ) = ( 0.00833)(14.35 ) + 0.7 + (1.008 )( 2 )
        R1            R1
which yields R1 = 25.3 k Ω
and R2 = 33.2 k Ω

6.62
a.
20 − 0.7
 I EQ =            = 1.93 mA
             10
 I CQ   = 1.91 mA
VECQ = VCC + VEB ( on ) − I C RC
        = 25 + 0.7 − (1.91)( 6.5 ) ⇒ VECQ = 13.3 V
b.
                   Rie
            RS                                  h fe Ib
                                                                            V0
            IS            Ie
VS     ϩ                 RE                               RC           RL
       Ϫ                            hie
                               Ib


Neglect effect hoe
From Problem 6-16, assume
2.45 ≤ hie ≤ 3.7 kΩ
  80 ≤ h fe ≤ 120
Vo = ( h fe I b ) ( RC    RL )
          hie           ⎛ RE ⎞
Rie =            , Ie = ⎜          ⎟ IS
        1 + h fe        ⎝ RE + Rie ⎠
      ⎛ I ⎞              VS
 Ib = ⎜ e ⎟ , I S =
      ⎜ 1+ h ⎟      RS + RE               Rie
      ⎝     fe ⎠

      ⎛ h fe ⎞           ⎛ RE ⎞ ⎛            1                     ⎞
      ⎜ 1+ h ⎟( C
 Av = ⎜          R RL ) ⎜           ⎟×⎜                            ⎟
               ⎟
      ⎝     fe ⎠         ⎝ RE + Rie ⎠ ⎝ RS + RE                Rie ⎠
High gain device: hie = 3.7 kΩ, h fe = 120
        3.7
Rie =        = 0.0306 kΩ
        121
RE      Rie = 10 0.0306 = 0.0305
     ⎛ 120 ⎞           ⎛      10     ⎞⎛       1     ⎞
Av = ⎜     ⎟ ( 6.5 5 ) ⎜             ⎟⎜             ⎟ ⇒ Av = 2.711
     ⎝ 121 ⎠           ⎝ 10 + 0.0306 ⎠ ⎝ 1 + 0.0305 ⎠
Low gain device: hie = 2.45 kΩ, h fe = 80
        2.45
Rie =          = 0.03025 kΩ
          81
RE      Rie = 10 0.03025 = 0.0302
     ⎛ 80 ⎞        ⎛      10      ⎞⎛       1     ⎞
Av = ⎜ ⎟ ( 6.5 5 ) ⎜              ⎟⎜             ⎟ ⇒ Av = 2.70 So Av ≈ constant
     ⎝ 81 ⎠        ⎝ 10 + 0.03025 ⎠ ⎝ 1 + 0.0302 ⎠
2.70 ≤ Av ≤ 2.71
c.
Ri = RE Rie
We found 0.0302 ≤ Ri ≤ 0.0305 kΩ
Neglecting hoe , Ro = RC = 6.5 kΩ

6.63
a.         Small-signal voltage gain
Av = g m ( RC            RL ) ⇒ 25 = g m ( RC 1)
For VECQ = 3 V ⇒ VC = −VECQ + VEB ( on ) = −3 + 0.7 ⇒ VC = −2.3
                                          5 − 2.3 2.7
VCC − I CQ RC + VC = 0 ⇒ I CQ =                  =    = I CQ
                                            RC     RC
For I CQ = 1 mA, RC = 2.7 kΩ
        1
gm =          = 38.5 mA/V
      0.026
Av = ( 38.5 )( 2.7 1) = 28.1
Design criterion satisfied and VECQ satisfied.
      ⎛ 101 ⎞
 IE = ⎜     ⎟ (1) = 1.01 mA
      ⎝ 100 ⎠
                                          5 − 0.7
VEE = I E RE + VEB ( on ) ⇒ RE =                  ⇒ RE = 4.26 kΩ
                                           1.01
b.
         β VT         (100)( 0.026)
rπ =              =                   ⇒ rπ = 2.6 kΩ, g m = 38.5 mA/V, ro = ∞
          I CQ              1

6.64
a.
        ⎛ R2 ⎞            ⎛ 20 ⎞
VTH 1 = ⎜         ⎟ VCC = ⎜         ⎟ (10 ) ⇒ VTH 1 = 2.0 V
        ⎝ R1 + R2 ⎠       ⎝ 20 + 80 ⎠
RTH 1 = R1 R2 = 20 80 = 16 kΩ
             2 − 0.7
I B1 =                  = 0.0111 mA
          16 + (101)(1)
                                   1.11
I C1 = 1.11 mA ⇒ g m1 =                  ⇒ g m1 = 42.74 mA/V
                                   0.026
          (100)( 0.026)
rπ 1 =                       ⇒ rπ 1 = 2.34 kΩ
                  1.11
       ∞
r01 =      ⇒ r01 = ∞
      1.11
        ⎛ R4 ⎞            ⎛ 15 ⎞
VTH 2 = ⎜         ⎟ VCC = ⎜         ⎟ (10 ) = 1.50 V
        ⎝ R3 + R4 ⎠       ⎝ 15 + 85 ⎠
RTH 2 = R3 R4 = 15 85 = 12.75 kΩ
             1.50 − 0.70
IB2 =                          = 0.01265 mA
          12.75 + (101)( 0.5 )
                                      1.265
I C 2 = 1.265 mA ⇒ g m 2 =                  ⇒ g m2 = 48.65 mA/V
                                      0.026
          (100 )( 0.026 )
 rπ 2 =                         ⇒ rπ 2 = 2.06 kΩ
                  1.26
                                r02 = ∞
b.
 Av1 = − g m1 RC1 = − ( 42.7 )( 2 ) ⇒ Av1 = −85.48
Av 2 = − g m 2 ( RC 2 RL ) = − ( 48.5) ( 4 4) ⇒ Av 2 = −97.3
c.               Input resistance of 2nd stage
Ri 2 = R3 R4 rπ 2 = 15 85 2.06
     = 12.75 2.06 ⇒ Ri 2 = 1.773 kΩ
Av′1 = − g m1 ( RC1 Ri 2 ) = − ( 42.7 ) ( 2 1.77B)
Av′1 = −40.17
Overall gain: Av = ( −40.17 )( −97.3) ⇒ Av = 3909
If we had Av1 ⋅ Av 2 = ( −85.48)( −97.3) = 8317
Loading effect reduces overall gain

6.65
a.
        ⎛ R2 ⎞            ⎛ 12.7 ⎞
VTH 1 = ⎜         ⎟ VCC = ⎜             ⎟ (12) ⇒ VTH 1 = 1.905 V
        ⎝ R1 + R2 ⎠       ⎝ 12.7 + 67.3 ⎠
RTH 1 = R1 R2 = 12.7 67.3 = 10.68 kΩ
          1.905 − 0.70
I B1 =                    = 0.00477 mA
       10.68 + (121)( 2 )
I C1 = 0.572 mA
              0.572
      g m1 =         ⇒ g m1 = 22 mA/V
              0.026
             (120 )( 0.026 )
      rπ 1 =                 ⇒ rπ 1 = 5.45 kΩ
                 0.572
               ∞
      r01 =         ⇒ r01 = ∞
             0.572
          ⎛ R4 ⎞             ⎛ 45 ⎞
VTH 2 = ⎜           ⎟ VCC = ⎜          ⎟ (12) ⇒ VTH 2 = 9.0 V
          ⎝ R3 + R4 ⎠        ⎝ 45 + 15 ⎠
RTH 2 = R3 R4 = 15 45 = 11.25 kΩ
           9.0 − 0.70
I B2 =                    = 0.0405 mA
       11.25 + (121)(1.6)
I C2 = 4.86 mA
         4.86
gm2 =          ⇒ g m 2 = 187 mA/V
        0.026
       (120 )( 0.026 )
rπ 2 =                 ⇒ rπ 2 = 0.642 kΩ
            4.86
                        r02 = ∞
b.
  I E1 = 0.577 mA
VCEQ1 = 12 − ( 0.572 ) (10 ) − ( 0.577 ) ( 2 ) ⇒ VCEQ1 = 5.13 V
  I E 2 = 4.90
VCEQ 2 = 12 − ( 4.90 )(1.6 ) ⇒ VCEQ 2 = 4.16 V
Q1
                              AC load line
                                        Ϫ1
                              Slope ϭ
                                      10͉͉7.92
                                        Ϫ1
                                   ϭ
                                      4.42 K
0.572




                       5.13                      12
 Q2
                   AC load line
                             Ϫ1
                   Slope ϭ
                           1.6͉͉0.25
                             Ϫ1
4.86                     ϭ
                           0.216 K



                4.16                         12


Ri 2 = R3 R4 Rib
Rib = rπ 2 + (1 + β ) ( RE 2 RL )
     = 0.642 + (121) (1.6 0.25 )
 Rib = 26.8
Ri 2 = 15 45 26.8
Ri 2 = 7.92 kΩ
c.
 Av1 = − g m1 ( RC1 Ri 2 ) = − ( 22 )(10 7.92 ) ⇒ Av 2 = −97.2
         (1 + β )( RE 2 RL )
Av 2 =
     rπ 2 + (1 + β )( RE 2 RL )
          (121)( 0.216 )
   =                          = 0.976
     0.642 + (121)( 0.216 )
Overall gain = ( −97.2 )( 0.976 ) = −94.9
d.
RiS = R1 R2 rπ 1 = 67.3 12.7 5.45 ⇒ RiS = 3.61 kΩ
          rπ 2 + RS
 Ro =               RE 2 where
            1+ β
 RS = R3 R4 RC1
    = 15 45 10 ⇒ RS = 5.29 kΩ
          0.642 + 5.29
 Ro =                  1.6 ⇒ 0.049 1.6 ⇒ Ro = 47.6 Ω
              121
e.
          −1
ΔiC =             ⋅ Δvce , ΔiC = 4.86
     0.216 kΩ
Δvce = ( 4.86 )( 0.216 ) = 1.05 V
Max. output voltage swing = 2.10 V peak-to-peak

6.66
(a)
5 − 2 ( 0.7 )
 I R1 =                = 72 mA
            0.050
         0.7
IR2    =      = 1.4 mA
         0.5
         ⎛ β ⎞
IC 2   =⎜        ⎟ ( 72 − 1.4 ) ⇒ I C 2 = 69.9 mA
         ⎝ 1+ β ⎠
        69.9
IB2 =         = 0.699 mA
        100
        ⎛ β ⎞
I C1   =⎜      ⎟ (1.4 + 0.699 ) ⇒ I C1 = 2.08 mA
        ⎝ 1+ β ⎠
(b)

                   ϩ
Vs     ϩ
       Ϫ         V␲1       r␲1
                                      gm1V␲1        gm2V␲2
                   Ϫ



                                      r␲2   ϩ

                                 0.5 k⍀     V␲2
                                            Ϫ

                                                     Vo


                                            50 Ω



Vs = Vπ 1 + Vπ 2 + Vo
(1)
       ⎛V        V             ⎞
  Vo = ⎜ π 2 + π 2 + g m 2Vπ 2 ⎟ ( 0.05 )
       ⎝ 0.5 rπ 2              ⎠
           (100 )( 0.026 )
 rπ 2 =                = 0.0372 k Ω
              69.9
        69.9
 gm2 =          = 2688 mA / V
       0.026
            ⎛ 1       1           ⎞                             V
  Vo = Vπ 2 ⎜     +        + 2688 ⎟ ( 0.05 ) so that (1) Vπ 2 = o
            ⎝ 0.5 0.0372          ⎠                            135.8
(2)
Vπ 1             V     V
     + g m1Vπ 1 = π 2 + π 2
rπ 1             0.5 rπ 2
         (100 )( 0.026 )
rπ 1 =                  = 1.25 k Ω
             2.08
          2.08
g m1 =          = 80 mA / V
         0.026
     ⎛ 1          ⎞        ⎛ 1      1 ⎞
Vπ 1 ⎜       + 80 ⎟ = Vπ 2 ⎜    +       ⎟
     ⎝ 1.25       ⎠        ⎝ 0.5 0.0372 ⎠
                                 ⎛ V ⎞
Vπ 1 ( 80.8 ) = Vπ 2 ( 28.88 ) = ⎜ o ⎟ ( 28.88 ) or (2) Vπ 1 = Vo ( 0.00261)
                                 ⎝ 136.7 ⎠
                                   V                                 V
Then Vs = Vo ( 0.00261) + o + Vo = Vo (1.00993) or Av = o = 0.990
                                136.7                                Vs
(c)
 Rib = rπ 1 (1 + β ) [ Rx ]


              Ix
                                ϩ
Vx   ϩ
     Ϫ                  0.5 k⍀ V␲2   r␲2
                                                   gm2V␲2
                                Ϫ

                                                       Vo


                                                   50 ⍀




     Vπ 2 Vπ 2          ⎛ 1       1 ⎞
Ix =     +       = Vπ 2 ⎜      +    ⎟
     0.5 rπ 2           ⎝ 0.5 rπ 2 ⎠
 Vo     V − Vπ 2
     = x          = I x + g m 2Vπ 2
0.05     0.05
                                      ⎛ 1          ⎞
                                   Ix ⎜      + gm2 ⎟
 Vx               ⎛ 1          ⎞      ⎝ 0.05       ⎠
     − I x = Vπ 2 ⎜      + gm2 ⎟ =
0.05              ⎝ 0.05       ⎠     ⎛ 1      1 ⎞
                                     ⎜     +     ⎟
                                     ⎝  0.5 rπ 2 ⎠
             Vx
We find         = Rx = 4.74 k Ω
             Ix
Then Rib = 1.25 + (101) ( 2.89 ) ⇒ Rib = 480 k Ω
ϩ
  V␲1       r␲1
                            gm1V␲1            gm2V␲2
      Ϫ



                             r␲2   ϩ

                    0.5 k⍀         V␲2
                                   Ϫ


                                                 Ix
                                                        ϩ
                                              50 ⍀      Ϫ
                                                             Vx




To find Ro:
                     Vx                 V
(1)          Ix =        − g m 2Vπ 2 − π 2
                    0.05              0.5 rπ 2
                     ⎛V              ⎞                     ⎛ 1         ⎞
(2)          Vπ 2 = ⎜ π 1 + g m1Vπ 1 ⎟ ( 0.5 rπ 2 ) = Vπ 1 ⎜      + 80 ⎟ ( 0.5 0.0372 ) or Vπ 2 = ( 2.77 ) Vπ 1
                     ⎝ rπ 1          ⎠                     ⎝ 1.25      ⎠
(3)          Vπ 1 + Vπ 2 + Vx = 0 ⇒ Vπ 1 + ( 2.77 ) Vπ 1 + Vx = 0
so that Vπ 1 = − ( 0.2653) Vx
and Vπ 2 = ( 2.77 ) ⎡ − ( 0.2653) Vx ⎤ = − ( 0.735 ) Vx
                    ⎣                ⎦
               Vx         ⎛            1 ⎞
Now I x =          − Vπ 2 ⎜ g m 2 +          ⎟
              0.05        ⎜         0.5 rπ 2 ⎟
                          ⎝                  ⎠
                   Vx                 ⎡             1     ⎤                   Vx
So that I x =          + ( 0.735 ) Vx ⎢ 2688 +            ⎥ which yields Ro =    = 0.496 Ω
                  0.05                ⎢
                                      ⎣        0.5 0.0372 ⎥
                                                          ⎦                   Ix

6.67
a.
RTH = R1 R2 = 335 125 = 91.0 kΩ
      ⎛ R2 ⎞
VTH = ⎜          ⎟ VCC
      ⎝ R1 + R2 ⎠
      ⎛ 125 ⎞
    =⎜              ⎟ (10 ) = 2.717 V
      ⎝ 125 + 335 ⎠
VTH = I B1 RTH + VBE1 + VBE 2 + I E 2 RE 2
 I E 2 = (1 + β ) I E1 = (1 + β ) I B1
                                     2


            2.717 − 1.40
I B1 =                         ⇒ I B1 = 0.128 μΑ
          91.0 + (101) (1)
                        2


I C1 = 12.8 μΑ
I C 2 = β I E1 = β (1 + β ) I B1 = (100 )(101)( 0.128 μΑ )
I C 2 = 1.29 mΑ, I E 2 = 1.31 mΑ
I RC = I C 2 + I C1 = 1.29 + 0.0128 = 1.30 mΑ
VC = 10 − I RC RC = 10 − (1.30 )( 2.2 ) = 7.14 V
VE = I E 2 RE 2 = (1.30 )(1) = 1.30 V
VCE 2 = 7.14 − 1.30 = 5.84 V
VCE1 = VCE 2 − VBE 2 = 5.84 − 0.7
VCE1 = 5.14 V
Summary:
  I C1 = 12.8 μΑ       I C 2 = 1.29 mΑ
VCE1 = 5.14 V         VCE 2 = 5.84 V
b.
         0.0128
 g m1 =           = 0.492 mΑ / V
          0.026
         1.292
gm2 =           = 49.7 mΑ / V
         0.026
                  Rib
                                                           V0
                             ϩ
                     Ib
                          V␲1    r␲1
                                               gm1V␲1
     ϩ                       Ϫ
VS                                ϩ                        RC
     Ϫ
                                                  gm2V␲2
                   R1͉͉ R2       V␲2    r␲2
                                  Ϫ


