Ministerul Educaţiei, Cercetării şi Inovării 
Centrul Naţional pentru Curriculum şi Evaluare în Învăţământul Preuniversitar 
Soluţie 
1. 2(1− x) = x +1+ 4⇒ x = −1 
2. f (0) = −6 , f (x) = 0⇒ x∈{1;−6}⇒ A(0;−6),B(1;0),C(−6;0) 
1 
3. 
sin 
    ∈ −  −  + ∈  
    
x = − , ( ) 1 
2 
x 1 k arcsin 
kπ k 
2 
x 
∈ π π    
Z ,dar x∈[0,2π ]⇒ 7 11 
; 
6 6 
  
. 
4. Numărul cazurilor posibile este 26 . Numărul cazurilor favorabile este 
2 
C6 =15 . 
15 
64 
p = . 
5. 
JJG JJG JJG JJG 
+ + 
r r r 
A B C 
= ⇒ 
3 
r 
G 
JJG G G 
rC = 6i + 6 j 
. 
G G G G GG G G GG GG G G 
6.( )( ) 2 2 2 2 
2u + v ⋅ 2v − u = 4uv − 2u + 2v − uv = 3uv − 2u + 2v 
, 
GG G G 
2 2 1 2 
uv − u + v = ⋅ ⋅ ⋅ − ⋅ + ⋅ 
3 2 2 312 21 22 
2 
G G G G 
, (2u + v)⋅(2v − u) = 9 
. 
BACALAUREAT 2009-MATEMATICĂ - Proba D, tipul subiectului MT1, programa M1

More Related Content

PDF
D mt1 i_053
PDF
D mt1 i_055
PDF
D mt1 i_024
PDF
D mt1 i_013
PDF
D mt1 i_052
PDF
D mt1 i_051
PDF
D mt1 i_063
PDF
D mt1 i_034
D mt1 i_053
D mt1 i_055
D mt1 i_024
D mt1 i_013
D mt1 i_052
D mt1 i_051
D mt1 i_063
D mt1 i_034

What's hot (20)

PDF
D mt1 i_047
PDF
D mt1 i_029
PDF
D mt1 i_050
PDF
D mt1 i_042
PDF
D mt1 i_030
PDF
D mt1 i_015
PDF
D mt1 i_019
PDF
D mt1 i_005
PDF
D mt1 i_022
PDF
D mt1 i_039
PDF
D mt1 i_010
PDF
D mt1 i_035
PDF
D mt1 i_008
PDF
D mt1 i_017
PDF
D mt1 i_018
PDF
D mt1 i_009
PDF
D mt1 i_040
PDF
probleme an I
PDF
D mt1 i_012
PDF
D mt1 i_072
D mt1 i_047
D mt1 i_029
D mt1 i_050
D mt1 i_042
D mt1 i_030
D mt1 i_015
D mt1 i_019
D mt1 i_005
D mt1 i_022
D mt1 i_039
D mt1 i_010
D mt1 i_035
D mt1 i_008
D mt1 i_017
D mt1 i_018
D mt1 i_009
D mt1 i_040
probleme an I
D mt1 i_012
D mt1 i_072
Ad

Viewers also liked (17)

PDF
D mt1 i_056
PDF
D mt1 i_054
PDF
D mt1 i_041
PDF
D mt1 i_049
PDF
D mt1 i_066
PPTX
Archiving de historico de datos
PDF
D mt1 i_044
PDF
D mt1 i_043
PDF
D mt1 i_071
PDF
D mt1 i_048
PDF
D mt1 i_057
PDF
D mt1 i_058
PDF
D mt1 i_067
PDF
D mt1 i_069
PDF
D mt1 i_068
PDF
D mt1 i_065
PDF
D mt1 i_074
D mt1 i_056
D mt1 i_054
D mt1 i_041
D mt1 i_049
D mt1 i_066
Archiving de historico de datos
D mt1 i_044
D mt1 i_043
D mt1 i_071
D mt1 i_048
D mt1 i_057
D mt1 i_058
D mt1 i_067
D mt1 i_069
D mt1 i_068
D mt1 i_065
D mt1 i_074
Ad

