SlideShare a Scribd company logo
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-1 
LECTURE 040 - ULTRA-DEEP SUBMICRON AND BiCMOS 
TECHNOLOGIES 
LECTURE ORGANIZATION 
Outline 
• Ultra-deep submicron CMOS technology 
- Features 
- Advantages 
- Problems 
• BiCMOS technology process flow 
- CMOS is typical submicron (0.5 μm) 
• Summary 
CMOS Analog Circuit Design, 2nd Edition Reference 
New material 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-2 
ULTRA-DEEP SUBMICRON (UDSM) CMOS TECHNOLOGY 
USDM Technology 
• Lmin  0.1 microns 
• Minimum feature size less than 100 nanometers 
• Today’s state of the art: 
- 65 nm drawn length 
- 15 nm lateral diffusion (35 nm gate length) 
- 1.2 nm transistor gate oxide 
- 8 layers of copper interconnect 
• Specialized processing is used to increase drive capability and maintain low off 
currents 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-3 
65 Nanometer CMOS Technology 
TEM cross-section of a 35 nm NMOS and PMOS transistors.† 
NMOS: PMOS: 
NMOS 
220 nm pitch 
These transistors utilize enhanced channel strains to increase drive capability and to 
reduce off currents. 
† P. Bai, et. Al., “A 65nm Lobic Technology Featuring 35nm Gate Lengths, Enhanced Channel Strain, 8 Cu Interconnect Layers, Low-k ILD and 0.57 
μm2 SRAM Cell, IEEE Inter. Electron Device Meeting, Dec. 12-15, 2005. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-4 
UDSM Metal and Interconnects 
Physical aspects: 
Layer Pitch 
(nm) 
Thickness 
(nm) 
Aspect 
Ratio 
Isolation 220 230 - 
Polysilicon 220 90 - 
Contacted Gate Pitch 220 - - 
Metal 1 210 170 1.6 
Metal 2 210 190 1.8 
Metal 3 220 200 1.8 
Metal 4 280 250 1.8 
Metal 5 330 300 1.8 
Metal 6 480 430 1.8 
Metal 7 720 650 1.8 
Metal 8 1080 975 1.8 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-5 
What are the Advantages of UDSM CMOS Technology? 
Digital Viewpoint: 
• Improved Ion/Ioff 70 Mbit SRAM chip: 
• Reduced gate capacitance 
• Higher drive current capability 
• Reduced interconnect density 
• Reduction of active power 
Analog Viewpoint: 
• More levels of metal 
• Higher fT 
• Higher capacitance density 
• Reduced junction capacitance per gm 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-6 
What are the Disadvantages of UDSM CMOS Technology (for Analog)? 
• Reduction in power supply resulting in reduced headroom 
• Gate leakage currents 
• Reduced small-signal intrinsic gains 
• Increased nonlinearity (IIP3) 
• Noise and matching?? 
Intrinsic gain and IP3 as a function of the gate overdrive for decreasing VDS:† 
† Anne-Johan Annema, et. Al., “Analog Circuits in Ultra-Deep-Submicron CMOS,” IEEE J. of Solid-State Circuits, Vol. 40, No. 1, Jan. 2005, pp. 132- 
143. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-7 
What is the Gate Leakage Problem? 
Gate current occurs in thin oxide devices due to direct tunneling through the thin oxide. 
Gate current depends on: 
1.) The gate-source voltage (and the drain-gate voltage) 
iGS = K1vGS exp(K2vGS) and iGD = K3vGD exp(K4vGD) 
2.) Gate area – NMOS leakage  6nA/μm2 and PMOS leakage  3nA/μm2 
Unfortunately, the gate leakage current is nonlinear with respect to the gate-source and 
gate-drain voltages. A possible model is: 
f(vGD) 
f(vGS) 
051205-03 
− 
vGD 
+ 
+ 
f(vSG) 
vGS f(vDG) 
− 
+ 
vSG 
− 
− 
vDG 
+ 
NMOS PMOS 
Large Signal Models 
ggd 
ggs 
NMOS 
gsg 
gdg 
PMOS 
Small Signal Models 
Base current cancellation schemes used for BJTs are difficult to apply to the MOSFET. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-8 
Gate Leakage and fgate 
The gate leakage can be represented by a conductance, ggate, in parallel with the 
gate capacitance, Cgate. Since these two elements have identical area dependence, they 
result in a frequency, fgate, that is fairly independent of the drain-source voltage, vds. 
fgate = 
ggate 
2Cgate  
 
1.5·1016vGS 
2etox(vGS-13.6)(NMOS) 
0.5·1016vGS 
2etox(vGS-13.6)(PMOS) 
where tox is in nm and vGS is in V. 