V0 = − ( g m1Vπ 1 + g m 2Vπ 2 ) RC
VS = Vπ 1 + Vπ 2 , Vπ 1 = VS − Vπ 2
       ⎛V               ⎞
Vπ 2 = ⎜ π 1 + g m1Vπ 1 ⎟ rπ 2
       ⎝ rπ 1           ⎠
            ⎛1+ β ⎞
Vπ 2 = Vπ 1 ⎜      ⎟ rπ 2
            ⎝ rπ 1 ⎠
V0 = − ⎡ g m1 (VS − Vπ 2 ) + g m 2Vπ 2 ⎤ RC
       ⎣                                ⎦
V0 = − ⎡ g m1VS + ( g m 2 − g m1 ) Vπ 2 ⎤ RC
       ⎣                                ⎦
                            ⎛r ⎞
Vπ 2 = (VS − Vπ 2 )(1 + β ) ⎜ π 2 ⎟
                            ⎝ rπ 1 ⎠
     ⎡             ⎛ r ⎞⎤                  ⎛r ⎞
Vπ 2 ⎢1 + (1 + β ) ⎜ π 2 ⎟ ⎥ = VS (1 + β ) ⎜ π 2 ⎟
     ⎣             ⎝ rπ 1 ⎠ ⎦              ⎝ rπ 1 ⎠
⎧                                         ⎛r ⎞⎫
       ⎪                             VS (1 + β ) ⎜ π 2 ⎟ ⎪
       ⎪
V0 = − ⎨ g m1VS + ( g m 2 − g m1 ) ⋅             ⎝ rπ 1 ⎠ ⎪ R
                                                           ⎬ C
       ⎪                                          ⎛r ⎞
                                     1 + (1 + β ) ⎜ π 2 ⎟ ⎪
       ⎪                                          ⎝ rπ 1 ⎠ ⎪
       ⎩                                                   ⎭
     V0
Av =
     VS
         ⎧                                     2.01 ⎞ ⎫
         ⎪            ( 49.7 − 0.492 )(101) ⎛
                                            ⎜       ⎟⎪
         ⎪                                  ⎝ 203 ⎠ ⎪ 2.2
     = − ⎨( 0.492 ) +                                 ⎬
         ⎪                            ⎛ 2.01 ⎞        ⎪
                            1 + (101) ⎜      ⎟
         ⎪
         ⎩                            ⎝ 203 ⎠         ⎪
                                                      ⎭
 Av = −55.2
c.
 Ris = R1 R2 Rib
Rib = rπ 1 + (1 + β ) rπ 2
    = 203 + (101)( 2.01) = 406 kΩ
Ris = 91 406 = 74.3 kΩ = Ris
R0 = RC = 2.2 kΩ

6.68
                                                           R0


                                                                 Ix
        ϩ
                                                                      ϩ   Vx
       V␲1     r␲1                      ro1
                                                                      Ϫ
                           gm1V␲1
        Ϫ

                                 VA

                          ϩ
                        V␲2       r␲2                      ro2
                                               gm2V␲2
                          Ϫ



                                 Vx Vx − VA
(1)          I x = g m 2Vπ 2 +        +     + g m1Vπ 1
                                 ro 2   ro1
             Vx − VA                 VA
(2)                  + g m1Vπ 1 =
                ro1               rπ 1 rπ 2
(3)        Vπ 2 = VA = −Vπ 1
Then from (2)
 Vx       ⎛ 1              1 ⎞
     = VA ⎜ + g m1 +             ⎟
 ro1      ⎜r           rπ 1 rπ 2 ⎟
          ⎝ o1                   ⎠
                  Vx Vx VA                       ⎛ 1    1 ⎞     ⎛        1   ⎞
(1) I x = g m 2VA +   + − − g m1VA or I x = Vx ⎜ + ⎟ + VA ⎜ g m 2 − − g m1 ⎟
                  ro 2 ro1 ro1                   ⎝ ro1 ro 2 ⎠   ⎝       ro1  ⎠
Solving for VA from Equation (2) and substituting into Equation (1), we find
1                1
                            + g m1 +
     V                  ro1           rπ 1 rπ 2
Ro = x =
     Ix    1 ⎛ 1              1 ⎞ 1 ⎛ 1                     ⎞
               ⎜ + g m1 +           ⎟+ ⎜              + gm2 ⎟
          ro 2 ⎝ ro1      rπ 1 rπ 2 ⎠ ro1 ⎝ rπ 1 rπ 2       ⎠
For β = 100, VA = 100 V , I C1 = I Bias = 1 mA
                100
ro1 = ro 2 =        = 100 k Ω
                 1
                (100 )( 0.026 )
rπ 1 = rπ 2 =                     = 2.6 k Ω
                       1
                    1
g m1 = g m 2 =          = 38.46 mA/V
                  0.026
                                1               1
                                   + 38.46 +
                               100           2.6 2.6
Then Ro =
                 1 ⎛ 1                 1 ⎞ 1 ⎛ 1                    ⎞
                    ⎜     + 38.46 +         ⎟+    ⎜         + 38.46 ⎟
                100 ⎜ 100
                    ⎝               2.6 2.6 ⎟ 100 ⎜ 2.6 2.6
                                            ⎠     ⎝
                                                                    ⎟
                                                                    ⎠
or Ro = 50.0 k Ω
Now I C 2 = 1 mA, I Bias = 0
                       IC 2 β   I
Replace I Bias by         ⋅   = C 2 , I C1 ≅ 0.01 mA
                        β 1+ β 1+ β
       100                   100
ro 2 =     = 100 k Ω, ro1 =        = 10, 000 k Ω
        1                    0.01
          1
gm2 =           = 38.46 mA/V , g m1 = 0.3846 mA/V
        0.026
       (100 )( 0.026 )
rπ 2 =                 = 2.6 k Ω, rπ 1 = 260 k Ω
             1
Then Ro = 66.4 k Ω

6.69
a.
 RTH = R1 R2 = 93.7 6.3 = 5.90 k Ω
        ⎛ R2 ⎞
 VTH = ⎜          ⎟ VCC
        ⎝ R1 + R2 ⎠
        ⎛     6.3 ⎞
      =⎜             ⎟ (12 ) = 0.756 V
        ⎝ 6.3 + 93.7 ⎠
        0.756 − 0.70
 I BQ =                 = 0.00949 mA
             5.90
 I CQ = 0.949 mA
VCEQ = 12 − ( 0.949 )( 6 ) ⇒ VCEQ = 6.305 V
Transistor:
PQ ≈ I CQVCEQ = ( 0.949 )( 6.305 ) ⇒ PQ = 5.98 mW

RC : PR = I CQ RC = ( 0.949 ) ( 6 ) ⇒ PR = 5.40 mW
            2                       2


b.
2                 AC load line
                                  Ϫ1
                        Slope ϭ
                                 6͉͉105
                                  Ϫ1
                              ϭ
0.949                            5.68 K




                         6.31             12
      100
r0 =       = 105 kΩ
     0.949
Peak signal current = 0.949 mA
V0 ( max ) = ( 5.68 )( 0.949 ) = 5.39 V

          1 V0 ( max ) 1 ⎡ ( 5.39 ) ⎤
              2                    2

PRC =       ⋅         = ⎢            ⎥ ⇒ PRC = 2.42 mW
          2     RC     2⎢ 6 ⎥
                         ⎣           ⎦

6.70
(a)
10 = I BQ RB + VBE ( on ) + (1 + β ) I BQ RE
            10 − 0.7
 I BQ =                    = 0.00369 mA
        100 + (121)( 20 )
I CQ = 0.443 mA, I EQ = 0.447 mA
For RC : PRC = ( 0.443) (10 ) ⇒ PRC = 1.96 mW
                                    2



For RE : PRE = ( 0.447 ) ( 20 ) ⇒ PRE = 4.0 mW
                                    2


(b)
          ΔiC = 0.667 − 0.443 = 0.224 mA
                   1             1
                     ( ΔiC ) RC = ( 0.224 ) (10 )
                            2              2
Then P RC =
                   2             2
          P RC   = 0.251 mW

6.71
a.
              10 − 0.7
 I BQ =                    = 0.00596 mA
           50 + (151)(10 )
 I CQ = 0.894 mA, I EQ = 0.90 mA
VECQ = 20 − ( 0.894 )( 5 ) − ( 0.90 )(10 ) ⇒ VECQ = 6.53 V
 PQ ≅ I CQVECQ = ( 0.894 )( 6.53) ⇒ PQ = 5.84 mW

PRC ≅ I CQ RC = ( 0.894 ) ( 5 ) ⇒ PRC = 4.0 mW
        2                       2



PRE ≅ I EQ RE = ( 0.90 ) (10 ) ⇒ PRE = 8.1 mW
        2                   2


b.
AC load line
                                     Ϫ1
                            Slope ϭ
                                    5͉͉2
                                      Ϫ1
                                 ϭ
0.894                                1.43 K




                     6.53                     20
         −1
ΔiC =         ⋅ Δvec
      1.43 kΩ
ΔiC = 0.894 ⇒ Δvec = ( 0.894 )(1.43) = 1.28 V
      ⎛ 5 ⎞
Δi0 = ⎜     ⎟ ΔiC = 0.639 mA
      ⎝5+2⎠
      1
PRL = ( 0.639 ) ( 2 ) ⇒ PRL = 0.408 mW
                2

      2
       1
PRC = ⋅ ( 0.894 − 0.639 ) ( 5 ) ⇒ PRC = 0.163 mW
                         2

       2
PRE = 0
 PQ = 5.84 − 0.408 − 0.163 ⇒ PQ = 5.27 mW

6.72
             10 − 0.70
 I BQ =                    = 0.00838 mA
          100 + (101)(10 )
 I CQ = 0.838 mA, I EQ = 0.846 mA
VCEQ = 20 − ( 0.838 )(10 ) − ( 0.846 )(10 ) ⇒ VCEQ = 3.16 V

                      AC load line
                                 Ϫ1
                      Slope ϭ
                               RE ͉͉RL͉͉r0
0.838




              3.16                            20
      100
r0 =       = 119 kΩ
     0.838
Neglecting base currents:
a.
   RL = 1 kΩ
                −1       −1
slope =              =
             10 1 119 0.902 kΩ
               −1
     ΔiC =          ⋅ ΔVce
           0.902 kΩ
     ΔiC = 0.838 ⇒ ΔVce = ( 0.902 )( 0.838 ) = 0.756 V
             1 ( 0.756 )
                            2

     PRL =               ⇒ PRL = 0.286 mW
             2      1
b.
RL = 10 kΩ
               −1     −1
slope =             =
           10 10 119 4.80
For ΔiC = 0.838 ⇒ Δvce = ( 0.838 )( 4.80 ) = 4.02
                                            1 ( 3.16 )
                                                     2

Max. swing determined by voltage PRL =                 ⇒ PRL = 0.499 mW
                                            2 10

6.73
a.
            10 − 0.7
I BQ =                    = 0.00838 mA
         100 + (101)(10 )
I CQ = 0.838 mA, I EQ = 0.846 mA
VCEQ = 20 − ( 0.838 )(10 ) − ( 0.846 )(10 ) ⇒ VCEQ = 3.16 V
PQ ≅ I CQVCEQ = ( 0.838 )( 3.16 ) ⇒ PQ = 2.65 mW

PRC ≅ I CQ RC = ( 0.838 ) (10 ) ⇒ PRC = 7.02 mW
        2                    2


b.
                   AC load line
                            Ϫ1
                   Slope ϭ
                           RC ͉͉RL
                           Ϫ1      Ϫ1
0.838                   ϭ        ϭ
                           10͉͉1 0.909 K




            3.16                     20
         −1
ΔiC =           ⋅ Δvce
      0.909 kΩ
For ΔiC = 0.838 ⇒ Δvce = ( 0.909 )( 0.838 ) = 0.762 V
      ⎛ RC ⎞            ⎛ 10 ⎞
Δi0 = ⎜         ⎟ ΔiC = ⎜        ⎟ ΔiC = 0.762 mA
      ⎝ RC + RL ⎠       ⎝ 10 + 1 ⎠
      1
PRL = ( 0.762 ) (1) ⇒ PRL = 0.290 mW
                2

      2
       1
PRC = ⋅ ( 0.838 − 0.762 ) (10 ) ⇒ PRC = 0.0289 mW
                          2

       2
PQ = 2.65 − 0.290 − 0.0289 ⇒ PQ = 2.33 mW

More Related Content

PDF
PDF
PDF
PDF
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
PDF
Original IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 New
PDF
PDF
DOC
Anschp30
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
Original IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 New
Anschp30

What's hot (18)

DOC
Anschp26
PDF
PDF
Original IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New Renesas
PDF
Solved problems to_chapter_09
DOC
Anschp32
PDF
Power power electronics (solution manual) by M.H.Rashid.pdf
PDF
Original IGBT RJH60D3DPP -M0 RJH60D3 600V 17A TO-220 New
PDF
PDF
PDF
Chapter 04 is
PDF
Original IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A New
PDF
Original Opto CNY17-2 DIP-6 New ON
PDF
Original N-Channel Mosfet R6020ANX 6020 600V 20A TO-220 New ROHM Semiconductor
PDF
Two-stage CE amplifier
PDF
Easy labs exp4-beta meter
DOC
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PDF
Original IGBT SGW30N60 30N60 G30N60 600V 30A TO-247 New Infineon Technologies
PDF
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
Anschp26
Original IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New Renesas
Solved problems to_chapter_09
Anschp32
Power power electronics (solution manual) by M.H.Rashid.pdf
Original IGBT RJH60D3DPP -M0 RJH60D3 600V 17A TO-220 New
Chapter 04 is
Original IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A New
Original Opto CNY17-2 DIP-6 New ON
Original N-Channel Mosfet R6020ANX 6020 600V 20A TO-220 New ROHM Semiconductor
Two-stage CE amplifier
Easy labs exp4-beta meter
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
Original IGBT SGW30N60 30N60 G30N60 600V 30A TO-247 New Infineon Technologies
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
Ad

Viewers also liked (15)

PDF
Ch17s 3rd Naemen
PDF
PDF
PDF
PDF
PDF
PDF
PDF
PDF
Ch17p 3rd Naemen
PDF
PDF
PDF
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
PPTX
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
PPTX
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
PDF
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Ch17s 3rd Naemen
Ch17p 3rd Naemen
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Ad

Similar to Ch06s (16)

PDF
PDF
PDF
PDF
PDF
DOCX
Ecuaciones dispositivos electronicos
PDF
DOCX
Actividad de aprendizaje 3
PDF
05777828
PDF
PDF
Solutions manual for microelectronic circuits analysis and design 3rd edition...
PDF
PDF
9789740329480
PDF
Analisis Bjt 2n2222
DOCX
Analisis de Mallas
DOCX
Analisis de Mallas
Ecuaciones dispositivos electronicos
Actividad de aprendizaje 3
05777828
Solutions manual for microelectronic circuits analysis and design 3rd edition...
9789740329480
Analisis Bjt 2n2222
Analisis de Mallas
Analisis de Mallas

More from Bilal Sarwar (7)

DOCX
Rameysoft-ftp client server, and others+
DOCX
Ramey soft
DOCX
Ramey soft
PDF
PDF
PDF
PDF
Rameysoft-ftp client server, and others+
Ramey soft
Ramey soft

Recently uploaded (20)

PDF
ICv2 White Paper - Gen Con Trade Day 2025
PDF
533158074-Saudi-Arabia-Companies-List-Contact.pdf
PDF
ANALYZING THE OPPORTUNITIES OF DIGITAL MARKETING IN BANGLADESH TO PROVIDE AN ...
PDF
TyAnn Osborn: A Visionary Leader Shaping Corporate Workforce Dynamics
PDF
Booking.com The Global AI Sentiment Report 2025
PPTX
chapter 2 entrepreneurship full lecture ppt
PDF
PMB 401-Identification-of-Potential-Biotechnological-Products.pdf
PDF
Charisse Litchman: A Maverick Making Neurological Care More Accessible
DOCX
FINALS-BSHhchcuvivicucucucucM-Centro.docx
DOCX
Center Enamel A Strategic Partner for the Modernization of Georgia's Chemical...
DOCX
Center Enamel Powering Innovation and Resilience in the Italian Chemical Indu...
PDF
THE COMPLETE GUIDE TO BUILDING PASSIVE INCOME ONLINE
PDF
Tortilla Mexican Grill 发射点犯得上发射点发生发射点犯得上发生
PPTX
Astra-Investor- business Presentation (1).pptx
PDF
NEW - FEES STRUCTURES (01-july-2024).pdf
PPT
Lecture notes on Business Research Methods
PPTX
BUSINESS CYCLE_INFLATION AND UNEMPLOYMENT.pptx
PPTX
interschool scomp.pptxzdkjhdjvdjvdjdhjhieij
PPTX
svnfcksanfskjcsnvvjknsnvsdscnsncxasxa saccacxsax
PPTX
basic introduction to research chapter 1.pptx
ICv2 White Paper - Gen Con Trade Day 2025
533158074-Saudi-Arabia-Companies-List-Contact.pdf
ANALYZING THE OPPORTUNITIES OF DIGITAL MARKETING IN BANGLADESH TO PROVIDE AN ...
TyAnn Osborn: A Visionary Leader Shaping Corporate Workforce Dynamics
Booking.com The Global AI Sentiment Report 2025
chapter 2 entrepreneurship full lecture ppt
PMB 401-Identification-of-Potential-Biotechnological-Products.pdf
Charisse Litchman: A Maverick Making Neurological Care More Accessible
FINALS-BSHhchcuvivicucucucucM-Centro.docx
Center Enamel A Strategic Partner for the Modernization of Georgia's Chemical...
Center Enamel Powering Innovation and Resilience in the Italian Chemical Indu...
THE COMPLETE GUIDE TO BUILDING PASSIVE INCOME ONLINE
Tortilla Mexican Grill 发射点犯得上发射点发生发射点犯得上发生
Astra-Investor- business Presentation (1).pptx
NEW - FEES STRUCTURES (01-july-2024).pdf
Lecture notes on Business Research Methods
BUSINESS CYCLE_INFLATION AND UNEMPLOYMENT.pptx
interschool scomp.pptxzdkjhdjvdjvdjdhjhieij
svnfcksanfskjcsnvvjknsnvsdscnsncxasxa saccacxsax
basic introduction to research chapter 1.pptx

