SlideShare a Scribd company logo
Day 51
                                                       π
         1. Quiz 6 Feedback                                2
                                                           y                       π
             2π         ⎛ − 1 , 3 ⎞         (0, 1)
                                                               ⎛ 1 ,      3 ⎞
                    3 ⎝ 2             2 ⎠                    ⎝ 2         2 ⎠        3
 3π             ⎛ − 2 , 2 ⎞                                           ⎛ 2 ,     2 ⎞     π
         4      ⎝     2          2 ⎠                                  ⎝  2       2 ⎠     4
5π           ⎛ − 3 , 1 ⎞                                                 ⎛ 3 , 1 ⎞      π
     6       ⎝       2      2 ⎠                                          ⎝  2   2 ⎠       6
                    (-1, 0)                                                    (1, 0)
π                                                                                                2π
                                                                                                 x


7π           ⎛ − 3 , − 1 ⎞                                              ⎛ 3 , − 1 ⎞     11π
     6       ⎝    2     2 ⎠                                             ⎝  2     2 ⎠             6
5π            ⎛ − 2 , − 2 ⎞                                       ⎛ 2 , − 2 ⎞           7π
     4        ⎝    2       2 ⎠                                    ⎝  2      2 ⎠              4
              4π ⎛ − 1 2 , − 3 2 ⎞                           ⎛ 1 , − 3 ⎞ 5π
                   3 ⎝           ⎠          3π (0, -1)       ⎝ 2       2 ⎠     3
                                                2
2. Examples
Sketch the graph of   y = −3cos ( x + π ) + 1
2. Examples
Sketch the graph of   y = −3cos ( x + π ) + 1
2. Examples
Sketch the graph of   y = −3cos ( x + π ) + 1


                                       y = cos ( x )
2. Examples
Sketch the graph of   y = −3cos ( x + π ) + 1


                                       y = −3cos ( x )
2. Examples
Sketch the graph of   y = −3cos ( x + π ) + 1


                                       y = −3cos ( x + π )
2. Examples
Sketch the graph of   y = −3cos ( x + π ) + 1
                                       y = −3cos ( x + π ) + 1
2. Examples
Sketch the graph of           (      )
                      y = 2sin x − π 3 − 1
2. Examples
Sketch the graph of           (      )
                      y = 2sin x − π 3 − 1
2. Examples
Sketch the graph of           (       )
                      y = 2sin x − π 3 − 1




                                     y = sin ( x )
2. Examples
Sketch the graph of           (       )
                      y = 2sin x − π 3 − 1




                                     y = 2sin ( x )
2. Examples
Sketch the graph of           (      )
                      y = 2sin x − π 3 − 1



                                             (
                                     y = 2sin x − π 3   )
2. Examples
Sketch the graph of           (      )
                      y = 2sin x − π 3 − 1



                                             (      )
                                     y = 2sin x − π 3 − 1
2. Examples
Sketch the graph of   y = 3cos ( 2x + π ) + 1
2. Examples
Sketch the graph of   y = 3cos ( 2x + π ) + 1
2. Examples
Sketch the graph of          (         )
                      y = 2sin 2x − π 3 − 1
2. Examples
Sketch the graph of          (         )
                      y = 2sin 2x − π 3 − 1
Day 52
1. Examples

Find the amplitude and period of y = 3 sin 4x and sketch the graph of
       the function.
Day 52
1. Examples

Find the amplitude and period of y = 3 sin 4x and sketch the graph of
       the function.


If         , the amplitude and period of
and                       are given by:
Day 52
1. Examples

Find the amplitude and period of y = 3 sin 4x and sketch the graph of
       the function.


If ω   > 0 , the amplitude and period of
and                           are given by:
Day 52
1. Examples

Find the amplitude and period of y = 3 sin 4x and sketch the graph of
       the function.


If ω   > 0 , the amplitude and period of           y = Asin ω x
and                           are given by:
Day 52
1. Examples

Find the amplitude and period of y = 3 sin 4x and sketch the graph of
       the function.


If ω   > 0 , the amplitude and period of           y = Asin ω x
and    y = A cos ω x are given by:
Day 52
1. Examples

Find the amplitude and period of y = 3 sin 4x and sketch the graph of
       the function.