Similar to D mt1 i_061 (20)

PDF
D mt1 i_038
PDF
D mt1 i_062
PDF
D mt1 i_027
PDF
D mt1 i_028
PDF
D mt1 i_033
PDF
D mt1 i_031
PDF
D mt1 i_046
PDF
9 varianta oficiala bac matematica m1 2010 (prima sesiune)
PDF
D mt1 i_026
PDF
D mt1 i_036
PDF
D mt1 ii_013
PDF
D mt1 i_032
PDF
9 barem varianta oficiala bac matematica m1 2010 (prima sesiune)
PDF
D mt1 i_060
PDF
E c matematica_m1_var_07_lro
PDF
E c matematica_m2_var_07_lro
PDF
Variante bacalaureat m2 - 2011
PDF
D mt1 ii_009
DOC
Culegere de probleme pentru admiterea la scoala militara de maisti
DOC
D mt2 i_002
D mt1 i_038
D mt1 i_062
D mt1 i_027
D mt1 i_028
D mt1 i_033
D mt1 i_031
D mt1 i_046
9 varianta oficiala bac matematica m1 2010 (prima sesiune)
D mt1 i_026
D mt1 i_036
D mt1 ii_013
D mt1 i_032
9 barem varianta oficiala bac matematica m1 2010 (prima sesiune)
D mt1 i_060
E c matematica_m1_var_07_lro
E c matematica_m2_var_07_lro
Variante bacalaureat m2 - 2011
D mt1 ii_009
Culegere de probleme pentru admiterea la scoala militara de maisti
D mt2 i_002

More from Ionut Ciobanu (11)

PDF
D mt1 i_082
PDF
D mt1 i_081
PDF
D mt1 i_080
PDF
D mt1 i_079
PDF
D mt1 i_077
PDF
D mt1 i_078
PDF
D mt1 i_076
PDF
D mt1 i_075
PDF
D mt1 i_073
PDF
D mt1 i_070
PDF
D mt1 i_059
D mt1 i_082
D mt1 i_081
D mt1 i_080
D mt1 i_079
D mt1 i_077
D mt1 i_078
D mt1 i_076
D mt1 i_075
D mt1 i_073
D mt1 i_070
D mt1 i_059

D mt1 i_061

  • 1. Ministerul Educaţiei, Cercetării şi Inovării Centrul Naţional pentru Curriculum şi Evaluare în Învăţământul Preuniversitar Soluţie 1. 2(1− x) = x +1+ 4⇒ x = −1 2. f (0) = −6 , f (x) = 0⇒ x∈{1;−6}⇒ A(0;−6),B(1;0),C(−6;0) 1 3. sin     ∈ −  −  + ∈      x = − , ( ) 1 2 x 1 k arcsin kπ k 2 x ∈ π π    Z ,dar x∈[0,2π ]⇒ 7 11 ; 6 6   . 4. Numărul cazurilor posibile este 26 . Numărul cazurilor favorabile este 2 C6 =15 . 15 64 p = . 5. JJG JJG JJG JJG + + r r r A B C = ⇒ 3 r G JJG G G rC = 6i + 6 j . G G G G GG G G GG GG G G 6.( )( ) 2 2 2 2 2u + v ⋅ 2v − u = 4uv − 2u + 2v − uv = 3uv − 2u + 2v , GG G G 2 2 1 2 uv − u + v = ⋅ ⋅ ⋅ − ⋅ + ⋅ 3 2 2 312 21 22 2 G G G G , (2u + v)⋅(2v − u) = 9 . BACALAUREAT 2009-MATEMATICĂ - Proba D, tipul subiectului MT1, programa M1