Ch06s

  • 1. Chapter 6 Problem Solutions 6.1 a. I CQ 2 gm = = ⇒ g m = 76.9 mA/V VT 0.026 β VT (180 )( 0.026 ) rπ = = ⇒ rπ = 2.34 kΩ I CQ 2 VA 150 r0 = = ⇒ r0 = 75 kΩ I CQ 2 b. 0.5 gm = ⇒ g m = 19.2 mA/V 0.026 (180 )( 0.026 ) rπ = ⇒ rπ = 9.36 kΩ 0.5 150 r0 = ⇒ r0 = 300 kΩ 0.5 6.2 (a) I CQ 0.8 gm = = = 30.8 mA/V VT 0.026 β VT (120 )( 0.026 ) rπ = = = 3.9 K I CQ 0.8 VA 120 ro = = = 150 K I CQ 0.8 (b) 0.08 gm = = 3.08 mA/V 0.026 (120 )( 0.026 ) rπ = = 39 K 0.08 120 ro = = 1500 K 0.08 6.3 I CQ I CQ gm = ⇒ 200 = ⇒ I CQ = 5.2 mA VT 0.026 β VT (125)( 0.026 ) rπ = = ⇒ rπ = 0.625 kΩ I CQ 5.2 VA 200 r0 = = ⇒ r0 = 38.5 kΩ I CQ 5.2 6.4
  • 2. I CQ I CQ gm = ⇒ 80 = ⇒ I CQ = 2.08 mA VT 0.026 β VT β ( 0.026 ) rπ = ⇒ 1.20 = ⇒ β = 96 I CQ 2.08 6.5 (a) 2 − 0.7 I BQ = = 0.0052 mA 250 I C = (120 )( 0.0052 ) = 0.624 mA 0.624 gm = ⇒ g m = 24 mA / V 0.026 (120 )( 0.026 ) rπ = ⇒ rπ = 5 k Ω 0.624 ro = ∞ ⎛ r ⎞ ⎛ 5 ⎞ (b) Av = − g m RC ⎜ π ⎟ = − ( 24 )( 4 ) ⎜ ⎟ ⇒ Av = −1.88 ⎝ rπ + RB ⎠ ⎝ 5 + 250 ⎠ v v (c) vS = O = O ⇒ vS = −0.426sin100t V Av −1.88 6.6 I CQ gm = , 1.08 ≤ I CQ ≤ 1.32 mA VT 1.08 1.32 ≤ gm ≤ ⇒ 41.5 ≤ g m ≤ 50.8 mA/V 0.026 0.026 β VT (120 )( 0.026 ) rπ = ; rπ ( max ) = = 2.89 kΩ I CQ 1.08 (80 )( 0.026 ) rπ ( min ) = = 1.58 kΩ 1.32 1.58 ≤ rπ ≤ 2.89 kΩ 6.7 a. β VT (120 )( 0.026 ) rπ = 5.4 = = ⇒ I CQ = 0.578 mA I CQ I CQ 1 1 VCEQ = VCC = ( 5 ) = 2.5 V 2 2 VCEQ = VCC − I CQ RC ⇒ 2.5 = 5.0 − ( 0.578 ) RC ⇒ RC = 4.33 kΩ I CQ 0.578 I BQ = = = 0.00482 mA β 120 VBB = I BQ RB + VBE ( on ) = ( 0.00482 )( 25 ) + 0.70 ⇒ VBB = 0.820 V b.
  • 3. β VT (120 )( 0.026 ) rπ = = = 5.40 kΩ I CQ 0.578 I CQ 0.578 gm = = = 22.2 mA/V VT 0.026 VA 100 r0 = = = 173 kΩ I CQ 0.578 ⎛ r ⎞ V0 = − g m ( r0 RC ) Vπ , Vπ = ⎜ π ⎟ VS ⎝ rπ + RB ⎠ ⎛ r ⎞ β ( r0 RC ) Av = − g m ⎜ π ⎟ ( r0 RC ) = − ⎝ rπ + RB ⎠ rπ + RB (120 ) ⎡173 ⎣ 4.33⎤ ⎦ (120 )( 4.22 ) Av = − =− ⇒ Av = −16.7 5.40 + 25 30.4 6.8 a. 1 VECQ = VCC = 5 V 2 VECQ = 10 − I CQ RC ⇒ 5 = 10 − ( 0.5 ) RC ⇒ RC = 10 kΩ I CQ 0.5 I BQ = = = 0.005 β 100 VEB ( on ) + I BQ RB = VBB = ( 0.70 ) + ( 0.005 )( 50 ) ⇒ VBB = 0.95 V b. I CQ 0.5 gm = = ⇒ g m = 19.2 mA/V VT 0.026 β VT (100 )( 0.026 ) rπ = = ⇒ rπ = 5.2 kΩ I CQ 0.5 VA ∞ r0 = = ⇒ r0 = ∞ I CQ 0.5 c. Av = − β RC =− (100 )(10 ) ⇒ A = −18.1 v rπ + RB 5.2 + 50 6.9 10 − 4 I CQ = = 1.5 mA 4 1.5 I BQ = = 0.015 mA 100 (100 )( 0.026 ) rπ = = 1.73 K 1.5 v 5sin ω t ( mV ) ib = be = = 2.89sin ω t ( μ A ) rπ 1.73 kΩ So
  • 4. iB ( t ) = I BQ + iEb = 15 + 2.89sin ω t ( μ A ) iC1 ( t ) = β iB ⇒ iC1 ( t ) = 1.5 + 0.289sin ω t ( mA ) vC ( t ) = 10 − iC1 ( t ) RC = 10 − [1.5 + 0.289sin ω t ] (γ ) vC1 ( t ) = 4 − 1.156sin ω t ( v ) vC ( t ) −1.156 Av = = ⇒ Av = −231 vbe ( t ) 0.005 6.10 vo = 1.2sin ω t ( V ) −1.2sin ω t iC ( t ) RC + vo = 0 ⇒ iC ( t ) = 2 iC ( t ) = −0.60sin ω t ( mA ) iC ( t ) ib ( t ) = = −6sin ω t ( μ A ) β vbe ( t ) = ib ( t ) ⋅ rπ g m rπ = β 100 rπ = =2K 50 vbe ( t ) = −12sin ω t ( mV ) 6.11 a. I CQ ≈ I EQ VCEQ = 5 = 10 − I CQ ( RC + RE ) = 10 − I CQ (1.2 + 0.2) I CQ = 3.57 mA 3.57 I BQ = = 0.0238 mA 150 R1 R2 = RTH = ( 0.1)(1 + β ) RE = ( 0.1)(151)( 0.2 ) = 3.02 kΩ 1 VTH = ⋅ RTH ⋅ (10) − 5 R1 VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 5 1 (3.02)(10) − 5 = ( 0.0238)(3.02) + 0.7 + (151)( 0.0238)( 0.2) − 5 R1 1 ( 30.2 ) = 1.50 ⇒ R1 = 20.1 k Ω R1 20.1R2 = 3.02 ⇒ R2 = 3.55 kΩ 20.1 + R2 b. (150 )( 0.026 ) rp = = 1.09 kΩ 3.57 3.57 gm = = 137 mA/V 0.026
  • 5. V0 ϩ V␲ r␲ gmV␲ Ϫ ϩ VS R1͉͉R2 RC Ϫ RE 2 β RC (150 )(1.2 ) Av = =2 ⇒ Av = 2 5.75 rp + (1 + β ) RE 1.09 + (151)( 0.2 ) 6.12 a. ⎛ R2 ⎞ ⎛ 50 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ (12 ) = 10 V ⎝ R1 + R2 ⎠ ⎝ 50 + 10 ⎠ RTH = R1 R2 = 50 10 = 8.33 kΩ 12 − 0.7 − 10 I BQ = = 0.0119 mA 8.33 + (101)(1) I CQ = 1.19 mA, I EQ = 1.20 mA VECQ = 12 − (1.20 )(1) − (1.19 )( 2 ) VECQ = 8.42 V iC 4 1.19 8.42 12 ␯EC b. V0 Ϫ V␲ r␲ gmV␲ ϩ ϩ VS R1͉͉R2 RC Ϫ RE
  • 6. (100 )( 0.026 ) rp = = 2.18 kΩ 1.19 V0 = g mVp RC ⎛V ⎞ VS = 2 Vp − ⎜ p + g mVp ⎟ RE ⎝ rp ⎠ ⎡ rπ + (1 + β ) RE ⎤ = −Vp ⎢ ⎥ ⎣ rp ⎦ 2 β RC 2 (100 )( 2 ) Av = = ⇒ Av = 2 1.94 rp + (1 + β ) RE 2.18 + (101)(1) c. Approximation: Assume rp does not vary significantly. RC = 2 kΩ ± 5% = 2.1 kΩ or 1.9 kΩ RE = 1 kΩ ± 5% = 1.05 kΩ or 0.95 kΩ For RC ( max ) = 2.1 kΩ and RE ( min ) − (100 )( 2.1) Av = = −2.14 2.18 + (101)( 0.95 ) For RC ( min ) = 1.9 kΩ and RE ( max ) = 1.05 kΩ − (100 )(1.9 ) Av = = −1.76 2.18 + (101)(1.05 ) So 1.76 ≤ Av ≤ 2.14 6.13 (a) VCC = ⎜ 1+ β ⎟ I CQ RE + VECQ + I CQ RC ⎛ ⎞ ⎜ ⎟ β ⎝ ⎠ ⎛ 101 ⎞ 12 = ⎜ ⎟ I CQ (1) + 6 + I CQ ( 2 ) ⎝ 100 ⎠ so that I CQ = 1.99 mA 1.99 I BQ = = 0.0199 mA 100 RTH = ( 0.1)(1 + β ) RE = ( 0.1)(101)(1) = 10.1 k Ω ⎛ R2 ⎞ 1 1 VTH = ⎜ ⎟ V = ⋅ R ⋅ V = (10.1)(12 ) ⎝ R1 + R2 ⎠ CC R1 TH CC R1 VCC = (1 + β ) I BQ RE + VEB ( on ) + I BQ RTH + VTH 121.2 12 = (101)( 0.0199)(1) + 0.7 + ( 0.0199)(10.1) + R1 which yields R1 = 13.3 k Ω and R2 = 41.6 k Ω 2 β RC 2 (100 )( 2 ) (b) Av = = ⇒ Av = 2 1.95 rp + (1 + β ) RE 1.31 + (101)(1) 6.14
  • 7. I CQ = 0.25 mA, I EQ = 0.2525 mA I BQ = 0.0025 mA I BQ RB + VBE ( on ) + I EQ ( RS + RE ) − 5 = 0 ( 0.0025)( 50 ) + 0.7 + ( 0.2525)( 0.1 + RE ) = 5 RE = 16.4 kΩ VE = − ( 0.0025 )( 50 ) − 0.7 = −0.825 V VC = VCEQ + VE = 3 − 0.825 = 2.175 V 5 − 2.175 RC = ⇒ RC = 11.3 kΩ 0.25 − β RC Av = rπ + (1 + β ) RS (100 )( 0.026 ) rπ = = 10.4 kΩ 0.25 − (100 )(11.3) Av = ⇒ Av = −55.1 10.4 + (101)( 0.1) Ri = RB ⎡ rπ + (1 + β ) RS ⎤ ⎣ ⎦ = 50 ⎡10.4 + (101)( 0.1) ⎤ ⎣ ⎦ Ri = 50 20.5 ⇒ Ri = 14.5 kΩ 6.15 (a) VCC > I CQ ( RC + RE ) + VCEQ 9 = I CQ ( 2.2 + 2 ) + 3.75 So that I CQ = 1.25 mA Assume circuit is to be designed to be bias stable. RTH = R1 R2 = ( 0.1)(1 + β ) RE = ( 0.1)(121)( 2 ) = 24.2 Ω 1.25 I BQ = = 0.01042 mA 120 1 VTH = ⋅ RTH ⋅ VCC = I BQ RTH + VBE ( on ) + I BQ (121)( RE ) R1 1 ( 24.2 )( 9 ) = ( 0.01042 )( 24.2 ) + 0.7 + ( 0.01042 )(121)( 2 ) R1 = 0.2522 + 0.7 + 2.5216 = 3.474 62.7 R2 R1 = 62.7 K = 24.2 62.7 + R2 R2 = 39.4 K (b)
  • 8. 1.25 gm = = 48.08 mA / V 0.026 (120 )( 0.026 ) rp = = 2.50 k Ω 1.25 100 ro = = 80 k Ω 1.25 Vo ϩ IS V␲ r␲ ro RC RL R1͉͉R2Ϫ gmV␲ Vo = 2 g mVp ( ro RC RL ) Vp = I S ( R1 R2 rp ) Then Vo Rm = = 2 g m ( R1 R2 rp )( ro RC RL ) Is Rm = 2 48.08 ( 24.2 2.5 )( 80 2.2 1) = 2 48.08 ( 2.266 )( 0.6816 ) or Vo Rm = = −74.3 k Ω = −74.3 V / mA Is 6.16 a. 0.80 I EQ = 0.80 mA, I BQ = = 0.0121 mA 66 I CQ = 0.788 mA 0.3 VB = I BQ RB ⇒ RB = ⇒ RB = 24.8 kΩ 0.0121 V − ( −5 ) 5 − 3 RC = C = ⇒ RC = 2.54 kΩ I CQ 0.788 b. 0.788 gm = = 30.3 mA / V 0.026 ( 65)( 0.026) rπ = = 2.14 kΩ 0.788 75 r0 = = 95.2 kΩ 0.788 ⎛ RC r0 ⎞ i0 = ⎜ g V , V = − vS ⎜R r +R ⎟ m π π⎟ ⎝ C 0 L ⎠ i0 ⎛ RC r0 ⎞ Gf = = − gm ⎜ ⎟ vS ⎜R r +R ⎟ ⎝ C 0 L ⎠ ⎛ 2.54 95.2 ⎞ = − ( 30.3) ⎜ ⎜ 2.54 95.2 + 4 ⎟ ⎟ ⎝ ⎠ G f = −11.6 mA/V
  • 9. 6.17 (a) I CQ = 0.8 mA ⇒ I BQ = 0.00667 mA I BQ RS + 0.7 + (121) I BQ RE − 15 = 0 ( 0.01667 )( 2.5) + 0.7 + (121)( 0.00667 ) RE = 15 RE = 17.7 K VE = − ( 0.00667 )( 2.5 ) − 0.7 = −0.717 V VC = −0.717 + 7 = 6.283 V 15 − 6.283 RC = = 10.9 K 0.8 0.8 (120 )( 0.026 ) gm = = 30.77 mA/V rπ = = 3.9 K 0.026 0.8 ⎛ r ⎞ vo = − g m ( RC RL ) ⋅ vπ vπ = ⎜ π ⎟ vS ⎝ rπ + RS ⎠ − β ( RC RL ) − (120 ) (10.9 5 ) Av = = rπ + RS 3.9 + 2.5 Av = −64.3 (b) For RS = 0 0.7 + (121)( 0.00667 ) RE = 15 RE = 17.7 K VE = −0.7 ⇒ VC = −0.7 + 7 = 6.3 15 − 6.3 RC = ⇒ RC = 10.9 K 0.8 − β ( RC RL ) Av = = −30.77 (10.9 5 ) rπ Av = −105 6.18 (a) 15 = ( 81) I BQ (10 ) + 0.7 + I BQ ( 2.5 ) 15 − 0.7 I BQ = = 0.0176 mA 2.5 + ( 81)(10 ) I CQ = 1.408 mA 1.408 (80 )( 0.026 ) gm = = 54.15 mA/V rπ = 0.026 1.408 rπ = 1.48 K RS V0 IS ϩ VS ϩ V␲ r␲ RC Io RL Ϫ gmV␲ Ϫ
  • 10. − β ( RC RL ) − ( 80 ) ( 5 5 ) Vo = − g mVσ ( RC RL ) ⇒ Av = = ⇒ Av = −50.3 rπ + RS 1.48 + 2.5 ⎛ RC ⎞ − g mVπ ⎜ ⎟ i AI = o = ⎝ RC + RL ⎠ = − β ⎛ RC ⎞ V ⎜ ⎟ iS π ⎝ RC + RL ⎠ r π AI = −40 vo ( t ) = ( −50.3)( 4sin ω t ) vo ( t ) = −0.201sin ω t ( V ) 4 sin ω t ( mV ) is = = 1.005sin ω t ( μA ) 2.5 + 1.48 io = −40.2 sin ω t ( μA ) (b) 15 − 0.7 I EQ = = 1.43 mA 10 ⎛ 80 ⎞ I CQ = ⎜ ⎟ (1.43) = 1.412 mA ⎝ 81 ⎠ 1.412 (80 )( 0.026 ) gm = = 54.3 mA/V rπ = = 1.47 K 0.026 1.412 Av = − g m ( RC RL ) = − ( 54.3) ( 5 5 ) ⇒ Av = −136 ⎛ RC ⎞ ⎛ 5 ⎞ AI = − β ⎜ ⎟ = −80 ⎜ ⎟ ⇒ AI = −40 ⎝ RC + RL ⎠ ⎝5+5⎠ vo ( t ) = ( −136 )( 4sin ω t ) ⇒ vo ( t ) = −544sin ω t ⇒ vo ( t ) = −0.544sin ω t ( V ) 4sin ω t ( mV ) is ( t ) = = 2.72sin ω t ( μA ) 1.47 k io ( t ) = ( −40 )( 2.72sin ω t ) io ( t ) = −109sin ω t ( μA ) 6.19 RTH = R1 R2 = 27 15 = 9.64 K ⎛ R2 ⎞ ⎛ 15 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ ( 9 ) = 3.214 V ⎝ R1 + R2 ⎠ ⎝ 15 + 27 ⎠ V − VBE ( on ) 3.214 − 0.7 2.514 I BQ = TH = = RTH + (1 + β ) RE 9.64 + (101)(1.2 ) 130.84 I BQ = 0.0192 mA I CQ = 1.9214 mA 1.92 (100 )( 0.026 ) gm = = 73.9 mA/V rπ = = 1.35 K 0.026 1.92