If ω   > 0 , the amplitude and period of           y = Asin ω x
and    y = A cos ω x are given by:


Amplitude =
Day 52
1. Examples

Find the amplitude and period of y = 3 sin 4x and sketch the graph of
       the function.


If ω   > 0 , the amplitude and period of           y = Asin ω x
and    y = A cos ω x are given by:


Amplitude =            A
Day 52
1. Examples

Find the amplitude and period of y = 3 sin 4x and sketch the graph of
       the function.


If ω   > 0 , the amplitude and period of           y = Asin ω x
and    y = A cos ω x are given by:


Amplitude =            A               Period = T =
Day 52
1. Examples

Find the amplitude and period of y = 3 sin 4x and sketch the graph of
       the function.


If ω   > 0 , the amplitude and period of           y = Asin ω x
and    y = A cos ω x are given by:

                                                            2π
Amplitude =            A               Period = T =
                                                            ω
1. Examples

Find the amplitude and period of y = 3 sin 4x and sketch the graph of
       the function.
2. Phase Shift

Find the amplitude and period of   y = 3sin ( 2x − π ) and sketch the
       graph of the function.
2. Phase Shift

Find the amplitude and period of   y = 3sin ( 2x − π ) and sketch the
       graph of the function.


If         , for the graphs of
and                                       are given by:
2. Phase Shift

Find the amplitude and period of   y = 3sin ( 2x − π ) and sketch the
       graph of the function.


If ω   > 0 , for the graphs of
and                                       are given by:
2. Phase Shift

Find the amplitude and period of   y = 3sin ( 2x − π ) and sketch the
       graph of the function.


If ω   > 0 , for the graphs of        y = Asin (ω x − φ )
and                                       are given by:
2. Phase Shift

Find the amplitude and period of   y = 3sin ( 2x − π ) and sketch the
       graph of the function.


If ω                     y = Asin (ω x − φ )
       > 0 , for the graphs of
and    y = A cos (ω x − φ ) are given by:
2. Phase Shift

   Find the amplitude and period of   y = 3sin ( 2x − π ) and sketch the
          graph of the function.


    If ω                     y = Asin (ω x − φ )
           > 0 , for the graphs of
    and    y = A cos (ω x − φ ) are given by:


Amplitude =
2. Phase Shift

   Find the amplitude and period of   y = 3sin ( 2x − π ) and sketch the
          graph of the function.


    If ω                     y = Asin (ω x − φ )
           > 0 , for the graphs of
    and    y = A cos (ω x − φ ) are given by:


Amplitude =       A
2. Phase Shift

   Find the amplitude and period of   y = 3sin ( 2x − π ) and sketch the
          graph of the function.


    If ω                     y = Asin (ω x − φ )
           > 0 , for the graphs of
    and    y = A cos (ω x − φ ) are given by:


Amplitude =       A      Period = T =
2. Phase Shift

   Find the amplitude and period of   y = 3sin ( 2x − π ) and sketch the
          graph of the function.


    If ω                     y = Asin (ω x − φ )
           > 0 , for the graphs of
    and    y = A cos (ω x − φ ) are given by:

                                                2π
Amplitude =       A      Period = T =
                                                ω
2. Phase Shift

   Find the amplitude and period of   y = 3sin ( 2x − π ) and sketch the
          graph of the function.


    If ω                     y = Asin (ω x − φ )
           > 0 , for the graphs of
    and    y = A cos (ω x − φ ) are given by:

                                                2π
Amplitude =       A      Period = T =                     Phase shift =
                                                ω
2. Phase Shift

   Find the amplitude and period of   y = 3sin ( 2x − π ) and sketch the
          graph of the function.


    If ω                     y = Asin (ω x − φ )
           > 0 , for the graphs of
    and    y = A cos (ω x − φ ) are given by:

                                                2π                         φ
Amplitude =       A      Period = T =                     Phase shift =
                                                ω                          ω
2. Phase Shift

Find the amplitude and period of   y = 3sin ( 2x − π ) and sketch the
       graph of the function.
3. Classwork

Solve the given exercises.
4. Answers

                     (       )
             y = 3cos x − π 3 + 1
4. Answers




                      (       )
             y = −2sin x − π 2 − 1
4. Answers

                     (        )
             y = 3cos 2x − π 3 + 1
4. Answers




                      (        )
             y = −2sin 2x − π 3 − 1
Day 53
1. Homework check


                    y = sin x
1. Homework check


                    y = cos x
2. Graphs of Trigonometric Functions
2. Graphs of Trigonometric Functions
2. Graphs of Trigonometric Functions