For frequencies above fgate the 
MOSFET looks capacitive and below 
fgate, the MOSFET looks resistive (gate 
leakage). 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-9 
UDSM CMOS Technology Summary 
• Increased transconductance and frequency capability 
• Low power supply voltages 
• Reduced parasitics 
• Gate leakage causes challenges for analog applications of UDSM technology 
- Can no longer use the MOSFET for capacitance 
- Conflict between matching and gate leakage 
• Other issues 
- Noise 
- Zero temperature coefficient behavior 
- Etc. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-10 
BiCMOS TECHNOLOGY 
Typical 0.5μm BiCMOS Technology 
Masking Sequence: 
1. Buried n+ layer 9. Base oxide/implant 17. Contacts 
2. Buried p+ layer 10. Emitter implant 18. Metal 1 
3. Collector tub 11. Poly 1 19. Via 1 
4. Active area 12. NMOS lightly doped drain 20. Metal 2 
5. Collector sinker 13. PMOS lightly doped drain 21. Via 2 
6. n-well 14. n+ source/drain 22. Metal 3 
7. p-well 15. p+ source/drain 23. Nitride passivation 
8. Emitter window 16. Silicide protection 
Notation used in the following slides: 
BSPG = Boron and Phosphorus doped Silicate Glass (oxide) 
Kooi Nitride = A thin layer of silicon nitride on the silicon surface as a result of the 
reaction of silicon with the HN3 generated, during the field oxidation. 
TEOS = Tetro-Ethyl-Ortho-Silicate. A chemical compound used to deposit conformal 
oxide films. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-11 
n+ and p+ Buried Layers 
Starting Substrate: 
p-substrate 1μm 
BiCMOS-01 5μm 
n+ and p+ Buried Layers: 
NPN Transistor PMOS Transistor NMOS Transistor 
n+ buried layer p+ buried layer 
p-substrate 
n+ buried layer p+ buried 
layer 
1μm 
5μm 
BiCMOS-02 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-12 
Epitaxial Growth 
NPN Transistor PMOS Transistor NMOS Transistor 
p-well n-well p-well 
n+ buried layer 
p-substrate 
n-well 
n+ buried layer p+ buried 
layer 
p+ buried layer 
p-type 
Epitaxial 
Silicon 
1μm 
5μm 
BiCMOS-03 
Comment: 
• As the epi layer grows vertically, it assumes the doping level of the substrate beneath 
it. 
• In addition, the high temperature of the epitaxial process causes the buried layers to 
diffuse upward and downward. 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-13 
Collector Tub 
NPN Transistor PMOS Transistor NMOS Transistor 
n-well 
p-well 
n+ buried layer p+ buried layer 
p-substrate 
p-well 
Original Area of 
CollectorTub Implant 
Collector Tub 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
5μm 
BiCMOS-04 
Comment: 
• The collector area is developed by an initial implant followed by a drive-in diffusion to 
form the collector tub. 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-14 
Active Area Definition 
NPN Transistor PMOS Transistor NMOS Transistor 
n-well 
p-well 
n+ buried layer p+ buried layer 
p-substrate 
p-well 
Collector Tub 
n+ buried layer p+ buried 
layer 
Nitride 
α-Silicon 
p-type 
Epitaxial 
Silicon 
1μm 
5μm 
BiCMOS-05 
Comment: 
• The silicon nitride is use to impede the growth of the thick oxide which allows contact 
to the substrate 
• -silicon is used for stress relief and to minimize the bird’s beak encroachment 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-15 
Field Oxide 
NPN Transistor PMOS Transistor NMOS Transistor 
FOX Field Oxide Field Oxide 
Field Oxide 
n-well 
p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
p-well 
Collector Tub 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
5μm 
BiCMOS-06 
Comments: 
• The field oxide is used to isolate surface structures (i.e. metal) from the substrate 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-16 
Collector Sink and n-Well and p-Well Definitions 
NPN Transistor PMOS Transistor NMOS Transistor 
Threshold Adjust 
Anti-Punch Through 
FOX Field Oxide 
Field Oxide 
Collector Sink Anti-Punch Through 
Field Oxide 
Threshold Adjust 