  • 11. RS V0 IS ϩ VS ϩ RTH V␲ r␲ r0 RC I0 RL Ϫ gmV␲ Ϫ 100 ro = = 52.1 K 1.92 ⎛ r R ⎞ ( Vo = − g mVπ r0 RC RL ) Vπ = ⎜ π TH ⎜r R +R ⎟ VS ⎟ ⎝ π TH S ⎠ rπ RTH = 1.35 9.64 = 1.184 K ⎛ 1.184 ⎞ Vπ = ⎜ ⎟ VS ⎝ 1.184 + 10 ⎠ = 0.1059VS ( Av = − ( 73.9 ) ( 0.1059 ) 52.1 2.2 2 ) = − ( 73.9 ) ( 0.1059 ) ( 52.1 1.0476 ) = − ( 73.9 ) ( 0.1059 ) (1.027 ) Av = −8.04 ⎛ ro RC ⎞ − g mVπ ⎜ ⎜r R +R ⎟ ⎟ I ⎝ o C L ⎠ AI = o = IS Vπ RTH rπ ⎛ ro RC ⎞ AI = − g m ( RTH rπ ) ⎜ ⎜r R +R ⎟ ⎟ ⎝ o C L ⎠ ro RC = 52.1 2.2 = 2.11 K RTH rπ = 9.64 1.35 = 1.184 K ⎛ 2.11 ⎞ AI = − ( 73.9 ) (1.184 ) ⎜ ⎟ ⎝ 2.11 + 2 ⎠ AI = −44.9 Ri = RTH rπ = 9.64 1.35 Ri = 1.184 K 6.20 a. 0.35 I E = 0.35 mA, I B = = 0.00347 mA 101 VB = 2 I B RB = 2 ( 0.00347 )(10 ) ⇒ VB = 2 0.0347 V VE = VB − VBE ( on ) ⇒ VE = 2 0.735 V b.
  • 12. VC = VCEQ + VE = 3.5 − 0.735 = 2.77 V ⎛ b ⎞ ⎛ 100 ⎞ IC = ⎜ ⎟ IE = ⎜ ⎟ ( 0.35 ) = 0.347 mA ⎝ 1+ b ⎠ ⎝ 101 ⎠ V 1 − VC 5 − 2.77 RC = = ⇒ RC = 6.43 kΩ IC 0.347 (c) ⎛ RB rp ⎞ ⎜ R r + R ⎟( C o ) Av = 2 g m ⎜ R r ⎟ ⎝ B π S ⎠ 0.347 100 gm = = 13.3 mA/V , ro = = 288 k Ω 0.026 0.347 (100 )( 0.026 ) rp = = 7.49 k Ω 0.347 RB rp = 10 7.49 = 4.28 k Ω ⎛ 4.28 ⎞ Av = 2 (13.3) ⎜ ⎟ ( 6.43 288 ) ⇒ Av = 2 81.7 ⎝ 4.28 + 0.1 ⎠ d. ⎛ RB rp ⎞ ⎜ R r + R ⎟( C 0 ) Av = 2 g m ⎜ R r ⎟ ⎝ B p S ⎠ RB rp = 10 7.49 = 4.28 kΩ ⎛ 4.28 ⎞ Av = 2 (13.3) ⎜ ⎟ ( 6.43 288 ) ⇒ Av = 2 74.9 ⎝ 4.28 + 0.5 ⎠ 6.21 a. RTH = R1 R2 = 6 1.5 = 1.2 kΩ ⎛ R2 ⎞ + ⎛ 1.5 ⎞ VTH = ⎜ ⎟V = ⎜ ⎟ ( 5 ) = 1.0 V ⎝ R1 + R2 ⎠ ⎝ 1.5 + 6 ⎠ V − VBE ( on ) 1.0 − 0.7 I BQ = TH = = 0.0155 mA RTH + (1 + β ) RE 1.2 + (181)( 0.1) I CQ = 2.80 mA, I EQ = 2.81 VCEQ = V + − I CQ RC − I EQ RE = 5 − ( 2.8 )(1) − ( 2.81)( 0.1) ⇒ VCEQ = 1.92 V b. (180 )( 0.026 ) rp = ⇒ rp = 1.67 kΩ 2.80 2.80 gm = ⇒ g m = 108 mA/V, r0 =` 0.026 (c) ⎛ R1 R2 rp ⎞ Av = 2 g m ⎜ ⎟ ( RC RL ) ⎝ R1 R2 rp + RS ⎠ R1 R2 rp = 6 1.5 1.67 = 0.698 k V ⎛ 0.698 ⎞ Av = 2 (108 ) ⎜ ⎟ (1 1.2 ) ⇒ Av = 2 45.8 ⎝ 0.698 + 0.2 ⎠
  • 13. 6.22 a. 9 = I EQ RE + VEB ( on ) + I BQ RS 0.75 I EQ = 0.75 mA, I BQ = = 0.00926 mA 81 I CQ = 0.741 mA 9 = ( 0.75 ) RE + 0.7 + ( 0.00926 )( 2 ) ⇒ RE = 11.0 kΩ b. VE = 9 − ( 0.75 )(11) = 0.75 V VC = VE − VECQ = 0.75 − 7 = −6.25 V VC − ( −9 ) 9 − 6.25 RC = = ⇒ RC = 3.71 kΩ I CQ 0.741 c. ⎛ rp ⎞ Av = 2 g m ⎜ ⎟ ( RC || RL || r0 ) ⎝ rp + RS ⎠ (80 )( 0.026 ) rp = = 2.81 kΩ 0.741 80 r0 = = 108 kV 0.741 2 80 Av = ( 3.71||10 ||108 ) 2.81 + 2 Av = 2 43.9 d. Ri = RS + rp = 2 + 2.81 ⇒ Ri = 4.81 kΩ 6.23 4 − 0.7 I BQ = = 0.00647 5 + (101)( 5 ) I CQ = 0.647 mA a. 80 ≤ h fe ≤ 120, 10 ≤ h0e ≤ 20 mS 2.45 kΩ ≤ hie ≤ 3.7 kΩ low gain high gain RS V0 IS ϩ VS ϩ V␲ r␲ RC Io RL Ϫ gmV␲ Ϫ
  • 14. ⎛ 1 ⎞ V0 = 2 h fe I b ⎜ RC RL ⎟ ⎝ hoe ⎠ RB V ?S R + RS Ib = B RTH + hie RTH = RB RS = 5 1 = 0.833 kΩ High-gain ⎛ 5 ⎞ ⎜ ⎟ VS 5 +1⎠ Ib = ⎝ = 0.1838VS 0.833 + 3.7 Low-gain ⎛ 5 ⎞ ⎜ ⎟ VS Ib = ⎝ 5 +1⎠ = 0.2538VS 0.833 + 2.45 1 1 For hoe = 10 ⇒ || Rc || RL = || 4 || 4 hoe 0.010 = 100 || 2 = 1.96 kΩ 1 For hoe = 20 ⇒ || 4 || 4 = 50 || 2 = 1.92 kΩ 0.020 Av max = (120 )( 0.1838 )(1.96 ) = 43.2 Av min = ( 80 )( 0.2538 )(1.92 ) = 39.0 39.0 ≤ Av ≤ 43.2 b. Ri = RB hie = 5 3.7 = 2.13 kV or Ri = 5 2.45 = 1.64 kΩ 1.64 ≤ Ri ≤ 2.13 kΩ 1 1 R0 = RC = 4 = 100 || 4 = 3.85 kΩ hoe 0.010 1 or R0 = || 4 = 50 || 4 = 3.70 kΩ 0.020 3.70 ≤ R0 ≤ 3.85 kΩ 6.24 VCC ϭ 10 V RC R1 ␯o RS ϭ 1 k⍀ CC ␯s ϩ R2 Ϫ RE CE
  • 15. Assume an npn transistor with b = 100 and VA = ∞. Let VCC = 10 V . 0.5 Av = = 50 0.01 Bias at I CQ = 1 mA and let RE = 1 k Ω For a bias stable circuit RTH = ( 0.1)(1 + b ) RE = ( 0.1)(101)(1) = 10.1 k Ω 1 1 101 VTH = ⋅ RTH ⋅ VCC = (10.1)(10 ) = R1 R1 R1 1 I BQ = = 0.01 mA 100 VTH = I BQ RTH + VBE ( on ) + (1 + b ) I BQ RE 101 = ( 0.01)(10.1) + 0.7 + (101)( 0.01)(1) R1 which yields R1 = 55.8 k Ω and R2 = 12.3 k Ω Now (100 )( 0.026 ) rp = = 2.6 k Ω 1 1 gm = = 38.46 mA/V 0.026 Vo = − g mVp RC ⎛ R1} R2 } rp ⎞ ⎛ 10.1} 2.6 ⎞ where Vp = ⎜ ⎟ ⋅ Vs = ⎜ ⎟ .Vs ⎝ R1} R2 } rp + RS ⎠ ⎝ 10.1} 2.6 + 1 ⎠ or Vp = 0.674 Vs V Then Av = o = − ( 0.674 ) g m RC = − ( 0.674 )( 38.46 ) RC = −50 Vs which yields RC = 1.93 k Ω With this RC, the dc bias is OK. Finish Design, Set RC = 2 K RE = 1 K R1 = 56 K R2 = 12 K RTH = R1 R2 = 9.88 K ⎛ R2 ⎞ ⎛ 12 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ (10 ) = 1.765 V ⎝ R1 + R2 ⎠ ⎝ 12 + 56 ⎠ 1.765 − 0.7 I BQ = = 9.60 μ A 9.88 + (101)(1) I CQ = 0.9605 mA (100 )( 0.026 ) 0.9605 rπ = = 2.707 K gm = = 36.94 0.9605 0.026 RTH rπ = 2.125 K ⎛ RTH rπ ⎞ ⎛ 2.125 ⎞ Vπ = ⎜ ⎟ Vi = ⎜ ⎟ Vi = ( 0.680 ) Vi ⎝ RTH rπ + RS ⎠ ⎝ 2.125 + 1 ⎠ Av = − ( 0.680 ) g m RC = − ( 0.680 )( 36.94 )( 2 ) = −50.2
  • 16. Design specification met. 6.25 a. 6 − 0.7 I BQ = = 0.0169 mA 10 + (101)( 3) I CQ = 1.69 mA, I EQ = 1.71 mA VCEQ = (16 + 6 ) − (1.69 )( 6.8 ) − (1.71)( 3) VCEQ = 5.38 V b. 1.69 gm = ⇒ g m = 65 mA/V 0.026 (100 )( 0.026 ) rp = ⇒ rp = 1.54 kV , r0 = ∞ 1.69 (c) − β ( RC RL ) RB Rib Av = ⋅ rπ + (1 + β ) RE RB Rib + RS Rib = rπ + (1 + β ) RE = 1.54 + (101)(3) = 304.5 k Ω RB Rib = 10 304.5 = 9.68 k Ω Then − (100 )( 6.8 6.8 ) ⎛ 9.68 ⎞ Av = ⋅⎜ ⎟ ⇒ Av = −1.06 1.54 + (101)( 3) ⎝ 9.68 + 0.5 ⎠ ⎛ RC ⎞ i0 = ⎜ ⎟ ( − β ib ) ⎝ RC + RL ⎠ ⎛ RB ⎞ ib = ⎜ ⎟ iS ⎝ RB + rπ + (1 + β ) RE ⎠ ⎛ RC ⎞⎛ RB ⎞ Ai = − ( β ) ⎜ ⎟⎜⎜ R + r + (1 + β ) R ⎟ ⎟ ⎝ RC + RL ⎠⎝ B π E ⎠ ⎛ 6.8 ⎞ ⎛ 10 ⎞ = − (100 ) ⎜ ⎟⎜⎜ 10 + 1.54 + (101)( 3) ⎟ ⇒ Ai = −1.59 ⎟ ⎝ 6.8 + 6.8 ⎠ ⎝ ⎠ (d) Ris = RS + RB Rib = 0.5 + 10 304.5 = 10.2 k Ω (e) 2 b ( RC RL ) Av = rp + (1 + b ) RE 2 (100 ) ( 6.8} 6.8 ) Av = ⇒ Av = 2 1.12 1.54 + (101)( 3) Ai = same as ( c ) ⇒ Ai = 2 1.59 6.26
  • 17. ie ϩ ϩ vCE ϩ vCE ris gmv␲ ␲o vbe Ϫ Ϫ Ϫ ϩ vCE gmv␲ Ϫ vCe 1 r= = g m vCe g m ⎛ 1 ⎞ So re = rp ⎜ ⎟ r0 ⎝ gm ⎠ 6.27 Let b = 100, VA = ∞ VCC RC R1 ␯o RS ϭ 100 ⍀ CC ␯s ϩ R2 Ϫ RE Let VCC = 2.5 V P = ( I R + I C ) VCC ⇒ 0.12 = ( I R + I C )( 2.5 ) ⇒ I R + I C = 48 mA, Let I R = 8mA, I C = 40 mA VCC 2.5 R1 + R2 > = ⇒ 312.5 k Ω IR 8 40 I BQ = = 0.4 mA 100
  • 18. Let RE = 2 k Ω. For a bias stable circuit RTH = ( 0.1)(1 + b ) RE = ( 0.1)(101)( 2 ) = 20.2 k Ω 1 VTH = ⋅ RTH ⋅ VCC = I BQ RTH + VBE ( on ) + (1 + b ) I BQ RE R1 1 ( 20.2 )( 2.5 ) = ( 0.0004 )( 20.2 ) + 0.7 + (101)( 0.0004 )( 2 ) R1 which yields R1 = 64 k V and R2 = 29.5 k Ω (100 )( 0.026 ) rπ = = 65 k Ω Neglect RS 0.04 Vo 2 b RC Av = > Vs rπ + (1 + b ) RE 2 100 RC −10 = ⇒ RC = 26.7 k Ω 65 + (101)( 2 ) With this RC , dc biasing is OK. 6.28 100 Need a voltage gain of = 20. 5 Assume a sign inversion from a common-emitter is not important. Use the configuration for Figure 6.31. Let RS = 0. Need an input resistance of 5 × 102 3 Ri = = 25 × 103 = 25 k Ω 0.2 × 102 6 Ri = RTH Rib . Let RTH = 50 k Ω, Rib = 50 k Ω Rib = rp + (1 + b ) RE > (1 + b ) RE Rib 50 For b = 100, RE = = = 0.495 k Ω 1 + b 101 Let RE = 0.5 k V , VCC = 10 V , I CQ = 0.2 mA 0.2 Then I BQ = = 0.002 mA 100 VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE 1 1 ⋅ RTH ⋅ VCC = ( 50)(10) = ( 0.002)(50) + 0.7 + (101)( 0.002 )( 0.5) R1 R1 which yields R1 = 555 k Ω and R2 = 55 k Ω − β RC (100)( 0.026) Now Av = , rπ = = 13 k Ω rπ + (1 + β ) RE 0.2 So − (100 ) RC −20 = ⇒ RC = 12.7 k Ω 13 + (101)( 0.5) [Note: I CQ RC = ( 0.2 )(12.7 ) = 2.54 V. So dc biasing is OK.] 6.29
  • 19. VCC ϭ 10 V R1 RE CC ␯o ␯s ϩ R2 Ϫ RC 2 b RC b = 80, Av = rp + (1 + b ) RE First approximation: R ( Av ) ≈ C = 10 ⇒ RC = 10 RE RE Set RC = 12 RE VEC ≈ VCC − I C ( RC + RE ) = 10 − I C (13RE ) 1 For VEC = VCC = 5 2 5 = 10 − I C (13RE ) For I C = 0.7 mA I E = 0.709, I B = 0.00875 mA ⇒ RE = 0.55 kΩ − RC = 6.6 kΩ Bias stable ⇒ R1 R2 = RTH = ( 0.1)(1 + β ) RE = ( 0.1)(81)( 0.55 ) = 4.46 kΩ 1 10 = ( 0.709 )( 0.55 ) + 0.7 + ( 0.00875 )( 4.46 ) + ( 4.46 )(10 ) R1 1 8.87 = ( 4.46 ) ⇒ R1 = 5.03 kΩ R1 5.03R2 = 4.46 ⇒ R2 = 39.4 kΩ 5.03 + R2 10 10 = = 0.225 mA R1 + R2 5.03 + 39.4 0.7 + 0.225 ≅ 0.925 mA from VCC source. (80 ) ( 0.026 ) Now rπ = = 2.97 kΩ 0.7 (80 )( 6.6 ) Av = = 11.1 2.97 + ( 81)( 0.55 ) 6.30