                        y = sin x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
                                                   sin x
                                       y = tan x =
                                                   cos x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
                                                   sin x
                                       y = tan x =
                                                   cos x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
                                                     sin x
                                         y = tan x =
                                                     cos x




                             y = tan x
2. Graphs of Trigonometric Functions
2. Graphs of Trigonometric Functions
2. Graphs of Trigonometric Functions

                        y = sin x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
                                                   cos x
                                       y = cot x =
                                                   sin x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
                                                     cos x
                                         y = cot x =
                                                     sin x




                             y = cot x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
                                                     cos x
                                         y = cot x =
                                                     sin x




                             y = cot x
2. Graphs of Trigonometric Functions
2. Graphs of Trigonometric Functions
2. Graphs of Trigonometric Functions

                        y = sin x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
                                                     1
                                       y = sec x =
                                                   cos x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
                                                       1
                                         y = sec x =
                                                     cos x




                             y = sec x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
                                                       1
                                         y = sec x =
                                                     cos x




                             y = sec x
2. Graphs of Trigonometric Functions
2. Graphs of Trigonometric Functions
2. Graphs of Trigonometric Functions

                        y = sin x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
                                                     1
                                       y = csc x =
                                                   sin x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
                                                       1
                                         y = csc x =
                                                     sin x




                             y = csc x
2. Graphs of Trigonometric Functions

                        y = sin x




                        y = cos x
                                                       1
                                         y = csc x =
                                                     sin x




                             y = csc x
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry
Week 11 - Trigonometry

More Related Content

PDF
P2 Matrices Modul
PDF
P2 Matrices Test
DOC
mathematics formulas
PPT
15 multi variable functions
DOCX
Assignments for class XII
PDF
Elliptic Curves
PDF
Solved exercises simple integration
PPT
Spm add math 2009 paper 1extra222
P2 Matrices Modul
P2 Matrices Test
mathematics formulas
15 multi variable functions
Assignments for class XII
Elliptic Curves
Solved exercises simple integration
Spm add math 2009 paper 1extra222

What's hot (20)

DOC
Chapter 3 (maths 3)
PPTX
t5 graphs of trig functions and inverse trig functions
PPT
21 lagrange multipliers
PDF
Soalan Jawapan Omk 2007
PPT
11 equations of planes
DOC
Satyabama niversity questions in vector
DOC
Chapter 2 (maths 3)
PDF
Form 4 formulae and note
PPTX
58 slopes of lines
PDF
Quadratic equations
DOC
Lap lace
PDF
Form 4 add maths note
PDF
Aieee maths-quick review
PDF
Legendre Function
PDF
Modul bimbingan add maths
PDF
Week 4 [compatibility mode]
PDF
Legendre
PDF
Continuity and Uniform Continuity
PDF
P2 Probability
PDF
Add Maths 2
Chapter 3 (maths 3)
t5 graphs of trig functions and inverse trig functions
21 lagrange multipliers
Soalan Jawapan Omk 2007
11 equations of planes
Satyabama niversity questions in vector
Chapter 2 (maths 3)
Form 4 formulae and note
58 slopes of lines
Quadratic equations
Lap lace
Form 4 add maths note
Aieee maths-quick review
Legendre Function
Modul bimbingan add maths
Week 4 [compatibility mode]
Legendre
Continuity and Uniform Continuity
P2 Probability
Add Maths 2
Ad

Viewers also liked (20)