n-well 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
Collector Tub 
FOX 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
5μm 
BiCMOS-07 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-17 
Base Definition 
NPN Transistor PMOS Transistor NMOS Transistor 
FOX Field Oxide Field Oxide 
Field Oxide 
n-well 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
Collector Tub 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
5μm 
BiCMOS-08 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-18 
Definition of the Emitter Window and Sub-Collector Implant 
NPN Transistor PMOS Transistor NMOS Transistor 
FOX Field Oxide 
Field Oxide 
n-well 
Field Oxide 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
Sacrifical Oxide 
Sub-Collector 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
5μm 
BiCMOS-09 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-19 
Emitter Implant 
PMOS Transistor NMOS Transistor 
FOX Field Oxide 
Field Oxide 
n-well 
Field Oxide 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
NPN Transistor 
Emitter Implant 
Collector Tub 
FOX 
Sub-Collector 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
5μm 
BiCMOS-10 
Comments: 
• The polysilicon above the base is implanted with n-type carriers 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-20 
Emitter Diffusion 
NPN Transistor PMOS Transistor NMOS Transistor 
FOX Field Oxide 
Field Oxide 
n-well 
Field Oxide 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
Emitter 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
5μm 
BiCMOS-11 
Comments: 
• The polysilicon not over the emitter window is removed and the n-type carriers diffuse 
toward the base forming the emitter 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-21 
Formation of the MOS Gates and LD Drains/Sources 
NPN Transistor PMOS Transistor NMOS Transistor 
FOX Field Oxide Field Oxide 
Field Oxide 
n-well 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
5μm 
BiCMOS-12 
Comments: 
• The surface of the region where the MOSFETs are to be built is cleared and a thin gate 
oxide is deposited with a polysilicon layer on top of the thin oxide 
• The polysilicon is removed over the source and drain areas 
• A light source/drain diffusion is done for the NMOS and PMOS (separately) 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-22 
Heavily Doped Source/Drain 
NPN Transistor PMOS Transistor NMOS Transistor 
FOX Field Oxide Field Oxide 
Field Oxide 
n-well 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
5μm 
BiCMOS-13 
Comments: 
• The sidewall spacers prevent the heavy source/drain doping from being near the 
channel of the MOSFET 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-23 
Siliciding 
NPN Transistor PMOS Transistor NMOS Transistor 
Silicide TiSi2 Silicide TiSi2 Silicide TiSi2 
FOX Field Oxide 
Field Oxide 
n-well 
Field Oxide 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
5μm 
BiCMOS-14 
Comments: 
• Siliciding is used to reduce the resistance of the polysilicon and to provide ohmic 
contacts to the base, emitter, collector, sources and drains 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-24 
Contacts 
Tungsten Plugs Tungsten Plugs Tungsten Plugs 
TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG 
Field Oxide Field Oxide Field Field Oxide 
Oxide 
n-well 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
FOX 
BiCMOS-15 5μm 
Comments: 
• A dielectric is deposited over the entire wafer 
• One of the purposes of the dielectric is to smooth out the surface 
• Tungsten plugs are used to make electrical contact between the transistors and metal1 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-25 
Metal1 
Metal1 Metal1 Metal1 
TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG 
Field Oxide Field Oxide Field Field Oxide 
Oxide 
n-well 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
FOX 
BiCMOS-16 5μm 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-26 
Metal1-Metal2 Vias 
Tungsten Plugs Oxide/ 