  • 20. ϩ5V R1 RC CC2 CC1 ␯o RL ϭ 10 K ␯s ϩ Ϫ R2 CE RE Ϫ5V β = 120 Let I CQ = 0.35 mA, I EQ = 0.353 mA I BQ = 0.00292 mA Let RE = 2 kΩ. For VCEQ = 4 V ⇒ 10 = 4 + ( 0.35) RC + ( 0.353)( 2) (120 )( 0.026 ) RC = 15.1 kΩ, rπ = = 8.91 kΩ 0.35 − β ( RC RL ) (120 ) (15.1 10 ) Av = =− rπ 8.91 Av = −81.0 For bias stable circuit: R1 R2 = RTH = ( 0.1)(1 + β ) RE = ( 0.1)(121)( 2 ) = 24.2 kΩ ⎛ R2 ⎞ 1 VTH = ⎜ ⎟ (10) − 5 = ⋅ RTH ⋅ (10 ) − 5 ⎝ R1 + R2 ⎠ R1 VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 5 1 ( 24.2 )(10 ) − 5 = ( 0.00292 )( 24.2 ) + 0.7 + (121)( 0.00292 )( 2 ) − 5 R1 1 ( 242 ) = 1.477, R1 = 164 kΩ R1 164 R2 = 24.2 ⇒ R2 = 28.4 kΩ 164 + R2 10 = 0.052, 0.35 + 0.052 = 0.402 mA 164 + 28.4 So bias current specification is met. 6.31 From Prob. 6.12,
  • 21. RTH = R1} R2 = 10}50 = 8.33 kΩ ⎛ R2 ⎞ ⎛ 50 ⎞ VTH = ⎜ ⎟ (12 ) = ⎜ ⎟ (12 ) = 10 V ⎝ R1 + R2 ⎠ ⎝ 50 + 10 ⎠ 12 − 0.7 − 10 I BQ = = 0.0119 mA 8.33 + (101)(1) I CQ = 1.19 mA, I EQ = 1.20 mA VECQ = 12 − (1.19 )( 2 ) − (120 )(1) = 8.42 V 1.19 1 8.42 11 12 For 1 ≤ vEC ≤ 11 DvEC = 11 − 8.42 = 2.58 ⇒ Output voltage swing = 5.16 V (peak-to-peak) 6.32 5 − 0.7 I BQ = = 0.00315 mA 50 + (101)( 0.1 + 12.9) I CQ = 0.315 mA, I EQ = 0.319 mA VCEQ = ( 5 + 5 ) − ( 0.315 )( 6 ) − ( 0.319 )(13) VCEQ = 3.96 V AC load line Ϫ1 Slope ϭ 6.1 K 0.315 3.96 10 1 ΔiC = − Δv 6.1 eC For ΔiC = 0.315 − 0.05 = 0.265 ⇒ ΔvEC = 1.62 vEC ( min ) = 3.96 − 1.62 = 2.34 Output signal swing determined by current:
  • 22. Max. output swing = 3.24 V peak-to-peak 6.33 From Problem 4.18, I CQ = 1.408 mA, I EQ = 1.426 mA (a) VECQ = 30 − (1.408 )( 5 ) − (1.426 )(10 ) = 8.7 V IC (mA) AC load line Ϫ1 Slope ϭ RC ͉͉RL Ϫ1 1.408 ϭ 2.5 kΩ 8.7 ␯EC (V) vEC ( max ) = 8.7 + ΔI C ⋅ ( 2.5 ) = 8.7 + (1.408 )( 2.5 ) = 12.22 Set vEC ( max ) = 12 = 8.7 + ΔI C ( 2.5 ) ⇒ ΔI C = 1.32 mA So ΔvEC (peak-to-peak) = 2(12 − 8.7) = 6.6 V (b) ΔiC (peak-to-peak) = 2(1.32) = 2.64 mA 6.34 I EQ = 0.80 mA, I CQ = 0.792 mA I BQ = 0.00792 mA VE = 0.7 + ( 0.00792 )(10 ) = 0.779 V VC = I CQ RC − 5 = ( 0.792 )( 4 ) − 5 = 2 1.83 V VECQ = 0.779 − ( −1.83) = 2.61 V Load line: Assume VE remains constant at ≈ 0.78 V IC (mA) AC load line Ϫ1 Slope ϭ RC ͉͉RL Ϫ1 1.408 ϭ 2.5 kΩ 8.7 ␯EC (V) 21 DiC = v ? ec 2 kV Collector current swing = 0.792 − 0.08 = 0.712 mA Dvec = ( 0.712 )( 2 ) = 1.424 V Output swing determined by current. Max. output swing = 2.85 V peak-to-peak 2.85 Swing in i0 current = 4 = 0.712 mA peak-to-peak
  • 23. 6.35 6 − 0.7 I BQ = = 0.0169 mA 10 + (101)( 3) I CQ = 1.69 mA, I EQ = 1.71 mA VCEQ = (16 + 6 ) − (1.69 )( 6.8 ) − (1.71)( 3) VCEQ = 5.38 V AC load line Ϫ1 Slope ϭ 3.4 ϩ 3 1.69 Ϫ1 ϭ 6.4 K 5.38 22 1 DiC = 2 Dvce 6.4 4.38 For vce ( min ) = 1 V, Dvce = 5.38 − 1 = 4.38 V ⇒ DiC = = 0.684 mA 6.4 Output swing limited by voltage: Δvce = Max. swing in output voltage = 8.76 V peak-to-peak 1 Δi0 = ΔiC ⇒ Δi0 = 0.342 mA 2 or Δi0 = 0.684 mA (peak-to-peak) 6.36 AC load line Ϫ1 Slope ϭ 1.05 K 2.65 Q-point ICQ VCEQ 9 100 ro = I CQ Neglect ro as (E) approx. dc load line VCE = 9 − I C ( 3.4 )
  • 24. ΔI C = I CQ − 0.1 ΔVCE = VCEQ − 1 Also ΔVCE = ΔI C ( RC RL ) = ΔI C (1.05 ) Or VCEQ − 1 = ( I CQ − 0.1) (1.05 ) Substituting the expression for the dc load line. ⎡9 − I CQ ( 3.4 ) − 1⎤ = ( I CQ − 0.1) (1.05 ) ⎣ ⎦ 8.105 = I CQ ( 4.45 ) ⇒ I CQ = 1.821 mA VCEQ = 2.81 V 1.821 I BQ = = 0.01821 100 RTH = ( 0.1)(101)(1.2 ) = 12.12 K 1 1 VTH = ⋅ RTH ⋅ VCC = (12.12 ) ( 9 ) = ( 0.01821) (12.12 ) + 0.7 + (101)( 0.01821)(1.2 ) R1 R1 = 0.2207 + 0.7 + 2.20705 R1 = 34.9 K R2 = 18.6 K 34.9 R2 = 12.12 34.9 + R2 6.37 dc load line 5 ϭ 4.55 mA 1 ϩ 0.1 AC load line Ϫ1 Slope ϭ ICQ 1͉͉1.2 Ϫ1 ϭ 0.545 K VCEQ 5 For maximum symmetrical swing ΔiC = I CQ − 0.25 1 ΔvCE = VCEQ − 0.5 and ΔiC = ⋅ | ΔvCE | 0.545 kΩ VCEQ − 0.5 I CQ − 0.25 = 0.545 VCEQ = 5 − I CQ (1.1) 0.545 ( I CQ − 0.25 ) = ⎡5 − I CQ (1.1) ⎤ − 0.5 ⎣ ⎦ ( 0.545 + 1.1) I CQ = 5 − 0.5 + 0.136 I CQ = 2.82 mA, I BQ = 0.0157 mA RTH = R1 R2 = ( 0.1)(1 + β ) RE = ( 0.1)(181)( 0.1) = 1.81 kΩ 1 VTH = ⋅ RTH ⋅ V + = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE R1
  • 25. 1 (1.81)( 5 ) = ( 0.0157 )(1.81) + 0.7 + (181)( 0.0157 )( 0.1) R1 1 ( 9.05 ) = 1.013 ⇒ R1 = 8.93 kΩ R1 8.93R2 = 1.81 ⇒ R2 =2.27 kΩ 8.93 + R2 6.38 I CQ = 0.647 mA , VCEQ > 10 − ( 0.647 )( 9 ) = 4.18 V DiC = I CQ = 0.647 mA So DvCE = DiC ( 4} 4 ) = ( 0.647 )( 2 ) = 1.294 V Voltage swing is well within the voltage specification. Then DvCE = 2 (1.294 ) = 2.59 V peak-to-peak 6.39 a. RTH = R1} R2 = 10}10 = 5 kΩ ⎛ R2 ⎞ ⎛ 10 ⎞ VTH = ⎜ ⎟ (18 ) − 9 = ⎜ ⎟ (18 ) − 9 = 0 ⎝ R1 + R2 ⎠ ⎝ 10 + 10 ⎠ 0 − 0.7 − ( −9 ) I BQ = = 0.0869 mA 5 + (181)( 0.5 ) I CQ = 15.6 mA, I EQ = 15.7 mA VCEQ = 18 − (15.7 )( 0.5 ) ⇒ VCEQ = 10.1 V b. AC load line Ϫ1 Slope ϭ 0.5͉͉0.3 Ϫ1 15.6 ϭ 0.188 K 10.1 18 c. (180 )( 0.026 ) rπ = = 0.30 kΩ 15.6 (1 + β )( RE RL ) ⎛ R1 R2 Rib ⎞ Av = ⋅⎜ ⎟ rπ + (1 + β ) ( RE RL ) ⎝ R1 R2 Rib + RS ⎠ Rib = rπ + (1 + β )( RE RL ) = 0.30 + (181)( 0.5 0.3) or Rib = 34.2 k Ω R1 R2 Rib = 5 34.2 = 4.36 k Ω (181)( 0.5 0.3) ⎛ 4.36 ⎞ Av = ⋅⎜ ⎟ ⇒ Av = 0.806 0.3 + (181)( 0.5 0.3) ⎝ 4.36 + 1 ⎠ d.
  • 26. Rib = rp + (1 + b ) ( RE } RL ) Rib = 0.30 + (181)( 0.188 ) ⇒ Rib = 34.3 kΩ rp + R1} R2 } RS 0.3 + 5}1 Ro = RE = 0.5 ⇒ Ro = 6.18 Ω 1+ b 181 6.40 a. RTH = R1} R2 = 10}10 = 5 kΩ ⎛ R2 ⎞ VTH = ⎜ ⎟ ( −10 ) = 2 5 V ⎝ R1 + R2 ⎠ VTH = I BQ RTH + VBE ( on ) + (1 + b ) I BQ RE − 10 2 5 − 0.7 − ( −10 ) I BQ = = 0.0174 mA 5 + (121)( 2 ) I CQ = 2.09 mA, I EQ = 2.11 mA VCEQ = 10 − ( 2.09 )(1) − ( 2.11)( 2 ) ⇒ VCEQ = 3.69 V b. AC load line Ϫ1 Slope ϭ 2͉͉2 Ϫ1 2.09 ϭ 1K 3.69 10 c. (120 )( 0.026 ) rπ = = 1.49 kΩ 2.09 (1 + β ) ( RE RL ) ⎛ R1 R2 Rib ⎞ Av = ⋅⎜ ⎟ rπ + (1 + β ) ( RE RL ) ⎜ R1 R2 Rib + RS ⎟ ⎝ ⎠ Rib = rπ + (1 + β ) ( RE RL ) = 1.49 + (121) ( 2 2) Rib = 122.5 k Ω, R1 R2 Rib = 5 122.5 = 4.80 k Ω (121) ( 2 2) ⎛ 4.80 ⎞ Av = ⋅⎜ ⎟ ⇒ Av = 0.484 1.49 + (121) ( 2 2) ⎝ 4.80 + 5 ⎠ d. Rib = rπ + (1 + b ) ( RE } RL ) Rib = 1.49 + (121) ( 2} 2 ) 1 Rib = 122 kΩ rπ + R1} R2 } RS 1.49 + 5}5 Ro = RE =2 1 Ro = 32.4 Ω 1+ b 121 6.41 a.
  • 27. RTH = R1 R2 = 60 40 = 24 kΩ ⎛ R2 ⎞ ⎛ 40 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ ( 5) = 2 V ⎝ R1 + R2 ⎠ ⎝ 40 + 60 ⎠ 5 − 0.7 − 2 I BQ = = 0.0130 mA 24 + ( 51)( 3) I CQ = 0.650 mA, I EQ = 0.663 mA VECQ = 5 − I EQ RE = 5 − ( 0.663)(3) ⇒ VECQ = 3.01 V b. 1.63 AC load line Ϫ1 Slope ϭ 51 Θ 50 Ι Θ3͉͉4Ι 0.65 Ϫ1 ϭ 1.75 K 3.01 5 c. ( 50 )( 0.026 ) 80 rπ = = 2 kΩ, r0 = = 123 kΩ 0.650 0.65 ′ Define RL = RE RL r0 = 3 4 123 = 1.69 kΩ (1 + β ) RL ′ ( 51)(1.69 ) Av = = ⇒ Av = 0.977 rπ (1 + β ) RL′ 2 + ( 51)(1.69 ) ⎛ RE r0 ⎞ Ai = (1 + β ) I b ⎜ ⎟ ⎜R r +R ⎟ ⎝ E 0 L ⎠ ⎛ RTH ⎞ Ib = I S ⎜ ⎟ ⎝ RTH + Rib ⎠ Rib = rπ + (1 + β ) RL = 2 + ( 51)(1.69 ) = 88.2 ′ RE r0 = 3 r0 = 3 123 = 2.93 ⎛ 2.93 ⎞ ⎛ 24 ⎞ Ai = ( 51) ⎜ ⎟⎜ ⎟ ⇒ Ai = 4.61 ⎝ 2.93 + 4 ⎠ ⎝ 24 + 88.2 ⎠ d. Rib = rπ + (1 + β ) RE RL r0 = 2 + ( 51)(1.69 ) ⇒ Rib = 88.2 kΩ rπ ⎛ 2⎞ R0 = RE = ⎜ ⎟ 3 = 0.0392 3 1+ β ⎝ 51 ⎠ R0 = 38.7 Ω e. Assume variations in rπ and r0 have negligible effects R1 = 60 ± 5% R1 = 63 kΩ, R1 = 57 kΩ R2 = 40 ± 5% R2 = 42 kΩ, R2 = 38 kΩ RE = 3 ± 5% RE = 3.15 kΩ, RE = 2.85 kΩ RL = 4 ± 5% RL = 4.2 kΩ, RL = 3.8 kΩ
  • 28. ⎛ RE r0 ⎞ ⎛ RTH ⎞ Ai = (1 + β ) ⎜ ⎜ R r + R ⎟⎜ R + R ⎟ ⎟ ⎝ E 0 L ⎠ ⎝ TH ib ⎠ Rib = rπ + (1 + β ) ( RE RL r0 ) RTH ( max ) = 25.2 kΩ, RTH ( min ) = 22.8 kΩ Rib ( max ) = 92.5 kΩ, Rib ( min ) = 84.0 kΩ RE ( max ) , RL ( min ) , Rib = 88.6 kΩ RE ( min ) , RL ( max ) , Rib = 87.4 kΩ RE ( max ) r0 = 3.07 kΩ RE ( min ) r0 = 2.79 kΩ For RE ( min ) , RL ( max ) , RTH ( min ) ⎛ 2.79 ⎞ ⎛ 22.8 ⎞ Ai = ( 51) ⎜ ⎟⎜ ⎟ ⇒ Ai = 4.21 ⎝ 2.79 + 4.2 ⎠ ⎝ 22.8 + 87.4 ⎠ For RE ( max ) , RL ( min ) , RTH ( max ) ⎛ 3.07 ⎞⎛ 25.2 ⎞ Ai = ( 51) ⎜ ⎟⎜ ⎟ ⇒ Ai = 5.05 ⎝ 3.07 + 3.8 ⎠⎝ 25.2 + 88.6 ⎠ 6.42 (a) 0.5 I BQ = = 0.00617 mA 81 VB = I BQ RB = ( 0.00617 )(10 ) ⇒ VB = 0.0617 V VE = VB + 0.7 ⇒ VE = 0.7617 V (b) ⎛ 80 ⎞ I CQ = ( 0.5 ) ⎜ ⎟ = 0.494 mA ⎝ 81 ⎠ I CQ 0.494 gm = = ⇒ g m = 19 mA / V VT 0.026 β VT (80 )( 0.026 ) rπ = = ⇒ rπ = 4.21 k Ω I CQ 0.494 VA 150 ro = = ⇒ ro = 304 k Ω I CQ 0.494 (c) RS VЈ S Ϫ IS Vs ϩ RB V␲ r␲ ro Ϫ gmV␲ ϩ Vo RL Io For RS = 0 ⎛V ⎞ Vo = − ⎜ π + g mVπ ⎟ ( RL ro ) ⎝ rπ ⎠