KEY
Week 9 - Trigonometry
KEY
Week 8 - Trigonometry
KEY
Week 12 - Trigonometry
KEY
Week 10 - Trigonometry
KEY
Week 13 - Trigonometry
PPTX
Third partial exam Integral Calculus EM13 - solutions
PDF
Competing For The Future 競爭大未來 Chap1 4 20060420 Jason Lai Pmp
PPT
What S Your True Color
PDF
Ever Bright Company Profile W Gbdd
PPTX
Sistek Chandler Cue10
PDF
Studio
PPT
HöNnun Augl∞Singa Myndir
PPT
Baie Des Cochons
PPT
Blogging
KEY
Trapper School: Trapper Trails
KEY
DiffCalculus: September 17, 2012
PPS
Artefotografico 1
PPT
Collateral Advantage
PDF
CHAMPS LEYSIN 2014
PDF
Cegoc - Gamification increase engagement and effectiveness of learning
Week 9 - Trigonometry
Week 8 - Trigonometry
Week 12 - Trigonometry
Week 10 - Trigonometry
Week 13 - Trigonometry
Third partial exam Integral Calculus EM13 - solutions
Competing For The Future 競爭大未來 Chap1 4 20060420 Jason Lai Pmp
What S Your True Color
Ever Bright Company Profile W Gbdd
Sistek Chandler Cue10
Studio
HöNnun Augl∞Singa Myndir
Baie Des Cochons
Blogging
Trapper School: Trapper Trails
DiffCalculus: September 17, 2012
Artefotografico 1
Collateral Advantage
CHAMPS LEYSIN 2014
Cegoc - Gamification increase engagement and effectiveness of learning
Ad

Similar to Week 11 - Trigonometry (20)

KEY
DiffCalculus August 13, 2012
PDF
Module 4 circular function
PDF
Lesson 11: The Chain Rule
PPS
Classzone Chapter 4
PPT
Lesson 14 a - parametric equations
PPT
4.5 graphs of trigonometry functions
PPT
Graphs of trigonometry functions
PDF
F4 02 Quadratic Expressions And
PPT
Phase shift and amplitude of trigonometric functions
PDF
notes on quadratics functions with solutions.pdf
PDF
chapter1_part2.pdf
KEY
0905 ch 9 day 5
PDF
Math 17 midterm exam review jamie
KEY
0303 ch 3 day 3
KEY
0802 ch 8 day 2
PPT
Gr aph of cosine
PDF
Em04 il
PPT
7.4
KEY
1110 ch 11 day 10
ZIP
AA Section 6-3
DiffCalculus August 13, 2012
Module 4 circular function
Lesson 11: The Chain Rule
Classzone Chapter 4
Lesson 14 a - parametric equations
4.5 graphs of trigonometry functions
Graphs of trigonometry functions
F4 02 Quadratic Expressions And
Phase shift and amplitude of trigonometric functions
notes on quadratics functions with solutions.pdf
chapter1_part2.pdf
0905 ch 9 day 5
Math 17 midterm exam review jamie
0303 ch 3 day 3
0802 ch 8 day 2
Gr aph of cosine
Em04 il
7.4
1110 ch 11 day 10
AA Section 6-3

More from Carlos Vázquez (20)

PDF
Application problems - pt 3 - Answers
PDF
Application problems - pt 2 - Answers
PDF
Application problems - Answers
PPT
GCF and LCM Problem Solving
PPTX
Pm6007 class activity feb 21 solutions
PPTX
First partial exam – solutions
KEY
DiffCalculus: September 19, 2012
KEY
DiffCalculus: September 18, 2012
KEY
DiffCalculus: September 11, 2012
KEY
DiffCalculus: September 12, 2012
KEY
DiffCalculus: September 10, 2012
PDF
DiffCalculus: August 27, 2012
PDF
DiffCalculus Week 3
KEY
DiffCalculus August 9, 2012
KEY
DiffCalculus August 8, 2012
KEY
DiffCalculus August 7, 2012
KEY
First Day
KEY
Tengo 10 minutos v. 1.1
KEY
Tengo 10 minutos
KEY
Week 6 - Trigonometry
Application problems - pt 3 - Answers
Application problems - pt 2 - Answers
Application problems - Answers
GCF and LCM Problem Solving
Pm6007 class activity feb 21 solutions
First partial exam – solutions
DiffCalculus: September 19, 2012
DiffCalculus: September 18, 2012
DiffCalculus: September 11, 2012
DiffCalculus: September 12, 2012
DiffCalculus: September 10, 2012
DiffCalculus: August 27, 2012
DiffCalculus Week 3
DiffCalculus August 9, 2012
DiffCalculus August 8, 2012
DiffCalculus August 7, 2012
First Day
Tengo 10 minutos v. 1.1
Tengo 10 minutos
Week 6 - Trigonometry

Recently uploaded (20)

PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Cell Structure & Organelles in detailed.
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
01-Introduction-to-Information-Management.pdf
PDF
Insiders guide to clinical Medicine.pdf
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
Computing-Curriculum for Schools in Ghana
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Pre independence Education in Inndia.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
master seminar digital applications in india
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Final Presentation General Medicine 03-08-2024.pptx
2.FourierTransform-ShortQuestionswithAnswers.pdf
Cell Structure & Organelles in detailed.
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
01-Introduction-to-Information-Management.pdf
Insiders guide to clinical Medicine.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
Computing-Curriculum for Schools in Ghana
TR - Agricultural Crops Production NC III.pdf
GDM (1) (1).pptx small presentation for students
Pre independence Education in Inndia.pdf
human mycosis Human fungal infections are called human mycosis..pptx
FourierSeries-QuestionsWithAnswers(Part-A).pdf
master seminar digital applications in india
Anesthesia in Laparoscopic Surgery in India
O7-L3 Supply Chain Operations - ICLT Program
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Final Presentation General Medicine 03-08-2024.pptx

Week 11 - Trigonometry

  • 1. Day 51 π 1. Quiz 6 Feedback 2 y π 2π ⎛ − 1 , 3 ⎞ (0, 1) ⎛ 1 , 3 ⎞ 3 ⎝ 2 2 ⎠ ⎝ 2 2 ⎠ 3 3π ⎛ − 2 , 2 ⎞ ⎛ 2 , 2 ⎞ π 4 ⎝ 2 2 ⎠ ⎝ 2 2 ⎠ 4 5π ⎛ − 3 , 1 ⎞ ⎛ 3 , 1 ⎞ π 6 ⎝ 2 2 ⎠ ⎝ 2 2 ⎠ 6 (-1, 0) (1, 0) π 2π x 7π ⎛ − 3 , − 1 ⎞ ⎛ 3 , − 1 ⎞ 11π 6 ⎝ 2 2 ⎠ ⎝ 2 2 ⎠ 6 5π ⎛ − 2 , − 2 ⎞ ⎛ 2 , − 2 ⎞ 7π 4 ⎝ 2 2 ⎠ ⎝ 2 2 ⎠ 4 4π ⎛ − 1 2 , − 3 2 ⎞ ⎛ 1 , − 3 ⎞ 5π 3 ⎝ ⎠ 3π (0, -1) ⎝ 2 2 ⎠ 3 2
  • 2. 2. Examples Sketch the graph of y = −3cos ( x + π ) + 1
  • 3. 2. Examples Sketch the graph of y = −3cos ( x + π ) + 1
  • 4. 2. Examples Sketch the graph of y = −3cos ( x + π ) + 1 y = cos ( x )
  • 5. 2. Examples Sketch the graph of y = −3cos ( x + π ) + 1 y = −3cos ( x )
  • 6. 2. Examples Sketch the graph of y = −3cos ( x + π ) + 1 y = −3cos ( x + π )
  • 7. 2. Examples Sketch the graph of y = −3cos ( x + π ) + 1 y = −3cos ( x + π ) + 1
  • 8. 2. Examples Sketch the graph of ( ) y = 2sin x − π 3 − 1
  • 9. 2. Examples Sketch the graph of ( ) y = 2sin x − π 3 − 1
  • 10. 2. Examples Sketch the graph of ( ) y = 2sin x − π 3 − 1 y = sin ( x )
  • 11. 2. Examples Sketch the graph of ( ) y = 2sin x − π 3 − 1 y = 2sin ( x )
  • 12. 2. Examples Sketch the graph of ( ) y = 2sin x − π 3 − 1 ( y = 2sin x − π 3 )
  • 13. 2. Examples Sketch the graph of ( ) y = 2sin x − π 3 − 1 ( ) y = 2sin x − π 3 − 1
  • 14. 2. Examples Sketch the graph of y = 3cos ( 2x + π ) + 1
  • 15. 2. Examples Sketch the graph of y = 3cos ( 2x + π ) + 1
  • 16. 2. Examples Sketch the graph of ( ) y = 2sin 2x − π 3 − 1
  • 17. 2. Examples Sketch the graph of ( ) y = 2sin 2x − π 3 − 1
  • 18. Day 52 1. Examples Find the amplitude and period of y = 3 sin 4x and sketch the graph of the function.
  • 19. Day 52 1. Examples Find the amplitude and period of y = 3 sin 4x and sketch the graph of the function. If , the amplitude and period of and are given by:
  • 20. Day 52 1. Examples Find the amplitude and period of y = 3 sin 4x and sketch the graph of the function. If ω > 0 , the amplitude and period of and are given by:
  • 21. Day 52 1. Examples Find the amplitude and period of y = 3 sin 4x and sketch the graph of the function. If ω > 0 , the amplitude and period of y = Asin ω x and are given by:
  • 22. Day 52 1. Examples Find the amplitude and period of y = 3 sin 4x and sketch the graph of the function. If ω > 0 , the amplitude and period of y = Asin ω x and y = A cos ω x are given by:
  • 23. Day 52 1. Examples Find the amplitude and period of y = 3 sin 4x and sketch the graph of the function. If ω > 0 , the amplitude and period of y = Asin ω x and y = A cos ω x are given by: Amplitude =
  • 24. Day 52 1. Examples Find the amplitude and period of y = 3 sin 4x and sketch the graph of the function. If ω > 0 , the amplitude and period of y = Asin ω x and y = A cos ω x are given by: Amplitude = A
  • 25. Day 52 1. Examples Find the amplitude and period of y = 3 sin 4x and sketch the graph of the function. If ω > 0 , the amplitude and period of y = Asin ω x and y = A cos ω x are given by: Amplitude = A Period = T =
  • 26. Day 52 1. Examples Find the amplitude and period of y = 3 sin 4x and sketch the graph of the function. If ω > 0 , the amplitude and period of y = Asin ω x and y = A cos ω x are given by: 2π Amplitude = A Period = T = ω
  • 27. 1. Examples Find the amplitude and period of y = 3 sin 4x and sketch the graph of the function.