SOG/ 
Oxide 
TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG 
Field Oxide Field Oxide Field Field Oxide 
Oxide 
n-well 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
FOX 
BiCMOS-17 5μm 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-27 
Metal2 
Metal 2 
Oxide/ 
SOG/ 
Oxide 
TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG 
Field Oxide Field Oxide Field Field Oxide 
Oxide 
n-well 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
FOX 
BiCMOS-18 5μm 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-28 
Metal2-Metal3 Vias 
TEOS/ 
BPSG/ 
SOG 
Oxide/ 
SOG/ 
Oxide 
TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG 
Field Oxide Field Oxide Field Field Oxide 
Oxide 
n-well 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
FOX 
BiCMOS-19 5μm 
Comments: 
• The metal2-metal3 vias will be filled with metal3 as opposed to tungsten plugs 
CMOS Analog Circuit Design © P.E. Allen - 2010
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-29 
Completed Wafer 
Nitride (Hermetically seals the wafer) 
Metal3 
TEOS/ 
BPSG/ 
SOG 
Oxide/ 
SOG/ 
Oxide 
Oxide/SOG/Oxide 
Metal3 
Vias 
TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG 
Field Oxide Field Oxide Field Field Oxide 
Oxide 
n-well 
p-well p-well 
n+ buried layer p+ buried layer 
p-substrate 
FOX 
n+ buried layer p+ buried 
layer 
p-type 
Epitaxial 
Silicon 
1μm 
FOX 
BiCMOS-20 5μm 
CMOS Analog Circuit Design © P.E. Allen - 2010 
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-30 
SUMMARY 
• UDSM technology typically has a minimum channel length less than 0.1μm 
• UDSM transistors utilize enhanced channel strains to increase drive capability and 
reduce off currents 
• Advantages of UDSM technology include: 
- Smaller devices 
- Higher speeds and transconductances 
- Improved Ion/Ioff 
• Disadvantages of UDSM technology include: 
- Gate leakage currents 
- Reduced small signal gains 
- Increased nonlinearity 
• BiCMOS technology 
- Offers both CMOS transistors and a high performance vertical BJT 
- CMOS is typically a generation behind 
- Silicon germanium can be used to enhance the BJT performance 
CMOS Analog Circuit Design © P.E. Allen - 2010

More Related Content

PDF
S3 s short course intro soi apps (1)
PDF
CMOS SOI Technology
PPTX
Ultra-thin body SOI MOSFETs: Term Paper_class presentation on Advanced topics...
PPT
Fin Fet Technology by SAMRA
PPTX
Ultra Thin Body SOI FETs
PPT
Soi aalam
PPTX
Silicon on Insulator (SOI) Technology
S3 s short course intro soi apps (1)
CMOS SOI Technology
Ultra-thin body SOI MOSFETs: Term Paper_class presentation on Advanced topics...
Fin Fet Technology by SAMRA
Ultra Thin Body SOI FETs
Soi aalam
Silicon on Insulator (SOI) Technology

What's hot (20)

PDF
Analog Mixed-Signal Design in FinFET Processes
PPTX
Ic tech unit 5- VLSI Process Integration
PDF
CMP CW CIEL Aluminium Cable Glands - CMP Cable Glands with Cast Integral Eart...
PPTX
Athens Standard & Technical
PDF
High-k für Alle - Beyond DRAM capacitors and HKMG
PPT
Vlsi 2
PDF
CMP Zen A324 Insulated Aluminium Cable Glands with Cast Integral Earth Lug (S...
PDF
HIGH-K DEVICES BY ALD FOR SEMICONDUCTOR APPLICATIONS
PDF
Emc design and interconnection techniques
PPT
Semiconductor overview
PDF
On cmos fabrication
PPTX
Finfet
PDF
W06 Design and function of a functional earth system in copper-based networks
PPTX
FD-SOI Harnessing the Power - DAC 2016 Austin Presentation
PPTX
THE CMOS VLSI DESIGN
PPTX
22nm tri-gate technology
PPTX
Potential of an ALD compatible ferroelectric
PDF
Timothy j cash_mini_career_portfolio
PPTX
Milan Futurology V1.1
PDF
Ehud tzuri 3 d challanges new
Analog Mixed-Signal Design in FinFET Processes
Ic tech unit 5- VLSI Process Integration
CMP CW CIEL Aluminium Cable Glands - CMP Cable Glands with Cast Integral Eart...
Athens Standard & Technical
High-k für Alle - Beyond DRAM capacitors and HKMG
Vlsi 2
CMP Zen A324 Insulated Aluminium Cable Glands with Cast Integral Earth Lug (S...