  • 29. −Vo so that Vπ = ⎛1+ β ⎞ ⎜ ⎟ ( RL ro ) ⎝ rπ ⎠ Now Vs + Vπ = Vo Vo or Vs = Vo − Vπ = Vo + ⎛ 1+ β ⎞ ⎜ ⎟ ( RL ro ) ⎝ rπ ⎠ We find Vo (1 + β )( RL ro ) (81)( 0.5 304 ) Av = = = Vs rπ + (1 + β )( RL ro ) 4.21 + ( 81)( 0.5 304 ) (81)( 0.5 ) ≅ ⇒ Av = 0.906 4.21 + ( 81)( 0.5 ) Rib = rπ + (1 + β )( RL ro ) ≅ 4.21 + ( 81)( 0.5 ) = 44.7 k Ω ⎛ RB ⎞ ⎛ ro ⎞ Ib = ⎜ ⎟ ⋅ I s and I o = ⎜ ⎟ (1 + β ) I b ⎝ RB + Rib ⎠ ⎝ ro + RL ⎠ Then Io ⎛ RB ⎞⎛ ro ⎞ Ai = = (1 + β ) ⎜ ⎟⎜ ⎟ Is ⎝ RB + Rib ⎠⎝ ro + RL ⎠ ⎛ 10 ⎞ Ai ≅ ( 81) ⎜ ⎟ (1) ⇒ Ai = 14.8 ⎝ 10 + 44.7 ⎠ (d) ⎛ RB + Rib ⎞ ⎛ 10 44.7 ⎞ ⎜ R R + R ⎟ s ⎜ 10 44.7 + 2 ⎟ s ( Vs′ = ⎜ ⋅V = ⋅ V = 0.803) Vs ⎟ ⎜ ⎟ ⎝ B ib s ⎠ ⎝ ⎠ Then Av = ( 0.803)( 0.906 ) ⇒ Av = 0.728 Ai = 14.8 (Unchanged) 6.43 (a) (100 )( 0.026 ) I CQ = 1.98 mA rπ = = 1.313 K 1.98 VA 100 ro = = I CQ 1.98 = 50.5 K rπ + RS 1.31 + 10 Ro = ro = 50.5 ⇒ Ro = 112 Ω 1+ β 101 0.112 50.5 ⇒ Ro ≅ 112 Ω (b) From Equation 4.68 (1 + β ) ( ro RL ) 100 Av = ro = = 50.5 K rπ + (1 + β ) ( ro RL ) 1.98 (i)
  • 30. RL = 0.5 K (101) ( 50.5 0.5) Av = 1.31 + (101) ( 50.5 0.5 ) (101)( 0.4951) Av = ⇒ Av = 0.974 1.31 + (101)( 0.4951) (ii) RL = 5 K ro RL = 50.5 5 = 4.5495 (101)( 4.55) Av = ⇒ Av = 0.997 1.31 + (101)( 4.55 ) 6.44 5 − 0.7 I EQ = = 1.303 I CQ = 1.293 mA 3.3 (125 )( 0.026 ) rπ = = 2.51 K 1.293 1.293 gm = = 49.73 mA/V 0.026 (a) Rib = rπ + (1 + β ) ( RE RL ) = 2.51 + (126 ) ( 3.3 1) Rib = 99.2 K rπ 2.51 Ro = RE = 3.3 = 3.3 0.01992 1+ β 126 Ro = 19.8 Ω (b) v 2sin ω t is = s = ⇒ is ( t ) = 20.2sin ω t ( μ A ) Rib 99.2 veb ( t ) = −is ( t ) rπ = ( −20.2 )( 2.51) sin ω t veb ( t ) = −50.6sin ω t ( mV ) (1 + β ) ( RE RL ) (126 ) ( 3.3 1) (126 )( 0.7674 ) Av = = = rπ + (1 + β ) ( RE RL ) 2.51 + (126 ) ( 3.3 1) 2.51 + (126 )( 0.7674 ) Av = 0.9747 ⇒ vo ( t ) = 1.95sin ω t ( V ) v (t ) io ( t ) = o ⇒ io ( t ) = 1.95sin ω t ( mA ) RL 6.45 a. I EQ = 1 mA , VCEQ = VCC − I EQ RE 5 = 10 − (1)( RE ) ⇒ RE = 5 kΩ 1 I BQ = = 0.0099 mA 101 10 = I BQ RB + VBE ( on ) + I EQ RE 10 = ( 0.0099 ) RB + 0.7 + (1)( 5 ) ⇒ RB = 434 kΩ b.
  • 31. ␯b ␯0 RB RE (100 )( 0.026 ) rπ = = 2.63 kΩ 0.99 v0 (1 + β ) RE(101)( 5 ) = = = 0.995 vb rπ + (1 + β ) RE 2.63 + (101)( 5 ) v0 4 ⇒ vb = = ⇒ vb = 4.02 V peak-to-peak at base 0.995 0.995 RS ␯b ϩ ␯S RB͉͉Rib Ϫ Rib = rπ + (1 + β ) RE = 508 kΩ RB Rib = 434 508 = 234 kΩ RB Rib 234vS 234 vb = ⋅ vS = = vS RB Rib + RS 234 + 0.7 234.7 4.02 vb = 0.997vS ⇒ vS = ⇒ vS = 4.03 V peak-to-peak 0.997 c. Rib = rπ + (1 + β ) ( RE RL ) Rib = 2.63 + (101) ( 5 1) = 86.8 kΩ RB Rib = 434 86.8 = 72.3 kΩ ⎛ 72.3 ⎞ vb = ⎜ ⎟ vS = 0.99vS = ( 0.99 )( 4.03) ⎝ 72.3 + 0.7 ⎠ vb = 3.99 V peak-to-peak (1 + β )( RE RL ) v0 = ⋅ vb rπ + (1 + β )( RE RL ) (101)( 0.833) = ( 3.99 ) 2.63 + (101)( 0.833) v0 = 3.87 V peak-to-peak 6.46
  • 32. RTH = R1 R2 = 40 60 = 24 kΩ ⎛ 60 ⎞ VTH = ⎜ ⎟ (10 ) = 6 V ⎝ 60 + 40 ⎠ 6 − 0.7 β = 75 I BQ = = 0.0131 mA 24 + ( 76 )( 5 ) I CQ = 0.984 mA 6 − 0.7 β = 150 I BQ = = 0.00680 mA 24 + (151)( 5 ) I CQ = 1.02 mA ( 75 )( 0.026 ) β = 75 rπ = = 1.98 kΩ 0.984 β = 150 rπ = 3.82 kΩ β = 75 Rib = rπ + (1 + β )( RE RL ) = 65.3 kΩ β = 150 Rib = 130 kΩ (1 + β )( RE RL ) R1 R2 Rib Av = ⋅ rπ + (1 + β )( RE RL ) R1 R2 Rib + RS For β = 75, R1 R2 Rib = 40 60 65.3 = 17.5 k Ω ( 76 )( 0.833) 17.5 Av = ⋅ ⇒ Av = 0.789 1.98 + ( 76 )( 0.833) 17.5 + 4 For β = 150, R1 R2 Rib = 40 60 130 = 20.3 k Ω (151)( 0.833) 20.3 Av = ⋅ ⇒ Av = 0.811 3.82 + (151)( 0.833) 20.3 + 4 So 0.789 ≤ Av ≤ 0.811 ⎛ RE ⎞ ⎛ RTH ⎞ Ai = (1 + β ) ⎜ ⎟⎜ ⎟ ⎝ RE + RL ⎠ ⎝ RTH + Rib ⎠ β = 75 ⎛ 5 ⎞⎛ 24 ⎞ Ai = ( 76 ) ⎜ ⎟⎜ ⎟ ⇒ Ai = 17.0 ⎝ 5 + 1 ⎠ ⎝ 24 + 65.3 ⎠ β = 150 ⎛ 5 ⎞ ⎛ 24 ⎞ Ai = (151) ⎜ ⎟ ⎜ ⎟ ⇒ Ai = 19.6 ⎝ 6 ⎠ ⎝ 24 + 130 ⎠ 17.0 ≤ Ai ≤ 19.6 6.47 (a)
  • 33. ⎛ I ⎞ 9 = ⎜ E ⎟ (100 ) + VBE ( on ) + I E RE ⎝ 1+ β ⎠ 9 − 0.7 IE = ⎛ 100 ⎞ ⎜ ⎟ + RE ⎝ 1+ β ⎠ 8.3 β = 50 I E = = 2.803 mA ⎛ 100 ⎞ ⎜ ⎟ +1 ⎝ 51 ⎠ 8.3 β = 200 I E = = 5.543 mA ⎛ 100 ⎞ ⎜ ⎟ +1 ⎝ 201 ⎠ 2.80 ≤ I E ≤ 5.54 mA VE = I E RE , β = 50, VE = 2.80 V β = 200, VE = 5.54 V (b) β = 50, I CQ = 2.748 mA, rπ = 0.473 K β = 200, I CQ = 5.515 mA, rπ = 0.943 K Ri = RB ⎡ rπ + (1 + β ) RE ⎣ RL ⎤ ⎦ β = 50 ⇒ Ri = 100 ⎡ 0.473 + ( 51)(1 1) ⎤ = 100 25.97 = 20.6 K ⎣ ⎦ β = 200 ⇒ Ri = 100 ⎡0.943 + ( 201)(1 1) ⎤ = 100 101.4 = 50.3 K ⎣ ⎦ From Fig. (4.68) (1 + β ) ( RE RL ) ⎛ Ri ⎞ Av = ⋅⎜ ⎟ rπ + (1 + β ) ( RE RL ) ⎝ Ri + RS ⎠ ( 51) (1 1) ⎛ 20.6 ⎞ = ⋅⎜ ⎟ 0.473 + ( 51) (1 1) ⎝ 20.6 + 10 ⎠ β = 50 ⇒ Av = 0.661 ( 201) (1 1) ⎛ 50.3 ⎞ β = 200 ⇒ Av = ⎜ ⎟ 0.943 + ( 201) (1 1) ⎝ 50.3 + 10 ⎠ Av = 0.826 6.48 Vo = (1 + β ) I b RL Vs Ib = rπ + (1 + β ) RL (1 + β ) RL so Av = rπ + (1 + β ) RL For β = 100, RL = 0.5 k Ω (100 )( 0.026 ) rπ = = 5.2 k Ω 0.5
  • 34. (101)( 0.5 ) Then Av ( min ) = = 0.9066 5.2 + (101)( 0.5 ) Then β = 180, RL = 500 k Ω (180 )( 0.026 ) rπ = = 9.36 k Ω 0.5 (181)( 500 ) Then Av ( max ) = = 0.9999 9.36 + (181)( 500 ) 6.49 Rib IS Ib ϩ V␲ r␲ gmV␲ ϭ ␤Ib Ϫ ␯S ϩ R1͉͉R2 Ϫ RE RL I0 ⎛ RE ⎞ I 0 = (1+ β ) I b ⎜ ⎟ ⎝ RE + RL ⎠ ⎛ R1 R2 ⎞ Ib = I S ⎜ ⎟ ⎝ R1 R2 + Rib ⎠ Rib = rπ + (1 + β )( RE RL ) VCC = 10 V, For VCEQ = 5 V ⎛1+ β ⎞ 5 = 10 − ⎜ ⎟ I CQ RE ⎝ β ⎠ β = 80, For RE = 0.5 kΩ I CQ = 9.88 mA, I EQ = 10 mA, I BQ = 0.123 mA (80 )( 0.026 ) rπ = = 0.211 kΩ 9.88 Rib = 0.211 + ( 81)( 0.5 0.5 ) ⇒ Rib = 20.46 kΩ I0 ⎛ RE ⎞ ⎛ R1 R2 ⎞ Ai = = (1 + β ) ⎜ ⎟⎜ ⎟ IS ⎝ RE + RL ⎠⎝ R1 R2 + Rib ⎠ ⎛ 1 ⎞⎛ R1 R2 ⎞ 8 = ( 81) ⎜ ⎟ ⎜ ⎟ ⎝ 2 ⎠ ⎝ R1 R2 + 20.46 ⎠ 0.1975 ⎡ R1} R2 + 20.46 ⎤ = R1} R2 ⎣ ⎦ R1} R2 ⇒ 5.04 kΩ
  • 35. VTH = I BQ RTH + VBE ( on ) + (1 + b ) I BQ RE 1 ( 5.04 )(10 ) = ( 0.123)( 5.04 ) + 0.7 + (10 )( 0.5 ) ⇒ R1 = 7.97 kΩ R1 7.97 R2 = 5.04 ⇒ R2 = 13.7 kΩ 7.97 + R2 rπ 0.211 Now Ro = RE = 0.5 or Ro = 2.59 Ω 1+ b 81 (b) Rib = 0.211 + (81) ( 0.5 2) = 32.6 k Ω ⎛ 0.5 ⎞ ⎛ 5.04 ⎞ Ai = ( 81) ⎜ ⎟⎜ ⎟ = ( 81)( 0.2 )( 0.134 ) ⎝ 0.5 + 2 ⎠ ⎝ 5.04 + 32.6 ⎠ Ai = 2.17 6.50 Ri = RTH Rib where Rib = rπ + (1 + β ) RE 5 − 3.5 VCEQ = 3.5, I CQ = 0.75 mA 2 (120 )( 0.026 ) rπ = = 4.16 k Ω 0.75 Rib = 4.16 + (121) ( 2 ) = 246 k Ω Then Ri = 120 = RTH 246 ⇒ RTH = 234 k Ω 0.75 I BQ = = 0.00625 mA 120 VTH = I BQ RTH + VBE ( on ) + (1+ β ) I BQ RE 1 1 ⋅ RTH ⋅ VCC = ( 234)(5) = ( 0.00625) ( 234) + 0.7 + (121)( 0.00625 )( 2 ) R1 R1 which yields R1 = 318 k Ω and R2 = 886 k Ω 6.51 a. 12 Let RE = 24 Ω and VCEQ = 1 VCC = 12 V ⇒ I EQ = = 0.5 A 2 24 I CQ = 0.493 A, I BQ = 6.58 mA ( 75)( 0.026 ) rπ = = 3.96 Ω 0.493 Reb Is Ib ϩ V␲ r␲ gmV␲ ϭ ␤Ib Ϫ VS ϩ R1 ͉͉ R2 Ϫ ϭ Rrn RE RL Io
  • 36. ⎛ RE ⎞ I 0 = (1 + β ) I b ⎜ ⎟ ⎝ RE + RL ⎠ ⎛ RTH ⎞ Ib = I S ⎜ ⎟ ⎝ RTH + Rib ⎠ Rib = rπ + (1 + β ) ( RE RL ) = 3.96 + ( 76 )( 24 8 ) ⇒ Rib = 460 Ω I0 ⎛ RE ⎞ ⎛ RTH ⎞ Ai = = (1 + β ) ⎜ ⎟⎜ ⎟ IS ⎝ RE + RL ⎠ ⎝ RTH + Rib ⎠ ⎛ 24 ⎞ ⎛ RTH ⎞ 8 = ( 76) ⎜ ⎟⎜ ⎟ ⎝ 24 + 8 ⎠ ⎝ RTH + 460 ⎠ RTH 0.140 = ⇒ RTH = 74.9 Ω (Minimum value) RTH + 460 dc analysis: 1 VTH = ⋅ RTH ⋅ VCC R1 = I BQ RTH + VBE ( on ) + I EQ RE 1 ( 74.9 )( 24 ) = ( 0.00658)( 74.9 ) + 0.70 + ( 0.5 )( 24 ) R1 = 13.19 136 R2 R1 = 136 Ω, = 74.9 ⇒ R2 = 167 Ω 136 + R2 b. AC load line Ϫ1 Slope ϭ 24͉͉8 Ϫ1 0.493 ϭ 6⍀ 12 24 1 ΔiC = − Δvce 6 For ΔiC = 0.493 ⇒ Δvce = ( 0.493)( 6 ) ⇒ Max. swing in output voltage for this design = 5.92 V peak-to-peak c. rπ 3.96 R0 = RE = 24 = 0.0521 24 ⇒ R0 = 52 mΩ 1+ β 76 6.52 The output of the emitter follower is ⎛ RL ⎞ vo = ⎜ ⎟ ⋅ vTH ⎝ RL + Ro ⎠
  • 37. Ro ϩ ␯TH ϩ ␯O RL Ϫ Ϫ For vO to be within 5% for a range of RL , we have RL ( min ) RL ( max ) = ( 0.95 ) RL ( min ) + Ro RL ( max ) + Ro 4 10 = ( 0.95 ) which yields Ro = 0.364 k Ω 4 + Ro 10 + Ro ⎛ r + R1 R2 RS ⎞ We have Ro = ⎜ π ⎟ RE ro ⎝ 1+ β ⎠ The first term dominates Let R1 R2 RS ≅ RS , then rπ + RS r +4 Ro ≅ ⇒ 0.364 = π 1+ β 1+ β rπ 4 β VT 4 or 0.364 = + = + 1 + β 1 + β I CQ (1 + β ) 1 + β VT 4 0.364 ≅ + I CQ 1 + β 4 4 4 V The factor is in the range of = 0.044 to = 0.0305. We can set Ro ≅ 0.32 = T 1+ β 91 131 I CQ Or I CQ = 0.08125 mA. To take into account other factors, set I CQ = 0.15 mA, 0.15 I BQ = = 0.00136 mA 110 5 For VCEQ ≅ 5 V , set RE = = 33.3 k Ω 0.15 Design a bias stable circuit. ⎛ R2 ⎞ 1 VTH = ⎜ ⎟ (10) − 5 = ( RTH )(10) − 5 ⎝ R1 + R2 ⎠ R1 RTH = ( 0.1)(1 + β ) RE = ( 0.1)(111)(33.3) = 370 k Ω VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 5 1 So ( 370 )(10 ) − 5 = ( 0.00136 )( 370 ) + 0.7 + (111)( 0.00136 )( 33.3) − 5 R 1 which yields R1 = 594 k Ω and R2 = 981 k Ω (1 + β ) ( RE RL ) ⎛ RTH Rib ⎞ Now Av = ⋅⎜ ⎟ rπ + (1 + β ) ( RE RL ) ⎝ RTH Rib + RS ⎠ β VT Rib = rπ + (1 + β ) ( RE RL ) and rπ = I CQ For β = 90, RL = 4 k Ω, rπ = 15.6 k Ω, Rib = 340.6 k Ω ( 91)( 33.3 4 ) 370 340.6 Av = ⋅ ⇒ Av = 0.9332 15.6 + ( 91)( 33.3 4 ) 370 340.6 + 4