  • 28. 2. Phase Shift Find the amplitude and period of y = 3sin ( 2x − π ) and sketch the graph of the function.
  • 29. 2. Phase Shift Find the amplitude and period of y = 3sin ( 2x − π ) and sketch the graph of the function. If , for the graphs of and are given by:
  • 30. 2. Phase Shift Find the amplitude and period of y = 3sin ( 2x − π ) and sketch the graph of the function. If ω > 0 , for the graphs of and are given by:
  • 31. 2. Phase Shift Find the amplitude and period of y = 3sin ( 2x − π ) and sketch the graph of the function. If ω > 0 , for the graphs of y = Asin (ω x − φ ) and are given by:
  • 32. 2. Phase Shift Find the amplitude and period of y = 3sin ( 2x − π ) and sketch the graph of the function. If ω y = Asin (ω x − φ ) > 0 , for the graphs of and y = A cos (ω x − φ ) are given by:
  • 33. 2. Phase Shift Find the amplitude and period of y = 3sin ( 2x − π ) and sketch the graph of the function. If ω y = Asin (ω x − φ ) > 0 , for the graphs of and y = A cos (ω x − φ ) are given by: Amplitude =
  • 34. 2. Phase Shift Find the amplitude and period of y = 3sin ( 2x − π ) and sketch the graph of the function. If ω y = Asin (ω x − φ ) > 0 , for the graphs of and y = A cos (ω x − φ ) are given by: Amplitude = A
  • 35. 2. Phase Shift Find the amplitude and period of y = 3sin ( 2x − π ) and sketch the graph of the function. If ω y = Asin (ω x − φ ) > 0 , for the graphs of and y = A cos (ω x − φ ) are given by: Amplitude = A Period = T =
  • 36. 2. Phase Shift Find the amplitude and period of y = 3sin ( 2x − π ) and sketch the graph of the function. If ω y = Asin (ω x − φ ) > 0 , for the graphs of and y = A cos (ω x − φ ) are given by: 2π Amplitude = A Period = T = ω
  • 37. 2. Phase Shift Find the amplitude and period of y = 3sin ( 2x − π ) and sketch the graph of the function. If ω y = Asin (ω x − φ ) > 0 , for the graphs of and y = A cos (ω x − φ ) are given by: 2π Amplitude = A Period = T = Phase shift = ω
  • 38. 2. Phase Shift Find the amplitude and period of y = 3sin ( 2x − π ) and sketch the graph of the function. If ω y = Asin (ω x − φ ) > 0 , for the graphs of and y = A cos (ω x − φ ) are given by: 2π φ Amplitude = A Period = T = Phase shift = ω ω
  • 39. 2. Phase Shift Find the amplitude and period of y = 3sin ( 2x − π ) and sketch the graph of the function.
  • 40. 3. Classwork Solve the given exercises.
  • 41. 4. Answers ( ) y = 3cos x − π 3 + 1
  • 42. 4. Answers ( ) y = −2sin x − π 2 − 1
  • 43. 4. Answers ( ) y = 3cos 2x − π 3 + 1
  • 44. 4. Answers ( ) y = −2sin 2x − π 3 − 1
  • 45. Day 53 1. Homework check y = sin x
  • 46. 1. Homework check y = cos x
  • 47. 2. Graphs of Trigonometric Functions
  • 48. 2. Graphs of Trigonometric Functions
  • 49. 2. Graphs of Trigonometric Functions y = sin x
  • 50. 2. Graphs of Trigonometric Functions y = sin x y = cos x
  • 51. 2. Graphs of Trigonometric Functions y = sin x y = cos x sin x y = tan x = cos x
  • 52. 2. Graphs of Trigonometric Functions y = sin x y = cos x sin x y = tan x = cos x
  • 53. 2. Graphs of Trigonometric Functions y = sin x y = cos x sin x y = tan x = cos x y = tan x
  • 54. 2. Graphs of Trigonometric Functions
  • 55. 2. Graphs of Trigonometric Functions
  • 56. 2. Graphs of Trigonometric Functions y = sin x
  • 57. 2. Graphs of Trigonometric Functions y = sin x y = cos x
  • 58. 2. Graphs of Trigonometric Functions y = sin x y = cos x cos x y = cot x = sin x
  • 59. 2. Graphs of Trigonometric Functions y = sin x y = cos x cos x y = cot x = sin x y = cot x
  • 60. 2. Graphs of Trigonometric Functions y = sin x y = cos x cos x y = cot x = sin x y = cot x
  • 61. 2. Graphs of Trigonometric Functions
  • 62. 2. Graphs of Trigonometric Functions
  • 63. 2. Graphs of Trigonometric Functions y = sin x
  • 64. 2. Graphs of Trigonometric Functions y = sin x y = cos x
  • 65. 2. Graphs of Trigonometric Functions y = sin x y = cos x 1 y = sec x = cos x
  • 66. 2. Graphs of Trigonometric Functions y = sin x y = cos x 1 y = sec x = cos x y = sec x
  • 67. 2. Graphs of Trigonometric Functions y = sin x y = cos x 1 y = sec x = cos x y = sec x
  • 68. 2. Graphs of Trigonometric Functions
  • 69. 2. Graphs of Trigonometric Functions
  • 70. 2. Graphs of Trigonometric Functions y = sin x
  • 71. 2. Graphs of Trigonometric Functions y = sin x y = cos x
  • 72. 2. Graphs of Trigonometric Functions y = sin x y = cos x 1 y = csc x = sin x
  • 73. 2. Graphs of Trigonometric Functions y = sin x y = cos x 1 y = csc x = sin x y = csc x
  • 74. 2. Graphs of Trigonometric Functions y = sin x y = cos x 1 y = csc x = sin x y = csc x

Editor's Notes

  • #2: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #3: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #4: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #5: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #6: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #7: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #8: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #9: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #10: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #11: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #12: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #13: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #14: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #15: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #16: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #17: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #18: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #19: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #20: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #21: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #22: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #23: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #24: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #25: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #26: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #27: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #28: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #29: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #30: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #31: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #32: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #33: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #34: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #35: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #36: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #37: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #38: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #39: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #40: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #41: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #42: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #43: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #44: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #45: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #46: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #47: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #48: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #49: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #50: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #51: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #52: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #53: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #54: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #55: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #56: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #57: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #58: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #59: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #60: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #61: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #62: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #63: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #64: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #65: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #66: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #67: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #68: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #69: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #70: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #71: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #72: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #73: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #74: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #75: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #76: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #77: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #78: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #79: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #80: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #81: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #82: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #83: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #84: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #85: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n
  • #86: Louisianans, Mainers, Nutmeggers, New Jersey-ites, Bay Staters (Massholes, more locally).\n