HIGH-K DEVICES BY ALD FOR SEMICONDUCTOR APPLICATIONS
Emc design and interconnection techniques
Semiconductor overview
On cmos fabrication
Finfet
W06 Design and function of a functional earth system in copper-based networks
FD-SOI Harnessing the Power - DAC 2016 Austin Presentation
THE CMOS VLSI DESIGN
22nm tri-gate technology
Potential of an ALD compatible ferroelectric
Timothy j cash_mini_career_portfolio
Milan Futurology V1.1
Ehud tzuri 3 d challanges new
Ad

Similar to Lect2 up040 (100324) (20)

PDF
Lect2 up030 (100324)
PDF
Lect2 up020 (100324)
PPTX
My VLSI.pptx
PDF
vlsi12312313123123123123123123123123123123.pdf
PPTX
Bicmos Technology - Overview
PDF
Very Large Scale Integration-UNIT-I-RECW.pdf
PPT
VLSI-mosfet-construction engineering ECE
PDF
L1 print
PDF
VLSI D PPT.pdf
PPTX
MOSFET, SOI-FET and FIN-FET-ABU SYED KUET
PPT
CMOS VLSI design
PDF
solid state electronics ktu module 5 slides
PDF
FUNDAMENTALS_of_CMOS_VLSI_5th_SEM_ECE.pdf
PDF
Lect2 up050 (100430)
PPTX
VLSI DESIGN BASICS TRANSISTOR THEORY AND MOS TRANSISTOR.pptx
DOCX
Pvc cmos finale
PDF
Vlsi design notes(1st unit) according to vtu syllabus.(BE)
PPT
EC6601 VLSI Design CMOS Fabrication
PPT
Vlsi Lecture02
PPTX
Rosh ppt
Lect2 up030 (100324)
Lect2 up020 (100324)
My VLSI.pptx
vlsi12312313123123123123123123123123123123.pdf
Bicmos Technology - Overview
Very Large Scale Integration-UNIT-I-RECW.pdf
VLSI-mosfet-construction engineering ECE
L1 print
VLSI D PPT.pdf
MOSFET, SOI-FET and FIN-FET-ABU SYED KUET
CMOS VLSI design
solid state electronics ktu module 5 slides
FUNDAMENTALS_of_CMOS_VLSI_5th_SEM_ECE.pdf
Lect2 up050 (100430)
VLSI DESIGN BASICS TRANSISTOR THEORY AND MOS TRANSISTOR.pptx
Pvc cmos finale
Vlsi design notes(1st unit) according to vtu syllabus.(BE)
EC6601 VLSI Design CMOS Fabrication
Vlsi Lecture02
Rosh ppt
Ad

More from aicdesign (20)

PDF
Lect2 up400 (100329)
PDF
Lect2 up390 (100329)
PDF
Lect2 up380 (100329)
PDF
Lect2 up370 (100329)
PDF
Lect2 up360 (100329)
PDF
Lect2 up350 (100328)
PDF
Lect2 up340 (100501)
PDF
Lect2 up330 (100328)
PDF
Lect2 up320 (100328)
PDF
Lect2 up310 (100328)
PDF
Lect2 up300 (100328)
PDF
Lect2 up290 (100328)
PDF
Lect2 up280 (100328)
PDF
Lect2 up270 (100328)
PDF
Lect2 up260 (100328)
PDF
Lect2 up250 (100328)
PDF
Lect2 up240 (100328)
PDF
Lect2 up230 (100327)
PDF
Lect2 up220 (100327)
PDF
Lect2 up210 (100327)
Lect2 up400 (100329)
Lect2 up390 (100329)
Lect2 up380 (100329)
Lect2 up370 (100329)
Lect2 up360 (100329)
Lect2 up350 (100328)
Lect2 up340 (100501)
Lect2 up330 (100328)
Lect2 up320 (100328)
Lect2 up310 (100328)
Lect2 up300 (100328)
Lect2 up290 (100328)
Lect2 up280 (100328)
Lect2 up270 (100328)
Lect2 up260 (100328)
Lect2 up250 (100328)
Lect2 up240 (100328)
Lect2 up230 (100327)
Lect2 up220 (100327)
Lect2 up210 (100327)

Lect2 up040 (100324)

  • 1. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-1 LECTURE 040 - ULTRA-DEEP SUBMICRON AND BiCMOS TECHNOLOGIES LECTURE ORGANIZATION Outline • Ultra-deep submicron CMOS technology - Features - Advantages - Problems • BiCMOS technology process flow - CMOS is typical submicron (0.5 μm) • Summary CMOS Analog Circuit Design, 2nd Edition Reference New material CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-2 ULTRA-DEEP SUBMICRON (UDSM) CMOS TECHNOLOGY USDM Technology • Lmin 0.1 microns • Minimum feature size less than 100 nanometers • Today’s state of the art: - 65 nm drawn length - 15 nm lateral diffusion (35 nm gate length) - 1.2 nm transistor gate oxide - 8 layers of copper interconnect • Specialized processing is used to increase drive capability and maintain low off currents CMOS Analog Circuit Design © P.E. Allen - 2010
  • 2. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-3 65 Nanometer CMOS Technology TEM cross-section of a 35 nm NMOS and PMOS transistors.† NMOS: PMOS: NMOS 220 nm pitch These transistors utilize enhanced channel strains to increase drive capability and to reduce off currents. † P. Bai, et. Al., “A 65nm Lobic Technology Featuring 35nm Gate Lengths, Enhanced Channel Strain, 8 Cu Interconnect Layers, Low-k ILD and 0.57 μm2 SRAM Cell, IEEE Inter. Electron Device Meeting, Dec. 12-15, 2005. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-4 UDSM Metal and Interconnects Physical aspects: Layer Pitch (nm) Thickness (nm) Aspect Ratio Isolation 220 230 - Polysilicon 220 90 - Contacted Gate Pitch 220 - - Metal 1 210 170 1.6 Metal 2 210 190 1.8 Metal 3 220 200 1.8 Metal 4 280 250 1.8 Metal 5 330 300 1.8 Metal 6 480 430 1.8 Metal 7 720 650 1.8 Metal 8 1080 975 1.8 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 3. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-5 What are the Advantages of UDSM CMOS Technology? Digital Viewpoint: • Improved Ion/Ioff 70 Mbit SRAM chip: • Reduced gate capacitance • Higher drive current capability • Reduced interconnect density • Reduction of active power Analog Viewpoint: • More levels of metal • Higher fT • Higher capacitance density • Reduced junction capacitance per gm CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-6 What are the Disadvantages of UDSM CMOS Technology (for Analog)? • Reduction in power supply resulting in reduced headroom • Gate leakage currents • Reduced small-signal intrinsic gains • Increased nonlinearity (IIP3) • Noise and matching?? Intrinsic gain and IP3 as a function of the gate overdrive for decreasing VDS:† † Anne-Johan Annema, et. Al., “Analog Circuits in Ultra-Deep-Submicron CMOS,” IEEE J. of Solid-State Circuits, Vol. 40, No. 1, Jan. 2005, pp. 132- 143. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 4. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-7 What is the Gate Leakage Problem? Gate current occurs in thin oxide devices due to direct tunneling through the thin oxide. Gate current depends on: 1.) The gate-source voltage (and the drain-gate voltage) iGS = K1vGS exp(K2vGS) and iGD = K3vGD exp(K4vGD) 2.) Gate area – NMOS leakage 6nA/μm2 and PMOS leakage 3nA/μm2 Unfortunately, the gate leakage current is nonlinear with respect to the gate-source and gate-drain voltages. A possible model is: f(vGD) f(vGS) 051205-03 − vGD + + f(vSG) vGS f(vDG) − + vSG − − vDG + NMOS PMOS Large Signal Models ggd ggs NMOS gsg gdg PMOS Small Signal Models Base current cancellation schemes used for BJTs are difficult to apply to the MOSFET. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-8 Gate Leakage and fgate The gate leakage can be represented by a conductance, ggate, in parallel with the gate capacitance, Cgate. Since these two elements have identical area dependence, they result in a frequency, fgate, that is fairly independent of the drain-source voltage, vds. fgate = ggate 2Cgate 1.5·1016vGS 2etox(vGS-13.6)(NMOS) 0.5·1016vGS 2etox(vGS-13.6)(PMOS) where tox is in nm and vGS is in V. For frequencies above fgate the MOSFET looks capacitive and below fgate, the MOSFET looks resistive (gate leakage). CMOS Analog Circuit Design © P.E. Allen - 2010
  • 5. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-9 UDSM CMOS Technology Summary • Increased transconductance and frequency capability • Low power supply voltages • Reduced parasitics • Gate leakage causes challenges for analog applications of UDSM technology - Can no longer use the MOSFET for capacitance - Conflict between matching and gate leakage • Other issues - Noise - Zero temperature coefficient behavior - Etc. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-10 BiCMOS TECHNOLOGY Typical 0.5μm BiCMOS Technology Masking Sequence: 1. Buried n+ layer 9. Base oxide/implant 17. Contacts 2. Buried p+ layer 10. Emitter implant 18. Metal 1 3. Collector tub 11. Poly 1 19. Via 1 4. Active area 12. NMOS lightly doped drain 20. Metal 2 5. Collector sinker 13. PMOS lightly doped drain 21. Via 2 6. n-well 14. n+ source/drain 22. Metal 3 7. p-well 15. p+ source/drain 23. Nitride passivation 8. Emitter window 16. Silicide protection Notation used in the following slides: BSPG = Boron and Phosphorus doped Silicate Glass (oxide) Kooi Nitride = A thin layer of silicon nitride on the silicon surface as a result of the reaction of silicon with the HN3 generated, during the field oxidation. TEOS = Tetro-Ethyl-Ortho-Silicate. A chemical compound used to deposit conformal oxide films. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 6. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-11 n+ and p+ Buried Layers Starting Substrate: p-substrate 1μm BiCMOS-01 5μm n+ and p+ Buried Layers: NPN Transistor PMOS Transistor NMOS Transistor n+ buried layer p+ buried layer p-substrate n+ buried layer p+ buried layer 1μm 5μm BiCMOS-02 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-12 Epitaxial Growth NPN Transistor PMOS Transistor NMOS Transistor p-well n-well p-well n+ buried layer p-substrate n-well n+ buried layer p+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm 5μm BiCMOS-03 Comment: • As the epi layer grows vertically, it assumes the doping level of the substrate beneath it. • In addition, the high temperature of the epitaxial process causes the buried layers to diffuse upward and downward. CMOS Analog Circuit Design © P.E. Allen - 2010