  • 38. For β = 90, RL = 10 k Ω Rib = 715.4 k Ω ( 91)( 33.3 10 ) 370 715.4 Av = ⋅ ⇒ Av = 0.9625 15.6 + ( 91)( 33.3 10 ) 370 715.4 + 4 For β = 130, RL = 4 k Ω rπ = 22.5 k Ω, Rib = 490 k Ω (131)( 33.3 4 ) 370 490 Av = ⋅ ⇒ Av = 0.9360 22.5 + (131)( 33.3 4 ) 370 490 + 4 For β = 130, RL = 10 k Ω Rib = 1030 k Ω (131)( 33.3 10 ) 370 1030 Av = ⋅ ⇒ Av = 0.9645 22.5 + (131)( 33.3 10 ) 370 1030 + 4 Now vO ( min ) = Av ( min ) .vS = 3.73sin ω t vO ( max ) = Av ( max ) .vS = 3.86sin ω t ΔvO = 3.5% vO 6.53 PAVG = iL ( rms ) RL ⇒ 1 = iL ( rms )(12 ) 2 2 so iL ( rms ) = 0.289 A ⇒ iL ( peak ) = 2 ( 0.289 ) iL ( peak ) = 0.409 A vL ( peak ) = iL ( peak ) ⋅ RL = ( 0.409 )(12 ) = 4.91 V 4.91 Need a gain of = 0.982 5 With RS = 10 k Ω, we will not be able to meet this voltage gain requirement. Need to insert a buffer or an op-amp voltage follower (see Chapter 9) between RS and CC1 . 1 Set I EQ = 0.5 A, VCEQ = (12 − ( −12 ) ) = 8 V 3 24 = I EQ RE + VCEQ = ( 0.5 ) RE + 8 ⇒ RE = 32 Ω 50 Let β = 50, I CQ = ( 0.5 ) = 0.49 A 51 β VT ( 50 )( 0.026 ) rπ = = = 2.65 Ω I CQ 0.49 Rib = rπ + (1 + β ) ( RE RL ) = 2.65 + ( 51) ( 32 12 ) Rib = 448 Ω (1 + β ) ( RE RL ) ( 51) ( 32 12 ) Av = = = 0.994 rπ + (1 + β ) ( RE RL ) 2.65 + ( 51) ( 32 12 ) So gain requirement has been met.
  • 39. 0.49 I BQ = = 0.0098 A = 9.8 mA 50 24 Let I R ≅ ≅ 10 I B = 98 mA R1 + R2 So that R1 + R2 = 245 Ω R2 VTH = ( 24 ) − 12 = I BQ RTH + VBE ( on ) + I EQ RE − 12 R1 + R2 ⎛ R2 ⎞ ( 0.0098) R1 R2 ⎜ 245 ⎟ ( 24 ) = 245 + 0.7 + ( 0.5 )( 32 ) ⎝ ⎠ Now R1 = 245 − R2 So we obtain 4 × 10−5 R2 + 0.0882 R2 − 16.7 = 0 which yields R2 = 175 Ω and R1 = 70 Ω 2 6.54 (a) RTH = R1 R2 = 25.6 10.4 = 7.40 k Ω ⎛ R2 ⎞ ⎛ 10.4 ⎞ VTH = ⎜ ⎟ (VCC ) = ⎜ ⎟ (18 ) = 5.2 V ⎝ R1 + R2 ⎠ ⎝ 10.4 + 25.6 ⎠ VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE 5.2 − 0.7 I BQ = = 0.0117 mA 7.40 + (126 )( 3) Then I CQ = 1.46 mA and I EQ = 1.47 mA VCEQ = VCC − I CQ RC − I EQ RE VCEQ = 18 − (1.46 )( 4 ) − (1.47 )( 3) ⇒ VCEQ = 7.75 V (b) (125) ( 0.026 ) rπ = = 2.23 k Ω 1.46 1.46 gm = = 56.2 mA / V 0.026 Re Vo Ie r␲ ␤Ib Is RS RE RC RL Ib RTH
  • 40. rπ + RTH 2.23 + 7.40 Re = = = 0.0764 k Ω 1+ β 126 − ( RS RE ) − (100 3) Ie = ⋅ Is = ⋅ Is (R S RE ) + Re (100 3) + 0.0764 or I e = − ( 0.974 ) I s ⎛ β ⎞ Vo = − I c ( RC RL ) = − ⎜ ⎟ I e ( RC RL ) ⎝ 1+ β ⎠ Vo ⎛ β ⎞ ⎛ 125 ⎞ Then = −⎜ ⎟ ( −0.974 )( RC RL ) = ⎜ ⎟ ( 0.974 )( 4 4 ) Is ⎝ 1+ β ⎠ ⎝ 126 ⎠ V Then Rm = o = 1.93 k Ω = 1.93 V / mA Is (c) ( ) ( Vs = I s RS R E Re = I s 100 3 0.0764 = I s ( 0.0744 )) Vs or I s = 0.0744 V V which yields o = o ( 0.0744 ) = 1.93 I s Vs Vo or Av = = 25.9 Vs 6.55 (a) β ( RC RL ) Av = , RL = 12 k Ω, β = 100 rπ + R1 R2 Let R1 R2 = 50 k Ω, I CQ = 0.5 mA VTH = I BQ RTH + VBE ( on ) + (1+ β ) I BQ RE 0.5 (100 )( 0.026 ) I BQ = = 0.005 mA, rπ = = 5.2 k Ω 100 0.5 1 1 ⋅ RTH ⋅ VCC = ( 50 )(12 ) = ( 0.005 )( 50 ) + 0.7 + (101)( 0.005 )( 0.5 ) R1 R1 which yields R1 = 500 k Ω and R2 = 55.6 k Ω (100 )(12 12 ) Av = = 10.9, Design criterion is met. 5.2 + 50 (b) I CQ = 0.5 mA, I EQ = 0.505 mA VCEQ = 12 − ( 0.5)(12) − ( 0.505)( 0.5) ⇒ VCEQ = 5.75 V 0.5 Av = g m ( RC RL ) , g m = = 19.23 mA / V 0.026 Av = (19.23) (12 12 ) ⇒ Av = 115 6.56 a. Emitter current
  • 41. I EQ = I CC = 0.5 mA 0.5 I BQ = = 0.00495 mA 101 VE = I EQ RE = ( 0.5 )(1) ⇒ VE = 0.5 V VB = VE + VBE ( on ) = 0.5 + 0.7 ⇒ VB = 1.20 V VC = VB + I BQ RB = 1.20 + ( 0.00495 )(100 ) ⇒ VC = 1.7 V b. (100 )( 0.026 ) rπ = = 5.25 kΩ (100 )( 0.00495 ) (100 )( 0.00495 ) gm = = 19.0 mA/V 0.026 Ri gmV␲ V0 RS Ϫ VS ϩ RE V␲ r␲ RB RL Ϫ ϩ gmV␲ RS ͉͉RE Ϫ ΂ ΃ RE ϩ V Ϫ V␲ r␲ RE ϩ RS S ϩ Vo = − g mVπ ( RB RL ) RE Rie Vπ = − ⋅ VS = − ( 0.4971) VS RE Rie + RS Vo = (19 )( 0.4971) VS (100 1) Av = 9.37 c. gmV␲ IX Ϫ VX ϩ Ϫ RE V␲ r␲ ϩ VX VX IX = + − g mVπ , Vπ = −VX RE rπ IX 1 1 1 = = + + gm VX Ri RE rπ 1 1 or Ri = RE rπ = 1 5.253 gm 19 Ri = 0.84 0.05252 ⇒ Ri = 49.4 Ω 6.57 (a) I EQ = 1 mA, I CQ = 0.9917 mA
  • 42. VC = 5 − ( 0.9917 )( 2 ) = 3.017 V VE = −0.7 V VCEQ = 3.72 V (b) Av = g m ( RC RL ) 0.9917 gm = = 38.14 mA/V 0.026 Av = ( 38.14 ) ( 2 10 ) ⇒ Av = 63.6 6.58 (a) 10 − 0.7 I EQ = = 0.93 mA 10 I CQ = 0.921 mA VECQ = 20 − ( 0.93)(10 ) − ( 0.921)( 5 ) VECQ = 6.10 V (b) 0.921 gm = = 35.42 mA/V 0.026 Av = g m ( RC RL ) = ( 35.42 ) ( 5 50 ) Av = 161 6.59 (a) I EQ = 0.93 mA, I CQ = 0.921 mA VECQ = 6.10 V 0.921 (b) gm = = 35.42 mA/V rπ = 2.82 K 0.026 From Eq. 6.90 Av = g m ( RC RL ) ⎡ rπ R R ⎤ RS ⎢1 + β E S ⎥ ⎣ ⎦ ( 35.42 ) ( 50 5 ) ⎡ 2.82 ⎤ = ⎢ 101 10 0.1⎥ 0.1 ⎣ ⎦ ( 35.42 )( 4.545 ) Av = [0.0218] 0.1 Av = 35.1 6.60 (a) ⎛ 60 ⎞ I CQ = ⎜ ⎟ (1) ⇒ I CQ = 0.984 mA ⎝ 61 ⎠ ⎛ 1⎞ VCEQ = I BQ RB + VBE ( on ) = ⎜ ⎟ (100 ) + 0.7 ⎝ 61 ⎠ VCEQ = 2.34 V (b)
  • 43. Av = g m (RB RL ) ⎡ rπ ⎤ RS ⎥ ⎢ RS ⎣1 + β ⎦ 0.984 gm = = 37.85 mA/V 0.026 rπ = 1.59 K ( 37.85) (100 2 ) ⎡1.59 ⎤ Av = ⎢ 61 0.05⎥ 0.05 ⎣ ⎦ = 1484 ⎡ 0.0261 0.05⎤ ⎣ ⎦ Av = 25.4 6.61 is ( peak ) = 2.5 mA, Vo ( peak ) = 5 mV vo 5 × 102 3 So we need Rm = = = 2 × 103 = 2 k Ω is 2.5 × 102 6 From Problem 4.54 Vo ⎛ β ⎞ ⎛ RS RE ⎞ =⎜ ⎟ ( RC RL ) ⎜ ⎜R R +R ⎟ ⎟ Is ⎝ 1+ β ⎠ ⎝ S E ie ⎠ Let RC = 4 k Ω, RL = 5 k Ω, RE = 2 k Ω Now β = 120, so we have ⎛ 120 ⎞ ⎛ RS RE ⎞ ⎛ RS RE ⎞ 2=⎜ ⎟ ( 4 5) ⎜ ⎜R R +R ⎟ = 2.204 ⎜ ⎟ ⎜R R +R ⎟ ⎟ ⎝ 121 ⎠ ⎝ S E ie ⎠ ⎝ S E ie ⎠ RS RE Then = 0.9075 RS RE + Re RS RE = 50 2 = 1.923 k Ω, so that Rie = 0.196 k Ω Assume VCEQ = 3 V VCC ≅ I CQ ( RC + RE ) + VCEQ 5 = I CQ ( 4 + 2 ) + 3 ⇒ I CQ = 0.333 mA (120 )( 0.026 ) rπ = = 9.37 k Ω 0.333 r + RTH 9.37 + RTH Rie = π ⇒ 0.196 = 1+ β 121 which yields RTH = 14.35 k Ω Now VTH = I BQ RTH + VBE ( on ) + I EQ RE 1 ⎛ 121 ⎞ I BQ = = 0.00833 mA, I EQ = ⎜ ⎟ (1) = 1.008 mA 120 ⎝ 120 ⎠ 1 1 VTH = ⋅ RTH ⋅ VCC = (14.35 )( 5 ) = ( 0.00833)(14.35 ) + 0.7 + (1.008 )( 2 ) R1 R1 which yields R1 = 25.3 k Ω and R2 = 33.2 k Ω 6.62 a.
  • 44. 20 − 0.7 I EQ = = 1.93 mA 10 I CQ = 1.91 mA VECQ = VCC + VEB ( on ) − I C RC = 25 + 0.7 − (1.91)( 6.5 ) ⇒ VECQ = 13.3 V b. Rie RS h fe Ib V0 IS Ie VS ϩ RE RC RL Ϫ hie Ib Neglect effect hoe From Problem 6-16, assume 2.45 ≤ hie ≤ 3.7 kΩ 80 ≤ h fe ≤ 120 Vo = ( h fe I b ) ( RC RL ) hie ⎛ RE ⎞ Rie = , Ie = ⎜ ⎟ IS 1 + h fe ⎝ RE + Rie ⎠ ⎛ I ⎞ VS Ib = ⎜ e ⎟ , I S = ⎜ 1+ h ⎟ RS + RE Rie ⎝ fe ⎠ ⎛ h fe ⎞ ⎛ RE ⎞ ⎛ 1 ⎞ ⎜ 1+ h ⎟( C Av = ⎜ R RL ) ⎜ ⎟×⎜ ⎟ ⎟ ⎝ fe ⎠ ⎝ RE + Rie ⎠ ⎝ RS + RE Rie ⎠ High gain device: hie = 3.7 kΩ, h fe = 120 3.7 Rie = = 0.0306 kΩ 121 RE Rie = 10 0.0306 = 0.0305 ⎛ 120 ⎞ ⎛ 10 ⎞⎛ 1 ⎞ Av = ⎜ ⎟ ( 6.5 5 ) ⎜ ⎟⎜ ⎟ ⇒ Av = 2.711 ⎝ 121 ⎠ ⎝ 10 + 0.0306 ⎠ ⎝ 1 + 0.0305 ⎠ Low gain device: hie = 2.45 kΩ, h fe = 80 2.45 Rie = = 0.03025 kΩ 81 RE Rie = 10 0.03025 = 0.0302 ⎛ 80 ⎞ ⎛ 10 ⎞⎛ 1 ⎞ Av = ⎜ ⎟ ( 6.5 5 ) ⎜ ⎟⎜ ⎟ ⇒ Av = 2.70 So Av ≈ constant ⎝ 81 ⎠ ⎝ 10 + 0.03025 ⎠ ⎝ 1 + 0.0302 ⎠ 2.70 ≤ Av ≤ 2.71 c. Ri = RE Rie We found 0.0302 ≤ Ri ≤ 0.0305 kΩ Neglecting hoe , Ro = RC = 6.5 kΩ 6.63 a. Small-signal voltage gain
  • 45. Av = g m ( RC RL ) ⇒ 25 = g m ( RC 1) For VECQ = 3 V ⇒ VC = −VECQ + VEB ( on ) = −3 + 0.7 ⇒ VC = −2.3 5 − 2.3 2.7 VCC − I CQ RC + VC = 0 ⇒ I CQ = = = I CQ RC RC For I CQ = 1 mA, RC = 2.7 kΩ 1 gm = = 38.5 mA/V 0.026 Av = ( 38.5 )( 2.7 1) = 28.1 Design criterion satisfied and VECQ satisfied. ⎛ 101 ⎞ IE = ⎜ ⎟ (1) = 1.01 mA ⎝ 100 ⎠ 5 − 0.7 VEE = I E RE + VEB ( on ) ⇒ RE = ⇒ RE = 4.26 kΩ 1.01 b. β VT (100)( 0.026) rπ = = ⇒ rπ = 2.6 kΩ, g m = 38.5 mA/V, ro = ∞ I CQ 1 6.64 a. ⎛ R2 ⎞ ⎛ 20 ⎞ VTH 1 = ⎜ ⎟ VCC = ⎜ ⎟ (10 ) ⇒ VTH 1 = 2.0 V ⎝ R1 + R2 ⎠ ⎝ 20 + 80 ⎠ RTH 1 = R1 R2 = 20 80 = 16 kΩ 2 − 0.7 I B1 = = 0.0111 mA 16 + (101)(1) 1.11 I C1 = 1.11 mA ⇒ g m1 = ⇒ g m1 = 42.74 mA/V 0.026 (100)( 0.026) rπ 1 = ⇒ rπ 1 = 2.34 kΩ 1.11 ∞ r01 = ⇒ r01 = ∞ 1.11 ⎛ R4 ⎞ ⎛ 15 ⎞ VTH 2 = ⎜ ⎟ VCC = ⎜ ⎟ (10 ) = 1.50 V ⎝ R3 + R4 ⎠ ⎝ 15 + 85 ⎠ RTH 2 = R3 R4 = 15 85 = 12.75 kΩ 1.50 − 0.70 IB2 = = 0.01265 mA 12.75 + (101)( 0.5 ) 1.265 I C 2 = 1.265 mA ⇒ g m 2 = ⇒ g m2 = 48.65 mA/V 0.026 (100 )( 0.026 ) rπ 2 = ⇒ rπ 2 = 2.06 kΩ 1.26 r02 = ∞ b. Av1 = − g m1 RC1 = − ( 42.7 )( 2 ) ⇒ Av1 = −85.48 Av 2 = − g m 2 ( RC 2 RL ) = − ( 48.5) ( 4 4) ⇒ Av 2 = −97.3 c. Input resistance of 2nd stage
  • 46. Ri 2 = R3 R4 rπ 2 = 15 85 2.06 = 12.75 2.06 ⇒ Ri 2 = 1.773 kΩ Av′1 = − g m1 ( RC1 Ri 2 ) = − ( 42.7 ) ( 2 1.77B) Av′1 = −40.17 Overall gain: Av = ( −40.17 )( −97.3) ⇒ Av = 3909 If we had Av1 ⋅ Av 2 = ( −85.48)( −97.3) = 8317 Loading effect reduces overall gain 6.65 a. ⎛ R2 ⎞ ⎛ 12.7 ⎞ VTH 1 = ⎜ ⎟ VCC = ⎜ ⎟ (12) ⇒ VTH 1 = 1.905 V ⎝ R1 + R2 ⎠ ⎝ 12.7 + 67.3 ⎠ RTH 1 = R1 R2 = 12.7 67.3 = 10.68 kΩ 1.905 − 0.70 I B1 = = 0.00477 mA 10.68 + (121)( 2 ) I C1 = 0.572 mA 0.572 g m1 = ⇒ g m1 = 22 mA/V 0.026 (120 )( 0.026 ) rπ 1 = ⇒ rπ 1 = 5.45 kΩ 0.572 ∞ r01 = ⇒ r01 = ∞ 0.572 ⎛ R4 ⎞ ⎛ 45 ⎞ VTH 2 = ⎜ ⎟ VCC = ⎜ ⎟ (12) ⇒ VTH 2 = 9.0 V ⎝ R3 + R4 ⎠ ⎝ 45 + 15 ⎠ RTH 2 = R3 R4 = 15 45 = 11.25 kΩ 9.0 − 0.70 I B2 = = 0.0405 mA 11.25 + (121)(1.6) I C2 = 4.86 mA 4.86 gm2 = ⇒ g m 2 = 187 mA/V 0.026 (120 )( 0.026 ) rπ 2 = ⇒ rπ 2 = 0.642 kΩ 4.86 r02 = ∞ b. I E1 = 0.577 mA VCEQ1 = 12 − ( 0.572 ) (10 ) − ( 0.577 ) ( 2 ) ⇒ VCEQ1 = 5.13 V I E 2 = 4.90 VCEQ 2 = 12 − ( 4.90 )(1.6 ) ⇒ VCEQ 2 = 4.16 V