  • 7. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-13 Collector Tub NPN Transistor PMOS Transistor NMOS Transistor n-well p-well n+ buried layer p+ buried layer p-substrate p-well Original Area of CollectorTub Implant Collector Tub n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm 5μm BiCMOS-04 Comment: • The collector area is developed by an initial implant followed by a drive-in diffusion to form the collector tub. CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-14 Active Area Definition NPN Transistor PMOS Transistor NMOS Transistor n-well p-well n+ buried layer p+ buried layer p-substrate p-well Collector Tub n+ buried layer p+ buried layer Nitride α-Silicon p-type Epitaxial Silicon 1μm 5μm BiCMOS-05 Comment: • The silicon nitride is use to impede the growth of the thick oxide which allows contact to the substrate • -silicon is used for stress relief and to minimize the bird’s beak encroachment CMOS Analog Circuit Design © P.E. Allen - 2010
  • 8. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-15 Field Oxide NPN Transistor PMOS Transistor NMOS Transistor FOX Field Oxide Field Oxide Field Oxide n-well p-well n+ buried layer p+ buried layer p-substrate FOX p-well Collector Tub n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm 5μm BiCMOS-06 Comments: • The field oxide is used to isolate surface structures (i.e. metal) from the substrate CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-16 Collector Sink and n-Well and p-Well Definitions NPN Transistor PMOS Transistor NMOS Transistor Threshold Adjust Anti-Punch Through FOX Field Oxide Field Oxide Collector Sink Anti-Punch Through Field Oxide Threshold Adjust n-well p-well p-well n+ buried layer p+ buried layer p-substrate Collector Tub FOX n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm 5μm BiCMOS-07 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 9. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-17 Base Definition NPN Transistor PMOS Transistor NMOS Transistor FOX Field Oxide Field Oxide Field Oxide n-well p-well p-well n+ buried layer p+ buried layer p-substrate FOX Collector Tub n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm 5μm BiCMOS-08 CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-18 Definition of the Emitter Window and Sub-Collector Implant NPN Transistor PMOS Transistor NMOS Transistor FOX Field Oxide Field Oxide n-well Field Oxide p-well p-well n+ buried layer p+ buried layer p-substrate FOX Sacrifical Oxide Sub-Collector n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm 5μm BiCMOS-09 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 10. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-19 Emitter Implant PMOS Transistor NMOS Transistor FOX Field Oxide Field Oxide n-well Field Oxide p-well p-well n+ buried layer p+ buried layer p-substrate NPN Transistor Emitter Implant Collector Tub FOX Sub-Collector n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm 5μm BiCMOS-10 Comments: • The polysilicon above the base is implanted with n-type carriers CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-20 Emitter Diffusion NPN Transistor PMOS Transistor NMOS Transistor FOX Field Oxide Field Oxide n-well Field Oxide p-well p-well n+ buried layer p+ buried layer p-substrate FOX Emitter n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm 5μm BiCMOS-11 Comments: • The polysilicon not over the emitter window is removed and the n-type carriers diffuse toward the base forming the emitter CMOS Analog Circuit Design © P.E. Allen - 2010
  • 11. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-21 Formation of the MOS Gates and LD Drains/Sources NPN Transistor PMOS Transistor NMOS Transistor FOX Field Oxide Field Oxide Field Oxide n-well p-well p-well n+ buried layer p+ buried layer p-substrate FOX n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm 5μm BiCMOS-12 Comments: • The surface of the region where the MOSFETs are to be built is cleared and a thin gate oxide is deposited with a polysilicon layer on top of the thin oxide • The polysilicon is removed over the source and drain areas • A light source/drain diffusion is done for the NMOS and PMOS (separately) CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-22 Heavily Doped Source/Drain NPN Transistor PMOS Transistor NMOS Transistor FOX Field Oxide Field Oxide Field Oxide n-well p-well p-well n+ buried layer p+ buried layer p-substrate FOX n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm 5μm BiCMOS-13 Comments: • The sidewall spacers prevent the heavy source/drain doping from being near the channel of the MOSFET CMOS Analog Circuit Design © P.E. Allen - 2010
  • 12. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-23 Siliciding NPN Transistor PMOS Transistor NMOS Transistor Silicide TiSi2 Silicide TiSi2 Silicide TiSi2 FOX Field Oxide Field Oxide n-well Field Oxide p-well p-well n+ buried layer p+ buried layer p-substrate FOX n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm 5μm BiCMOS-14 Comments: • Siliciding is used to reduce the resistance of the polysilicon and to provide ohmic contacts to the base, emitter, collector, sources and drains CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-24 Contacts Tungsten Plugs Tungsten Plugs Tungsten Plugs TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG Field Oxide Field Oxide Field Field Oxide Oxide n-well p-well p-well n+ buried layer p+ buried layer p-substrate FOX n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm FOX BiCMOS-15 5μm Comments: • A dielectric is deposited over the entire wafer • One of the purposes of the dielectric is to smooth out the surface • Tungsten plugs are used to make electrical contact between the transistors and metal1 CMOS Analog Circuit Design © P.E. Allen - 2010
  • 13. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-25 Metal1 Metal1 Metal1 Metal1 TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG Field Oxide Field Oxide Field Field Oxide Oxide n-well p-well p-well n+ buried layer p+ buried layer p-substrate FOX n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm FOX BiCMOS-16 5μm CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-26 Metal1-Metal2 Vias Tungsten Plugs Oxide/ SOG/ Oxide TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG Field Oxide Field Oxide Field Field Oxide Oxide n-well p-well p-well n+ buried layer p+ buried layer p-substrate FOX n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm FOX BiCMOS-17 5μm CMOS Analog Circuit Design © P.E. Allen - 2010
  • 14. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-27 Metal2 Metal 2 Oxide/ SOG/ Oxide TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG Field Oxide Field Oxide Field Field Oxide Oxide n-well p-well p-well n+ buried layer p+ buried layer p-substrate FOX n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm FOX BiCMOS-18 5μm CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-28 Metal2-Metal3 Vias TEOS/ BPSG/ SOG Oxide/ SOG/ Oxide TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG Field Oxide Field Oxide Field Field Oxide Oxide n-well p-well p-well n+ buried layer p+ buried layer p-substrate FOX n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm FOX BiCMOS-19 5μm Comments: • The metal2-metal3 vias will be filled with metal3 as opposed to tungsten plugs CMOS Analog Circuit Design © P.E. Allen - 2010
  • 15. Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-29 Completed Wafer Nitride (Hermetically seals the wafer) Metal3 TEOS/ BPSG/ SOG Oxide/ SOG/ Oxide Oxide/SOG/Oxide Metal3 Vias TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG Field Oxide Field Oxide Field Field Oxide Oxide n-well p-well p-well n+ buried layer p+ buried layer p-substrate FOX n+ buried layer p+ buried layer p-type Epitaxial Silicon 1μm FOX BiCMOS-20 5μm CMOS Analog Circuit Design © P.E. Allen - 2010 Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-30 SUMMARY • UDSM technology typically has a minimum channel length less than 0.1μm • UDSM transistors utilize enhanced channel strains to increase drive capability and reduce off currents • Advantages of UDSM technology include: - Smaller devices - Higher speeds and transconductances - Improved Ion/Ioff • Disadvantages of UDSM technology include: - Gate leakage currents - Reduced small signal gains - Increased nonlinearity • BiCMOS technology - Offers both CMOS transistors and a high performance vertical BJT - CMOS is typically a generation behind - Silicon germanium can be used to enhance the BJT performance CMOS Analog Circuit Design © P.E. Allen - 2010