  • 47. Q1 AC load line Ϫ1 Slope ϭ 10͉͉7.92 Ϫ1 ϭ 4.42 K 0.572 5.13 12 Q2 AC load line Ϫ1 Slope ϭ 1.6͉͉0.25 Ϫ1 4.86 ϭ 0.216 K 4.16 12 Ri 2 = R3 R4 Rib Rib = rπ 2 + (1 + β ) ( RE 2 RL ) = 0.642 + (121) (1.6 0.25 ) Rib = 26.8 Ri 2 = 15 45 26.8 Ri 2 = 7.92 kΩ c. Av1 = − g m1 ( RC1 Ri 2 ) = − ( 22 )(10 7.92 ) ⇒ Av 2 = −97.2 (1 + β )( RE 2 RL ) Av 2 = rπ 2 + (1 + β )( RE 2 RL ) (121)( 0.216 ) = = 0.976 0.642 + (121)( 0.216 ) Overall gain = ( −97.2 )( 0.976 ) = −94.9 d. RiS = R1 R2 rπ 1 = 67.3 12.7 5.45 ⇒ RiS = 3.61 kΩ rπ 2 + RS Ro = RE 2 where 1+ β RS = R3 R4 RC1 = 15 45 10 ⇒ RS = 5.29 kΩ 0.642 + 5.29 Ro = 1.6 ⇒ 0.049 1.6 ⇒ Ro = 47.6 Ω 121 e. −1 ΔiC = ⋅ Δvce , ΔiC = 4.86 0.216 kΩ Δvce = ( 4.86 )( 0.216 ) = 1.05 V Max. output voltage swing = 2.10 V peak-to-peak 6.66 (a)
  • 48. 5 − 2 ( 0.7 ) I R1 = = 72 mA 0.050 0.7 IR2 = = 1.4 mA 0.5 ⎛ β ⎞ IC 2 =⎜ ⎟ ( 72 − 1.4 ) ⇒ I C 2 = 69.9 mA ⎝ 1+ β ⎠ 69.9 IB2 = = 0.699 mA 100 ⎛ β ⎞ I C1 =⎜ ⎟ (1.4 + 0.699 ) ⇒ I C1 = 2.08 mA ⎝ 1+ β ⎠ (b) ϩ Vs ϩ Ϫ V␲1 r␲1 gm1V␲1 gm2V␲2 Ϫ r␲2 ϩ 0.5 k⍀ V␲2 Ϫ Vo 50 Ω Vs = Vπ 1 + Vπ 2 + Vo (1) ⎛V V ⎞ Vo = ⎜ π 2 + π 2 + g m 2Vπ 2 ⎟ ( 0.05 ) ⎝ 0.5 rπ 2 ⎠ (100 )( 0.026 ) rπ 2 = = 0.0372 k Ω 69.9 69.9 gm2 = = 2688 mA / V 0.026 ⎛ 1 1 ⎞ V Vo = Vπ 2 ⎜ + + 2688 ⎟ ( 0.05 ) so that (1) Vπ 2 = o ⎝ 0.5 0.0372 ⎠ 135.8 (2)
  • 49. Vπ 1 V V + g m1Vπ 1 = π 2 + π 2 rπ 1 0.5 rπ 2 (100 )( 0.026 ) rπ 1 = = 1.25 k Ω 2.08 2.08 g m1 = = 80 mA / V 0.026 ⎛ 1 ⎞ ⎛ 1 1 ⎞ Vπ 1 ⎜ + 80 ⎟ = Vπ 2 ⎜ + ⎟ ⎝ 1.25 ⎠ ⎝ 0.5 0.0372 ⎠ ⎛ V ⎞ Vπ 1 ( 80.8 ) = Vπ 2 ( 28.88 ) = ⎜ o ⎟ ( 28.88 ) or (2) Vπ 1 = Vo ( 0.00261) ⎝ 136.7 ⎠ V V Then Vs = Vo ( 0.00261) + o + Vo = Vo (1.00993) or Av = o = 0.990 136.7 Vs (c) Rib = rπ 1 (1 + β ) [ Rx ] Ix ϩ Vx ϩ Ϫ 0.5 k⍀ V␲2 r␲2 gm2V␲2 Ϫ Vo 50 ⍀ Vπ 2 Vπ 2 ⎛ 1 1 ⎞ Ix = + = Vπ 2 ⎜ + ⎟ 0.5 rπ 2 ⎝ 0.5 rπ 2 ⎠ Vo V − Vπ 2 = x = I x + g m 2Vπ 2 0.05 0.05 ⎛ 1 ⎞ Ix ⎜ + gm2 ⎟ Vx ⎛ 1 ⎞ ⎝ 0.05 ⎠ − I x = Vπ 2 ⎜ + gm2 ⎟ = 0.05 ⎝ 0.05 ⎠ ⎛ 1 1 ⎞ ⎜ + ⎟ ⎝ 0.5 rπ 2 ⎠ Vx We find = Rx = 4.74 k Ω Ix Then Rib = 1.25 + (101) ( 2.89 ) ⇒ Rib = 480 k Ω
  • 50. ϩ V␲1 r␲1 gm1V␲1 gm2V␲2 Ϫ r␲2 ϩ 0.5 k⍀ V␲2 Ϫ Ix ϩ 50 ⍀ Ϫ Vx To find Ro: Vx V (1) Ix = − g m 2Vπ 2 − π 2 0.05 0.5 rπ 2 ⎛V ⎞ ⎛ 1 ⎞ (2) Vπ 2 = ⎜ π 1 + g m1Vπ 1 ⎟ ( 0.5 rπ 2 ) = Vπ 1 ⎜ + 80 ⎟ ( 0.5 0.0372 ) or Vπ 2 = ( 2.77 ) Vπ 1 ⎝ rπ 1 ⎠ ⎝ 1.25 ⎠ (3) Vπ 1 + Vπ 2 + Vx = 0 ⇒ Vπ 1 + ( 2.77 ) Vπ 1 + Vx = 0 so that Vπ 1 = − ( 0.2653) Vx and Vπ 2 = ( 2.77 ) ⎡ − ( 0.2653) Vx ⎤ = − ( 0.735 ) Vx ⎣ ⎦ Vx ⎛ 1 ⎞ Now I x = − Vπ 2 ⎜ g m 2 + ⎟ 0.05 ⎜ 0.5 rπ 2 ⎟ ⎝ ⎠ Vx ⎡ 1 ⎤ Vx So that I x = + ( 0.735 ) Vx ⎢ 2688 + ⎥ which yields Ro = = 0.496 Ω 0.05 ⎢ ⎣ 0.5 0.0372 ⎥ ⎦ Ix 6.67 a. RTH = R1 R2 = 335 125 = 91.0 kΩ ⎛ R2 ⎞ VTH = ⎜ ⎟ VCC ⎝ R1 + R2 ⎠ ⎛ 125 ⎞ =⎜ ⎟ (10 ) = 2.717 V ⎝ 125 + 335 ⎠ VTH = I B1 RTH + VBE1 + VBE 2 + I E 2 RE 2 I E 2 = (1 + β ) I E1 = (1 + β ) I B1 2 2.717 − 1.40 I B1 = ⇒ I B1 = 0.128 μΑ 91.0 + (101) (1) 2 I C1 = 12.8 μΑ I C 2 = β I E1 = β (1 + β ) I B1 = (100 )(101)( 0.128 μΑ ) I C 2 = 1.29 mΑ, I E 2 = 1.31 mΑ I RC = I C 2 + I C1 = 1.29 + 0.0128 = 1.30 mΑ
  • 51. VC = 10 − I RC RC = 10 − (1.30 )( 2.2 ) = 7.14 V VE = I E 2 RE 2 = (1.30 )(1) = 1.30 V VCE 2 = 7.14 − 1.30 = 5.84 V VCE1 = VCE 2 − VBE 2 = 5.84 − 0.7 VCE1 = 5.14 V Summary: I C1 = 12.8 μΑ I C 2 = 1.29 mΑ VCE1 = 5.14 V VCE 2 = 5.84 V b. 0.0128 g m1 = = 0.492 mΑ / V 0.026 1.292 gm2 = = 49.7 mΑ / V 0.026 Rib V0 ϩ Ib V␲1 r␲1 gm1V␲1 ϩ Ϫ VS ϩ RC Ϫ gm2V␲2 R1͉͉ R2 V␲2 r␲2 Ϫ V0 = − ( g m1Vπ 1 + g m 2Vπ 2 ) RC VS = Vπ 1 + Vπ 2 , Vπ 1 = VS − Vπ 2 ⎛V ⎞ Vπ 2 = ⎜ π 1 + g m1Vπ 1 ⎟ rπ 2 ⎝ rπ 1 ⎠ ⎛1+ β ⎞ Vπ 2 = Vπ 1 ⎜ ⎟ rπ 2 ⎝ rπ 1 ⎠ V0 = − ⎡ g m1 (VS − Vπ 2 ) + g m 2Vπ 2 ⎤ RC ⎣ ⎦ V0 = − ⎡ g m1VS + ( g m 2 − g m1 ) Vπ 2 ⎤ RC ⎣ ⎦ ⎛r ⎞ Vπ 2 = (VS − Vπ 2 )(1 + β ) ⎜ π 2 ⎟ ⎝ rπ 1 ⎠ ⎡ ⎛ r ⎞⎤ ⎛r ⎞ Vπ 2 ⎢1 + (1 + β ) ⎜ π 2 ⎟ ⎥ = VS (1 + β ) ⎜ π 2 ⎟ ⎣ ⎝ rπ 1 ⎠ ⎦ ⎝ rπ 1 ⎠
  • 52. ⎛r ⎞⎫ ⎪ VS (1 + β ) ⎜ π 2 ⎟ ⎪ ⎪ V0 = − ⎨ g m1VS + ( g m 2 − g m1 ) ⋅ ⎝ rπ 1 ⎠ ⎪ R ⎬ C ⎪ ⎛r ⎞ 1 + (1 + β ) ⎜ π 2 ⎟ ⎪ ⎪ ⎝ rπ 1 ⎠ ⎪ ⎩ ⎭ V0 Av = VS ⎧ 2.01 ⎞ ⎫ ⎪ ( 49.7 − 0.492 )(101) ⎛ ⎜ ⎟⎪ ⎪ ⎝ 203 ⎠ ⎪ 2.2 = − ⎨( 0.492 ) + ⎬ ⎪ ⎛ 2.01 ⎞ ⎪ 1 + (101) ⎜ ⎟ ⎪ ⎩ ⎝ 203 ⎠ ⎪ ⎭ Av = −55.2 c. Ris = R1 R2 Rib Rib = rπ 1 + (1 + β ) rπ 2 = 203 + (101)( 2.01) = 406 kΩ Ris = 91 406 = 74.3 kΩ = Ris R0 = RC = 2.2 kΩ 6.68 R0 Ix ϩ ϩ Vx V␲1 r␲1 ro1 Ϫ gm1V␲1 Ϫ VA ϩ V␲2 r␲2 ro2 gm2V␲2 Ϫ Vx Vx − VA (1) I x = g m 2Vπ 2 + + + g m1Vπ 1 ro 2 ro1 Vx − VA VA (2) + g m1Vπ 1 = ro1 rπ 1 rπ 2 (3) Vπ 2 = VA = −Vπ 1 Then from (2) Vx ⎛ 1 1 ⎞ = VA ⎜ + g m1 + ⎟ ro1 ⎜r rπ 1 rπ 2 ⎟ ⎝ o1 ⎠ Vx Vx VA ⎛ 1 1 ⎞ ⎛ 1 ⎞ (1) I x = g m 2VA + + − − g m1VA or I x = Vx ⎜ + ⎟ + VA ⎜ g m 2 − − g m1 ⎟ ro 2 ro1 ro1 ⎝ ro1 ro 2 ⎠ ⎝ ro1 ⎠ Solving for VA from Equation (2) and substituting into Equation (1), we find
  • 53. 1 1 + g m1 + V ro1 rπ 1 rπ 2 Ro = x = Ix 1 ⎛ 1 1 ⎞ 1 ⎛ 1 ⎞ ⎜ + g m1 + ⎟+ ⎜ + gm2 ⎟ ro 2 ⎝ ro1 rπ 1 rπ 2 ⎠ ro1 ⎝ rπ 1 rπ 2 ⎠ For β = 100, VA = 100 V , I C1 = I Bias = 1 mA 100 ro1 = ro 2 = = 100 k Ω 1 (100 )( 0.026 ) rπ 1 = rπ 2 = = 2.6 k Ω 1 1 g m1 = g m 2 = = 38.46 mA/V 0.026 1 1 + 38.46 + 100 2.6 2.6 Then Ro = 1 ⎛ 1 1 ⎞ 1 ⎛ 1 ⎞ ⎜ + 38.46 + ⎟+ ⎜ + 38.46 ⎟ 100 ⎜ 100 ⎝ 2.6 2.6 ⎟ 100 ⎜ 2.6 2.6 ⎠ ⎝ ⎟ ⎠ or Ro = 50.0 k Ω Now I C 2 = 1 mA, I Bias = 0 IC 2 β I Replace I Bias by ⋅ = C 2 , I C1 ≅ 0.01 mA β 1+ β 1+ β 100 100 ro 2 = = 100 k Ω, ro1 = = 10, 000 k Ω 1 0.01 1 gm2 = = 38.46 mA/V , g m1 = 0.3846 mA/V 0.026 (100 )( 0.026 ) rπ 2 = = 2.6 k Ω, rπ 1 = 260 k Ω 1 Then Ro = 66.4 k Ω 6.69 a. RTH = R1 R2 = 93.7 6.3 = 5.90 k Ω ⎛ R2 ⎞ VTH = ⎜ ⎟ VCC ⎝ R1 + R2 ⎠ ⎛ 6.3 ⎞ =⎜ ⎟ (12 ) = 0.756 V ⎝ 6.3 + 93.7 ⎠ 0.756 − 0.70 I BQ = = 0.00949 mA 5.90 I CQ = 0.949 mA VCEQ = 12 − ( 0.949 )( 6 ) ⇒ VCEQ = 6.305 V Transistor: PQ ≈ I CQVCEQ = ( 0.949 )( 6.305 ) ⇒ PQ = 5.98 mW RC : PR = I CQ RC = ( 0.949 ) ( 6 ) ⇒ PR = 5.40 mW 2 2 b.
  • 54. 2 AC load line Ϫ1 Slope ϭ 6͉͉105 Ϫ1 ϭ 0.949 5.68 K 6.31 12 100 r0 = = 105 kΩ 0.949 Peak signal current = 0.949 mA V0 ( max ) = ( 5.68 )( 0.949 ) = 5.39 V 1 V0 ( max ) 1 ⎡ ( 5.39 ) ⎤ 2 2 PRC = ⋅ = ⎢ ⎥ ⇒ PRC = 2.42 mW 2 RC 2⎢ 6 ⎥ ⎣ ⎦ 6.70 (a) 10 = I BQ RB + VBE ( on ) + (1 + β ) I BQ RE 10 − 0.7 I BQ = = 0.00369 mA 100 + (121)( 20 ) I CQ = 0.443 mA, I EQ = 0.447 mA For RC : PRC = ( 0.443) (10 ) ⇒ PRC = 1.96 mW 2 For RE : PRE = ( 0.447 ) ( 20 ) ⇒ PRE = 4.0 mW 2 (b) ΔiC = 0.667 − 0.443 = 0.224 mA 1 1 ( ΔiC ) RC = ( 0.224 ) (10 ) 2 2 Then P RC = 2 2 P RC = 0.251 mW 6.71 a. 10 − 0.7 I BQ = = 0.00596 mA 50 + (151)(10 ) I CQ = 0.894 mA, I EQ = 0.90 mA VECQ = 20 − ( 0.894 )( 5 ) − ( 0.90 )(10 ) ⇒ VECQ = 6.53 V PQ ≅ I CQVECQ = ( 0.894 )( 6.53) ⇒ PQ = 5.84 mW PRC ≅ I CQ RC = ( 0.894 ) ( 5 ) ⇒ PRC = 4.0 mW 2 2 PRE ≅ I EQ RE = ( 0.90 ) (10 ) ⇒ PRE = 8.1 mW 2 2 b.
  • 55. AC load line Ϫ1 Slope ϭ 5͉͉2 Ϫ1 ϭ 0.894 1.43 K 6.53 20 −1 ΔiC = ⋅ Δvec 1.43 kΩ ΔiC = 0.894 ⇒ Δvec = ( 0.894 )(1.43) = 1.28 V ⎛ 5 ⎞ Δi0 = ⎜ ⎟ ΔiC = 0.639 mA ⎝5+2⎠ 1 PRL = ( 0.639 ) ( 2 ) ⇒ PRL = 0.408 mW 2 2 1 PRC = ⋅ ( 0.894 − 0.639 ) ( 5 ) ⇒ PRC = 0.163 mW 2 2 PRE = 0 PQ = 5.84 − 0.408 − 0.163 ⇒ PQ = 5.27 mW 6.72 10 − 0.70 I BQ = = 0.00838 mA 100 + (101)(10 ) I CQ = 0.838 mA, I EQ = 0.846 mA VCEQ = 20 − ( 0.838 )(10 ) − ( 0.846 )(10 ) ⇒ VCEQ = 3.16 V AC load line Ϫ1 Slope ϭ RE ͉͉RL͉͉r0 0.838 3.16 20 100 r0 = = 119 kΩ 0.838 Neglecting base currents: a. RL = 1 kΩ −1 −1 slope = = 10 1 119 0.902 kΩ −1 ΔiC = ⋅ ΔVce 0.902 kΩ ΔiC = 0.838 ⇒ ΔVce = ( 0.902 )( 0.838 ) = 0.756 V 1 ( 0.756 ) 2 PRL = ⇒ PRL = 0.286 mW 2 1 b.
  • 56. RL = 10 kΩ −1 −1 slope = = 10 10 119 4.80 For ΔiC = 0.838 ⇒ Δvce = ( 0.838 )( 4.80 ) = 4.02 1 ( 3.16 ) 2 Max. swing determined by voltage PRL = ⇒ PRL = 0.499 mW 2 10 6.73 a. 10 − 0.7 I BQ = = 0.00838 mA 100 + (101)(10 ) I CQ = 0.838 mA, I EQ = 0.846 mA VCEQ = 20 − ( 0.838 )(10 ) − ( 0.846 )(10 ) ⇒ VCEQ = 3.16 V PQ ≅ I CQVCEQ = ( 0.838 )( 3.16 ) ⇒ PQ = 2.65 mW PRC ≅ I CQ RC = ( 0.838 ) (10 ) ⇒ PRC = 7.02 mW 2 2 b. AC load line Ϫ1 Slope ϭ RC ͉͉RL Ϫ1 Ϫ1 0.838 ϭ ϭ 10͉͉1 0.909 K 3.16 20 −1 ΔiC = ⋅ Δvce 0.909 kΩ For ΔiC = 0.838 ⇒ Δvce = ( 0.909 )( 0.838 ) = 0.762 V ⎛ RC ⎞ ⎛ 10 ⎞ Δi0 = ⎜ ⎟ ΔiC = ⎜ ⎟ ΔiC = 0.762 mA ⎝ RC + RL ⎠ ⎝ 10 + 1 ⎠ 1 PRL = ( 0.762 ) (1) ⇒ PRL = 0.290 mW 2 2 1 PRC = ⋅ ( 0.838 − 0.762 ) (10 ) ⇒ PRC = 0.0289 mW 2 2 PQ = 2.65 − 0.290 − 0.0289 ⇒ PQ = 2.33 mW